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ABSTRACT

Cooperating local parallel processes can be used as aids in assigning
numerical or symbolic labels to image or scene parts. Various approaches
to using such processes in low-level vision are reviewed, and their ad-
vantages are discussed. Methods of designing and controlling such proces-
ses are also considered,
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1. Introduction

The early stages of computer vision involve assigning symbolic and
numerical labels to image parts. For example, pixels can be assigned
symbolic land-use category labels based on their spectral signatures, or
numerical stereo or motion disparity labels based on local comparisons

between pairs of pictures.

The enormous amount of data comprising an image demands that such
Tabelling processes be very fast. Sequential labelling processes, while
they can make full use of context, cannot be speeded up in general. More-
over, the labellings which they compute are often sensitive to the order
in which the parts are considered., A more promising approach -- one that
is also motivated by studies of biological visual systems -- is to make
the processes highly parallel. This requires that each picture part be
analyzed and labelled independently of the others. When we do this, how-
ever, many errors are made, because contextual information is not adequately
used.

A solution to this problem is to assess the labelling possibilities
for every part independently and then compare each part's assessments to
those of other, related parts, in order to detect and correct potential
inconsistencies. Since both the assessment and the comparison can be done
independently for every part, each stage of the process is paraliel. On
the other hand, context is now being used at the comparison stage, when re-
lated parts are able to communicate and “cooperate." To keep the computa-
tional cost low, the comparisons should be local; they should invoive only
parts that are directly related (e.g., neighboring pixels). This Tocalness

can be compensated for by iterating the comparison process, in order to allow



information to propagate.

These considerations lead naturally to the design of a "cooperative"
approach to labelling picture parts which allows context to be used in
the Tabelling process while still permitting fast parallel implementation
and low computational cost. Such processes are called "relaxation” pro-
cesses, because of their resemblance to certain jterative processes used
in numerical analysis. Very generally, a relaxation process is organized

as follows:

a) A list of possible labels is independently selected for each part,
based on its intrinsic characteristics. A measure of confidence
can also be associated with each possible label.

b) The possibilities (and confidences) for each part are compared
with those for related parts, based on a model for the relation-
ships between the possible labels of picture parts. Labels are
deleted or confidences are adjusted to reduce inconsistencies.

c) Step (b) can be iterated as many times as required,

This approach {s very general: We have not specified how to formulate
Tabel relationship models, choose possibiltties, estimate confidences, or
adjust them; nor have we discussed when the process should be iterated, and
if so, how many times. The next three sections of this paper discuss these
issues, and survey applications of such processes to problems in low-level

computer vision.



2. Cooperation/Competition

a relaxation process is a computational mechanism which allows a set
of "myopic" local processes associated with picture parts to interact with
one another in order to achieve a globally consistent interpretation of a
picture. This interaction involves the updating of each picture part's
self-assessment which is represented as a discrete or fuzzy Jabelling. A
discrete labelling simply associates a set of possible labels, or names,
with each picture part, while a fuzzy Tabelling additionally associates a

Tikelihood with each Tabel.

Labels are usually specified extensionally by actually listing the
appropriate labels for each picture part. The list is a subset of some
given, finite universe of labels. For some applications the natural label
set is infinite. For example, the label for a picture part might represent
the range, or distance, from thé sensor to some specific point in the pic-
ture part such as its centroid. In such cases, a labelling may need to be
specified intensionally; for example, an interval of numbers may be used to
specify the range -- i.e., we assume that the true range is between a
nearest distance s and a farthest distance £y
will consider in this paper use only finite universes of labels.

A1l the applications we

2.1. Neighborhood models

A relaxation process is determined by specifying a model for the neighbor-

nood of a picture part and a model for the interaction between labellings of

neighboring picture parts,
The neighborhood model for a relaxation process specifies which pairs

of picture parts directly communicate with one another in the relaxation

orocess, and determines the topoiogy of the graph on which the relaxation



process operates., This graph has individual picture parts as nodes. Its
arcs connect those pairs of parts that communicate with one another. The
neighborhcod model is usually designed to establish connections only be-

tween "nearby" parts to satisfy the locality constraint.

