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ANALYZING DYNAMIC SCENES
CONTAINING MULTIPLE MOVING OBJECTS

This report provides an insight into the problems encountered in
image sequence analysis when the viewed scene contains several objects
all of which may be moving. A major emphasis is on the interaction of
object images resulting from viewpoint placement and object movement.
The interaction that concerns us here is the occlusion of some part of
an object by other objects or even by other parts of the same object.
Our discussion begins with the problems of interpreting single images
containing occluded objects and then turns to the implications of
occlusion on image sequence analysis. Further problems encountered
in image sequence analysis will then be emphasized through the description
of those problems as they have arisen in specific systems. Foremost
among these problems is the identification, throughout the image sequence,
of objects in spite of their continually changing appearance. Also
important are the computational implications for attempting to process

the flux of information presented by an image seauence.



1. Occlusion in General

1.1 Arbitrary Images

Occlusion occurs whenever the image to be analyzed is a projection
of some three-dimensional scene onto a two-dimensional plane. In this
general case there is always a background obscured by the objects which
are considered to be the foreground. For objects widely spaced over a
homogeneous background, i.e., paintings on a museum wall or a pair of
birds flying in a clear sky, there is no problem. The background is
understood to be homogeneous so that the characteristics of the obscured
portions are indicated by the visible sections. The foreground objects
are assumed to have image characteristics which are distinct from the
background making the foreground objects readily detectable in the image.
In addition the spacing of the objects assures that the presence of the
features of one object will not interfere with the analysis of the
remaining foreground objects. However, if the background has a complex
structure, i.e., the museum wall has a highly patterned covering, or if
the foreground objects are closely arranged in some structure, i.e., a
flock of birds flying in the same direction, then the classic
"figure-ground" problem arises.

In the "figure-ground" problem, the spatial relationships between
disjoint elements of the viewed scene combine to interfere with the
perception of the individual elements. 1In its full generality, this is
a psycho-physical problem where the preconceptions and expectations of
the viewer play an important part in perception. Figure 1 indicates

some of the subtleties of this problem. The lowest Tevel figure-ground



Figure 1. Geometric pattern having an ambiguohs
figure-ground interpretation.



ambiguity involved in Figure 1 is whether the figure depicts dark
squares and triangles against a 1ight background or 1ight squares and
triangles on a dark background. This ambiguity is inherent in the
construction of the figure and when focusing on a single element, i.e., a
triangle or square, it is fairly easy to form either interpretation.
However, if one focuses on an area containing several elements it becomes
more difficult to interpret the figure as being a simple collection of
squares and triangles of either color.

The prevalence of pairs of single element edges that are colinear,
parallel or perpendicular interfers with the perception of the individual
elements. The Tines through which the sides of the squares are colinear
give rise to the perception of the figure as having three horizontal and
three vertical bands with hourglass holes (or obstructions) along their
length. Again bands of either color can be seen. The fact that many
element edges can be linked together to form long straight Tines
reinforces this perception.

Another set of colinearities, the diagonal Tines through the sides
of the triangles, yields yet another interpretation. In this case the
crossings of the diagonal lines emphasize the right angles in the
triangles. The triangles are thus grouped into four element sets with
each set forming a diamond whose corners correspond to the right angle
corners of the constituent triangles. In this interpretation the figure
can be seen as a checkerboard of black and white diamonds where each
diamond is partially covered by a smaller square of the opposite color.

For the interpretations of Figure 1 discussed above, an initial

decision is made as to what is the prevalent structure. The remaining



parts of the figure must then be related to that structure. For the last
of the above interpretations the checkerboard of 1ight and dark diamonds
is accepted as the primary structure. The smaller squares interfere

with the perception of the checkerboard but can be accounted for by
assuming that they are foreground objects occluding the diamonds. In this
manner the concept of occlusion is brought into the perceptual process at
a very low level in order to make sense of the ambiguous figure. The
variety of relationships exhibited by the individual squares and triangles
provides the opportunity to resolve the ambiguities into several different

interpretations of the figure.

1.2 Scene Domain Imposed Constraints

In the abstract geometrical pattern of Figure 1, both the quantity
and subtlety of the inter-element relationships are greater than that
occurring in typical natural scenes. The constraints imposed by the
three-dimensional structure and distribution of the objects appearing in
typical scenes serve to Timit the relationships possible in the images
derived from such scenes. For instance, the boundary edges of
non-contiguous objects are rarely colinear in natural scenes. This
consideration makes reasonable the assumption that if the image of a
scene contains disjoint edges which are colinear, then those edges
correspond to a single boundary in the scene and the discontinuity is.
caused by the boundary being partially obscured in the given view. Barrow
and Tenenbaum [ 1] argue that certain psychological phenomena, such as
subjective contour, are the result of the human visual system attempting

to use such evidence of occlusion as cues to apparent depth.