A neighbgrhood model is specified by a set of neighbor relations
r={r,, Fos voes rn}. Each rs is a binary relation defined over the ap-
propriate set of picture parts, For example, if the picture parts are
pixels, then the neighborhood model might specify that a pixel is connected
to every pixel in its 3x3 neighborhood. In this case, there are still
several possibilities for the relations contained in the set r. For ex-
ample, r might be the set {directly above, directly below, etc.} which
would distinguish between pairs of points that are horizontally adjacent,
vertically adjacent, etc,, or it could be the singleton relation "in the
3x3 neighborhood." In the Tatter case, the connections between pairs of
pixels would not be recoverable from the graph on which the relaxation
process will operate., The choice of r will, in general, be determined by
the isotropy of the universe of labels., For example, if we are designing
a relaxation process for edge reinformcement, then the relative positions
of pixels are crucial since edges generally "line up," while if we are de-
signing a relaxation process to enhance an image's grey levels, then the

positional information may not be required.

When the picture parts are regions rather than pixels, then connections
might be formed between adjacent regions only. In some situations, it might
be necessary to distinguish between regions that are above, below, inside,

surrounding, etc.

The neighborhood model determines which pairs of picture parts directly

communicate through the relaxation process. The next section discusses the



various ways in which they may communicate.

2.2 Interaction models

The interaction model defines how a picture part changes its labelling

based on the labellings of its neighbors. An interaction model is composed

of two paris:

[ns

of

1) a knowledge representation for the relationships between Tabels,

and
2} a mechanism, or procedure, for applying the knowledge in (1) to

change, or update, labellings.

For discrete labellings the simplest knowledge representation is a set

he pairs of labels that can simultaneously be assocjated with pairs of

neighboring picture parts., It can be represented by a binary relation R

defined over the universe of labels D. Intuitively, (d,d') €7 if a pair

of neighbors can simultaneously be labelled with d and d'. In general,

there is a binary relation associated with each nejghbor relation,

The most obvious updating mechanism is a label discarding process,

which looks at pairs of picture parts at a time. A label, d, can be deleted

from
that
This

show

the labelling of a picture part if, for some neighboring picture part,
neighbor does not contain a label, d', in its labelling with (d,d') € R.
is, essentially, Waltz's filtering algorithm [1]. Rosenfeld et al. [2]

that label discarding can, in principle, be applied in parallel at

every picture part and that by iterating the process of discarding Tabels

a unique, maximally consistent labelling is computed. The process can be

generalized in a variety of ways -- e.g., the knowledge representation might

be in terms of n-ary relations (for example, a 3-ary relation is required



to specify that a picture part is between two others). The label discarding
process now considers a picture part and n-1 of its neighbors at a time,
rather than one neighbor at a time. There are many other possibilities
based on computing Tower-order projections of n-ary relations. See Haralick

et al. [3] and Haralick and Shapiro [4] for a detailed discussion,

The binary relation knowledge representation can be generalized to
fuzzy Tabellings by specifying a real-valued compatibility function, C,
whose domain is DxD. As before, in general, a compatibility function is
defined for each picture relation in the set r. A variety of applications
have used compatibility functions whose range is [-1,1]. Intuitively, if
C{d,d*) = -1, then d and d' are maximally incompatible, and the strong
presence of d' at one picture part (i.e., d' has a high Tikelihood at that
part) should depress the Tikelihood of d at a neighboring picture part.

If C(d,d*) =1, then d and d' are maximally compatible, and the strong pres-
ence of d' at a picture part should increase the 1ikelihood of d at a
neighboring picture part. Finally, if C(d,d") = 0, then the presence of

d' at a picture part should have no effect on the likelihood of d at a

neighboring part. Intermediate values of C should have intermediate ef-

fects,

As an example, suppose we are designing a relaxation process to enhance
the results of & local line detection algorithm. Then the set of labels may
be {horizontal (h), vertical (v), left-diagonal (d), and right-diagonal
(dr), and the set r might contain the relations vertically-adjacent (V),
horizontally-adjacent (H), Teft-diagonaliy-adjacent (L) and right-diagonally-
adjacent (R)}. 1If, in the class of images being considered, linear features

are thin and have few corners (i.e., the curvature is ordinarily Tow), then



we would expect, e.g., that Cv(v,v) would be high, while Cv(v,h) would be
low, since an h vertically adjacent to a v would form a right angle. CH(v,v),

on the other hand would be low, since the linear features are thin.

Several mechanisms have been suggested for applying this knowledge
representation to updating labellings. For example, Rosenfeld et al. [2]

suggested the formula:

pi(d) = 54(d)(1 + Q,(d))/N

where

i

Qy(d) = Jmyy T C(d,d') pylat)

J d’
and N is a normalizing factor which guarantees that Zpi(d) = 1. The m,
vajues can be used to give higher weight to some neighbors at part i than
others, :Qi(d) measures the overall support of the neighborhood of part i
for label dy it takes on values in the range [-1,1] and can be interpreted
similarly to C. The above cperation is applied in parallel at every part
and for every label. The p' values then replace the p values, and the opera-

tion can be iterated.

yariations on the above theme are possible and lead to better results
in some applications. For example, one can apply a "max-min® rule where
Qgid) = min {max {C(d,d')pj(d’)}}
which reduces to the discrete algorithm described above when C and p are

constrained to take on only the values O or 1.

There are several disadvantages to the relational knowledge representa-
tion for the interactions between labels. First, it is a single-level rep-
resentation scheme. The solution to many image understanding problems re-

quires that images be described at several levels of abstraction. Attempting



to compile all interactions between conceptually higher-level pictorial
entities down to interactions between only the lowest level pictorial fea-
tures is almost always cumbersome and inefficient, and is sometimes impos-

sible. Section 2.3 discusses hierarchical relaxation systems.

A second important shortcoming of the relational framework is that the
algebraic combination of evidence treats all of the interactions between
labels uniformly, which is often not desirable. Furthermore, there are
classes of intuitively plausible constraints that can only be represented
very inefficiently in a relational framework. For example, the very simple
constraint

A picture part can be a d.i only if all adjacent picture parts
can be dz's
requires an n-ary relation to represent it, where n is the maximum degree

of any node in the graph on which the relaxation procedure operates,

Such problems can be overcome by adopting a more powerful representa-
tion for label interactions than relations. For example, constraints between
labels can be represented using logic statements [5]. This allows a much
wider class of constraints to be efficiently represented and applied to
the analysis of a picture. The natural mechanism for applying the constraints
is, then, a general inference procedure. Such a scheme has not yet been
apptied to any image understanding problem; its application to linear fea-

ture detection is currently under investigation.
2.3. Hierarchy
Very often, a natural and economical solution to an image analysis prob-

tem requires that pictorial entities be described at several levels of detail.

For example, to recognize an image segment as the top view of an airplane



based on the shape of its boundary might require recognizing airplane pieces
as engines, wings, tail sections, etc., and then grouping them into larger
pieces of airplanes, and finally into a complete airplane shape. Or, as a
second, more complex, example, reading a word in cursive script involves
segmenting the word into primitive parts such as strokes, grouping the
strokes into large letter pieces, those pieces into letters and finally

the letters into a word,

As discussed above a single level relaxation system is specified by
a neighborhood model and a label interaction model. To design a hierarchical
relaxation system having k levels, one needs to not only define a neighbor-

hood model and an interaction model at each level, but also a construction

model (which, given the labelling of pieces at level m, can construct the
pieces and their labellings at level m+1), and an across-level neighbhorhood
model. This last model is ordinarily based simply on constituency -- i.e.,
a level m+1 piece is linked to each of the level pieces from which it was

formed [6].

An important design criterion for such processes 1is that the construc-
tion models and the interaction models be consistent. Intuitively, the
consistency constraint means that the relations between tevel m labels im-
plied by the construction medels for all higher levels do not contradict
the explicit relations between level m labels mentioned in the tevel m

interaction model. A simple example should help clarify this point.
p P N P

Suppose that we are constructing a hierarchical relaxation system for
reading cursive script, and that for the particular corpus of words that we
wish to read, there are no words in which the letter "h" precedes the letter

“u."  Now, suppose that at the large letter piece level, an h ends with a



piece P and a u begins with a piece Pos and that no other letter contains
either a Py ora p,. Then clearly, the compatibility of Pq and Py at the
large letter piece level should be as low as possible. If it were not,
then the construction model taking letters into words would be inconsistent

with the interaction model for large letter pieces.

One possible approach to guaranteeing such consistency is to specify
only the construction models, and then compile the interaction models from
the construction models. This not only guarantees that the interaction
models are consistent with the construction models, but also avoids the
tedious task of specifying all the constraints contained in the interaction

models.

For example, in reading cursive script from a known corpus, the letter
cooccurrence probabilities can be compiled directly from the corpus, and
these can be used as an interaction mode] at the letter lTevel. Then, gijven
a decomposition of letters into large letter pieces a similar process can
produce cooccurrence probabilities for large Tetter pieces, etc. This was

done by Hayes [7] in his handwriting analysis system,

As a second example, in [8] Davis and Henderson describe a hierarchical
shape analysis system. Shapes are modeled by hierarchical relational net-
works which describe the arrangement and geometrical properties of shape
pieces at several levels of detail. The representation is designed in such
a way that local constraints about the appearance of the shape can be auto-
matically compiled from the representation. Thus the representation serves
as a set of construction models, and the compiied constraints are used as

interaction models,

Although the compilation of interaction models from construction models

is a powerful idea in the design of hierarchical relaxation systems, it does



not address the issue of how one determines whether or not additional con-
straints, not derivable from the construction model, can be consistently
added to the interaction models. This situation might arise when analysis
of one part of an image yields information that can be used to guide the
analysis of other parts, or if prior knowledge is available that is not
ordinarily available. The following simple example illustrates the problem.
Suppose that we are attempting to recognize airplanes, and that prior in-
formation is available about the angle that the wings of planes will make
with the fuselage. How can we determine that this extra information is
consistent with the existing airplane model? (If it is not, no shapes will
be recognized as airplanes!) How does the relaxation process even make use
of this information, assuming that it is consistent with its interaction
models? For currently existing systems, there is no effective means for
checking the consistency of externally specified information with current
knowledge, or for uniformly applying such information to enhance the relaxa-
tion process. This points out another advantage of the logic representation
mentioned in Section 2.2. If construction models are specified as statements
in logic, then interaction models can still be compiled from the construc-
tion models. Furthermore, the consistency of added information with current
knowledge can be determined, and the general inferencing capabilities associ-
ated with logic would enable such a system to make use of any additional

information as well.



3. Applications

A wide variety of labelling processes can be used at various stages of
computer vision. Many of these processes operate at the pixel Tevel -- i.e.,
the parts to be labelled are individual pixels, and the interaction is be-
tween neighboring pixels. In general, image segmentation can be regarded
as pixel labelling, with the labels defining a partition of the image into
subsets. Thus relaxation methods are applicable to most of the standard
image segmentation techniques, including pixel classification based on gray
tevel or color (thresholding, multispectral classification), as well as de-
tection of local features (peaks or spots, ridges or curves, edges, corners,
or matches to arbitrary templates). Many examples of such methods are given

in Sections 3.1 and 3.2,

Relaxation methods can also be applied to situations involving several
images (e.g., disparity measurement in motion or stereo), or several sets
of labels simultaneously applied to a single image {e.g., "intrinsic image"
labels); see Section 3.3. The can also be used to label picture parts that
are larger than single pixels, i.e., windows or regions, and to detect speci-

fied Tocal configurations of such parts, as briefly discussed in Section 3.4.

3.1. Pixel classification based on gray level or color

Suppose that a scene is composed of a few objects or regions each of
which is homogeneous in color. The colors of the pixels in an image of that
scene should then display clustering behavior: There should be clusters in
the scatter plot of color values, corresponding to the color characteristics
of the regions. Under these circumstances, a natural way to segment the
image 1s to classify the pixels as belonging to these clusters. In fact,

this is the standard method of segmenting multispectral terrain images into



terrain types or land use classes, based on clustering the spectral signa-
tures of the pixels. It is also widely used to segment black-and-white
images into light and dark regions by thresholding the gray levels so as
to separate peaks on the histogram. Analogous methods can be used for

arrays of other types of values, e.g., range data.

Conventionally, the pixels are classified independently. In order to
use a cooperative approach, possible class memberships must be determined,
or class membership confidences estimated, for each pixel, and the results
compared with those for neighboring pixels. To define an appropriate inter-
action model, some assumptions must be made about the kinds of neighbors
that we expect a pixel to have. Since the scene consists of a few homo-
geneous regions, most pixels will be in the interior of a region. The
neighbors of those pixels should all be alike. Some pixels, of course,
will be on interregion boundaries; in this case some of the neighbors of
the pixel will belong to the same region as the pixel itself, but others
will belong to a different region. Neighborhoods at which three or more

regions meet will be rare, and will be ignored here.

The situation just described is characteristic of a large class of co-
operative pixel labelling problems: the neighbors of a pixel belong, with
rare exceptions, to at most two classes, one of which is the class containing
the pixel itself. Several types of interaction models can be used in such
situations:

1) The neighborhood used can consist, for each pixel, of those neigh-

bors that most resemble the pixel. If the neighbors cluster into

two classes, this is straightforward; if not, one can use a fixed

number of "best" neighbors, on the assumption that these neighbors
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are the ones most 1ikely to belong to the same region as the pixel.
For the chosen neighbors, the interaction model is then quite

simple: 1ike reinforces Tike [9].

Alternatively, we can examine a set of one-sided neighborhoods of
the pixel, and choose the one in which the gray level or color is
most homogeneous. This one is presumably contained within a single
region, so that we can safely use a like-reinforces-like scheme

on it [10-11].

If we do not want to commit ourselves to choosing a fixed set of
neighbors, we can assign weights to the neighbors, or define link
strengths between the pixels and the neighbors, such that neighbors
similar to the pixel get high weights (or 1ink strengths). In the
interaction model, the reinforcement contributions are then pro-
portional to the weights. For example, the mij factors in equa-
tion (2) can be chosen so as to give some neighbors more weight
than others. If the reinforcement process is iterated, the weights
can themselves be adjusted at each iteration, based on revised
estimates of neighbor similarity -- e.g., the m, 5 might change

from one iteration to the next {?é-?@].

Finally, we can simply use the same neighborhood for every pixel,
and let like reinforce 1ike. For pixels in the interior of a region,
this behaves as desired; but on the border of a region, the pixel
Tabels are likely to remain ambiguous, since they are being in-
fluenced by neighbors that belong to two regions. In fact, sharp
corners on the borders will be smocthed out, since a pixel at such
a corner will have most of its neighbors in another region, so that
the reinforcement process will make it confident that it too belongs

to that region [15-16].



It should be pointed out that, rather than reinforce label confidences,
we can adjust the pixel gray level or color values themselves; in other
words, we can use the methods just described to smooth an image without

blurring the edges between regions.

The preceding discussion assumed that each region is "flat", i.e., has
relatively constant gray level or color. This is a reasonable assumption
about some classes of scenes (e.g., characters on a printed page, chromo-
somes against a uniform background), but is not correct for others. More
generally, the image can be modeled as piecewise lTinear and the reiaxation
process can examine a set of one-sided neighborhoods of the pixel, and
choose the one that best fits a plane. Within the choosen neighborhood,
the reinforcements should depend on closeness of fit to the hypothesized

plane, rather than on similarity [17].

A similar approach appiieé, in principle, if we want to classify pixels
hased on the values of local properties measured over their neighborhoods,
assuming that the image consists of regions that are homogeneously textured.
Here, however, larger neighborhoods should be used, since local properties
tend to be more variable than single-pixel properties. Of course, when we
use large neighborhoods, the problems encountered at region borders become

more severe,

3.2, Local feature detection

I the labelling task involves local feature detection or template
matching, we must use neighborhood and interaction models appropriate to
the type of feature or pattern being detected. In the following paragraphs
we discuss the detection of spots (i.e., peaks), streaks (ridges, curves),

edges, and corners, as well as matches to an arbitrary template.



To detect peaks, i.e., local maxima, the neighborhood must be large
enough to contain a peak. The peak label at a pixel is then positively
reinforced by the presence of lower values at its neighbors, and negatively
reinfarcéd by higher values, where the amounts of reinforcement depend on
the differences in value. In other words, small reinforces large, while
large competes with large. Detection of pits (Jocal minima) is exactly
analogous. The same approach can be used to detect peaks on waveforms,

histograms, or scatter plots [18-19].

To detect ridges or ravines, i.e., high-valued lines or streaks on a
low-valued background or vice versa, as in Tinear feature detection, we use
a neighborhood somewhat larger than the streak width. The reinforcement
model should now depend on the orientation of the streak; high values should
reinforce one another along the streak, while low values should reinforce
high values across the streak. To implement this, we initially estimate a
streak confidence for each orientation, or more simply, estimate a single
streak confidence and an associated streak direction. For neighbors in the
direction along the streak, high values reinforce one another, provided
the orientations are consistent; for neighbors in the direction across the
streak, low values reinforce high ones, as in the case of peak detection

[20-21].

Detecting edges is similar to detecting streaks, since an edge is a
streak-1ike Tocus of high rates of change. Note that in this case direc-
tions must be measured modulo 360° rather than modulo 180°; in other words,
for a given direction, we must take into account the sign of the rate of
change, so that high edge values reinforce one another only if their dark

sides and light sides match, and they compete otherwise. If desired, we



can associate edge values with the "cracks" between adjacent pairs of
pixels, rather than with the pixels themselves; this is more appropriate

if the edges are sharp [22-23].

For both edges and streaks, our model implicitly assumes that they are
straight or smoothly curved; if they have sharp corners or angles, dis-
similar directions will be present in a single neighborhood, and these will
compete with one another, To detect corners, we must allow a pixel to in-
teract with pairs of its neighbors, rather than with each neighbor sepa-
rately; we can then reinforce the "cornerity" vaiue of the pixel if there
exist pairs of neighboring edge or streak values that have sharply different
directions. [Alternatively, we can detect corners in the gray level (or
color) domain based on the presence of suitable combinations of high and
low levels at neighbors, e.g., & high value on one side and lTow values on
several other sides; but this requires us to work with k-tuples of neighbors
for k » 2,1 At the same time, low cornerity va?ués at the neighbors of a
pixel should reinforce a high value at the pixel, just as in the case of
peak detection. Analogous methods can be used to detect corners on ideal
borders or curves represented by chain codes; here again, cornerity is re-
inforced by the presence of ne%ghbdring slopes that differ sharply, and by

Tow neighbor cornerity [247.

In general, we can employ a cooperative approach to detect matches of
a given template with the image by considering the template as composed of
pieces; detecting matches with the pieces by some conventional method; and
reinforcing a match to a given piece based on the occurrence of matches to
the other pieces in approximately the correct relative positions. This ap-

proach is preferable to straightforward matching of the entire template for



two reasons: it has lower computational cost, and it is less sensitive to
geometrical distortion. Note that in this reinforcement process, if there
are matches to a given piece in several neighboring positions, we can use
the best one, but we should not sum their influences, since only one of

them can be correct; thus a reinforcement rule using the max, rather than

the sum, is more appropriate here [25-26].

3.3. Processes involving multiple properties or multiple images

A more complex class of cooperating processes can be used to assign
two or more interrelated sets of labels to the pixels in an image. As an
example, consider the gray level and edge labelling processes discussed in
Sections 3.1 and 3.2. These two sets of labels are not independent; for
example, the gray levels on the light side of an edge are more likely to
belong to a light than to a dark class, and vice versa, Thus we can design
a compound cooperating process in which both sets of labels interact; such
processes should yield better results than if we use either of the individual

processes alone [27-28].

The gray level at a given pixel of an image is the resultant of several
“intrinsic" properties at the corresponding point of the scene, including
illumination, reflectivity, and surface slope. It is impossible to separate
the effects of these factors by examining the pixels individually; but one
can attempt to separate them using a cooperative process, based on assump-
tions about how the factors vary from point to point. For example, let us
assume that the scene is composed of regions over which the intrinsic prop-
erties are constant. It may then be possible to determine which property
is changing at a given edge, by analyzing the gray level variations at the

edge. If this can be done, we can try to estimate the property values



cooperatively, by hypothesizing initial values and letting 1ike reinforce

1ike except across edges [29].

Finally, we consider cooperating processes that involve more than one
jmage. Given two images of the same scene, taken at different times or from
different positions, it will not be possible in general to register the
images globally, since parts of the scene may have moved, or their projec-
tions on the image may have shifted by different amounts because they are
at different distances from the sensor. However, we can try to match pieces
of one image with pieces of the other to determine a piecewise coréespondence;
from the variations in this correspondence we can then estimate the motion
or distance information. The accuracy of these estimates can be enhanced
using a cooperative approach, if we assume that the scene is made up of
parts each having a uniform motion or distance; the approach is analogous

to that used in Section 3.1 [30-31].

3.4. Region-level processes

Cooperating processes can also be used to assign labels to windows or
regions of an image, or to detect configurations of regions that match given

models. Such processes are briefly discussed in the following paragraphs.

As a simple example, suppose that we have broken up an image into win-
éews, and want to classify the textures in the windows. If we use small
windows, the classifications become unreliable; but-if we use large ones,
border effects become a major factor, since it is hard to classify windows
that overlap two or more differently textured windows. One solution is to
use small windows, and adjust the classifications (or the feature values)

cooperatively, based on those of neighboring windows, in such a way that



windows belonging to different regions (most Tikely) do not influence one
another; this 1s analogous to the cooperative approach to pixel classifi-

cation described in Section 3.1 [32].

More generally, suppose that we have segmented an image into regions,
and want to classify the regions, based on their geometrical or textural
properties. If we know what pairs of classifications are possible for
neijghboring pairs of regions in given relative positions, we can use this
knowledge to cooperatively adjust the label possibilities or confidences.
For example: (1) In labelling the edges in a blocks-world scene as convex,
concave, or occluding, we can use the constraints imposed when the edges
meet at junction [1]. (2) In assigning regions in an indoor scene to .
classes such as “door"®, "doorknob”, "wall", and “light switch", the light
switch label is reinforced, and the doorknob label weakened, by the wall
label on a surrounding region, and vice versa for the door label on a sur-

rounding region [33].

Matching a configuration of regions to a given model is analogous to
matching a piece of an image to a template. We can represent the regions,
their properties, and their relationships by a "scene graph" in which the
nodes and arcs are labelled by property or relation names (and values).

The model can be similarly represented by a labelled graph, and we can then
attempt to find occurrences of the model graph as a subgraph of the scene
graph. Just as in the template case, this can be done cooperatively by
finding scene graph nodes that match model graph nodes, and reinforcing

matches for which the proper neighboring nodes are present [34-35].



4, Issues

Relaxation processes have proved very useful for deriving relatively
unambiguous labellings of image or scene parts at a variety of levels. The
design and control of such processes, however, are not as yet well under-
stood. Given a labelling task, how doe we choose appropriate neighborhood
and interaction models? (In other words, how do we represent our knowledge
about the given problem domain in the form of an interactive Jocal process?)
Given such a process, how many times should it be iterated, and how should
its performance be evaluated? In this section we briefly review some of
the approaches that have been proposed to these problems of knowledge rep-

resentation and control in relaxation processes.

4,17 Knowledge representation

As mentioned in Section 2.2, for discrete relaxation processes the in-
teraction model is defined by a set of compatibie label pairs; but for fuzzy
labellings, the compatibility relation must be quantitative. It can be de-
fined, for example, by specifying a “compatibility coefficient® for each
pair of labels on each pair of neighboring parts. These coefficients can
be defined in a problem-specific manner; for example, the compatibility be-
tween two given edge or line directions at a pair of neighboring pixels could
be taken as inversely proportional to the bending energy required to bend a

spline so that it changes direction in the given way.

Another possibility is to define compatibilities on probabilistic
grounds. Consider the probability ratio r{(d,d') = p(d,d")/p(d)p(d'), where
the numerator is the joint probability of the pair of labels (d,d') on the

given pair of neighboring objects, and the terms in the denominator are the



prior probabilities of the two labels. Intuitively, if d and d' are com-
patible, p(d,d') should be greater than p(d)p(d'); if d and d' are inde-
pendent, they should be equaly and if d and d' are incompatible, p(d,d')
should be less than p(d)p(d'). Thus we have r(d,d') > 1, =1, and < 1 iff,
d and d' are compatible, independent, or incompatible, respectively. If
we want compatibilities that lie in the range [-1,1], we can use log r
rather than r; this is poistive, zero, or negative according to whether

d and d' are compatible, independent, or incompatible. (The log does not
automatically lie in the range [-1,1]; if we want it to, it must be trun-

cated and rescaled.) Note that log r is the mutual information of the pair

of labels d, d'. The probabilities can be estimated by counting occurrences
of d and d', and joint occurrences of both. The use of mutual information

to define compatibilities is suggested in [36]. If we drop the restriction
that the compatibilities 1ie in the range [-1,1], we can use r itself, rather
than log r, as a compatibility function. In fact, in a Bayesian approach to
relaxation developed by Peleg, the compatibility coefficients turn out to

be the r's [37].
4.2, Control

A second critical question concerns the control of relaxation processes:

when should the iteration be stopped? How can its progress be evaluated?

For a discrete relaxation process, termination criteria are straight-
forward to formulate and justify. For example, when binary (or higher-order)
relations are used as a knowledge representation, then the process terminates
when no further Tabels can be discarded from any picture part. At this
point, each label at each picture part (if any remain) has a consistent label

at every neighboring picture part., Or, if logic statements are used as a



knowledge representation, then the process terminates when no new inferences
can be formed. In both cases, the destination of the process is a consistent
labelling, the notion of consistency is well-defined and it is straightfor-
ward to prove that the relaxation process has as its "fixed point" a con-

sistent labelling,

For a probabilistic relaxation process, the situation is more compli-
cated. One possible approach is that the relaxation process should be
iterated until the probability densities for each picture part converge.
There are, however, both practical and theoretical disadvantages to this
approach:

a) In practice, relaxation processes often converge to results which
are quite poor, even though the first several iterations lead to
significant improvements.

b) There are very few theoretical results concerning convergence, and
these simply characterize sufficient conditions for convergence,
rather than necessary conditions [38]. Moreover, the limit points
have not been characterized as solutions to a well-defined problem,

except in some specific cases [39].

Various criteria have been proposed for evaluating the performance of
relaxation processes [40], but none of them seem to be satisfactory. Con-
vergence (i.e., decrease in rate of change) is not an acceptable criterion,
since the limit point may not be a desirable labelling. Unambiguity (e.q.,
Tow entropy) is also not acceptable, since there are many unambiguous label-
lings, most of which are highly inconsistent with the given initial labelling.
Combinations of these criteria might be used [41], but these are also sub-

ject to similar objections [42]. A more promising approach uses a composite



criterion for evaluating a labelling based on its consistency with both
the initial labelling and the model (i.e., the compatibilities) [43].

This area is still the subject of active research.



5, Concluding remarks

Rejaxation processes have potential speed advantages because they can
be impiemented in parallel (hardware permitting). They have been success-
fully applied to a wide variety of labelling problems by a growing number
of investigators; our survey makes no claim to completeness. In spite of
these successes, little is as yet known about the design and control of
these processes, However, a number of promising approaches to their the-
oretical formuylation are being pursued, and it is hoped that a deeper under-

standing of their nature will soon be achieved.
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