An elegant example of how scene domain constraints can be used in
understanding occlusion is the system developed by Waltz [2]. In this
case, the domain is that of scenes having a single 1ight source
illuminating a set of planar-faced objects whose vertices are trihedral.
The distribution of the objects in the scene, the Tocation of the 1ight
source, and the orientation of the image plane are restricted only to
eliminate certain coincidences which cause unresolvable ambiguities in
the resulting images. The images analyzed are actually "perfect" line
drawings formed by an orthogonal projection of the scene onto the image
plane with a relative brightness associated with each region in the
drawing.

The strong constraints imposed by this scene domain are primarily
embedded in a junction classification and Tine Tabeling scheme generalized
from the system first discussed by Huffman [ 3] and Clowes [ 4 1. Junctions
are the 1ine drawing representations of the vertices in the scene, thus
the trihedral restriction on the object vertices provides extensive
constraints on both the types of junctions possible and the allowable
labelings of the Tines forming those junctions. In particular, certain
of the labeled junction types can only arise through cases of occlusion,
thus when found in the drawings, provide a reliable indication of
occlusion.

The so-called T junction is an example of a junction indicative of
occlusion. The line forming the bar of the T must correspond to an
obscuring edge in the scene. In fact, the edge which forms the bar line
must be a convex edge. However, the isolated T junction remains ambiguous

in that the post of the T may correspond to a partially obscured edge, or



it may be a "crack" along which two objects coincide. In the latter case
the bar line 1is actually the result of an "accidental alignment"” of two
convex edges and the obscuring object faces occur on the post side of the
T junction. In the former case the bar line is generated by the convex
edge bounding the obscuring object face opposite the T junction post.
This ambiguity can be resolved in two ways, each of which serves to
provide non-local information to the labeling process. First, the system
may be told that the region opposite the post of the T junction is the
background or supporting surface. This insures that the post of the
T junction is a “crack” and that the bar Tine corresponds to two aligned
edges. Second, the labeling process may have already determined a
legitimate labeling for one of the junctions which are connected to the
given T junction. The labeled junction is, of course, connected to the
given junction by a common line and thus the currently assigned label
for the common Tine can be used to determine the labels for the other
two 1ines of the T junction or at Teast to 1imit the number of possible
labels for those lines. For example, the post of a given T junction may
also be part of an L junction. This means that the post of the T junction
could not possibly be a crack and therefore the bar line must be a single
edge bounding the obscuring object face.
This latter method is fundamental to the overall labeling process
and is based on another major constraint imposed by the scene domain.
For the type of objects allowed in the scenes, a line must retain a given
labeling throughout its extent. This constraint is assured by the fact
that each edge in the scene is created by the intersection of exactly two

planes. The constraint provides, in the actual structure of the input



images, a mechanism by which a rather simple labeling process can obtain
information that is not local to the junction currently under consideration.
The non-local information is of prime importance because the ambiguities
in the image caused by occlusion in the scene cannot usually be resolved
on the basis of information contained at a single junction. Indeed, it
may not even be possible to tell initially how far away (in terms of the
number of interceding junctions) the necessary clarifying information is.
For this reason the Tabeling process is embedded in a parallel-iterative
procedure (since referred to as "relaxation", Rosenfeld, et al. [51).

This procedure allows the necessary information to propagate throughout
the interconnected network of junctions, yet requires the labeling process
to interrogate no more than two adjacent junctions at a time. Of course,
the pairwise comparisons performed by the labeling process are not
sufficient to resolve all ambiguous line drawings. Increasing the number
of junctions that the labeling process may inspect at a given time will
allow the system to disambiguate more scenes. However, for any fixed and
finite 1imit there will always be scenes, albeit exceedingly complex
scenes, which will not be resolvable.

From the previous discussion of the figure-ground problem for
arbitrary pictures one can see that the removal of scene domain constraints
only worsens the degree of ambiguity caused by occlusion. In particular,
many pictures are inherently ambiguous and no information derived from
the image can resolve the uncertainties. Frequently it is not that the
image has no consistent interpretation but rather that there are several
mutually exclusive interpretations which are each independently consistent.

The choice among such alternatives must be based on the expectations or



goals of the viewer, not simply on features actually exhibited in the
image.

This discussion has brought to light several factors which are
fundamental to the understanding of scenes containing occluding objects.
First, the concept of occlusion is used at a very early stage in the human
visual system in order to provide interpretations in terms of apparent
depth. Second, effective cues to occlusion can be derived from scene
domain constraints. Third, the use of such cues may involve the complex
integration of information taken from areas which are widely separated
in the image. Fourth, occlusion necessarily results in the loss of
information available about the obscured object thus causing uncertainties
in the interpretation of the image. And finally, the resolution of some

occlusion ambiguities depends on external expectations and goals.

1.3 Occlusion In Image Sequences

The discussion up to this point has dealt with the implications of
occlusion on the analysis of single images. For the remainder of this
chapter the focus will be on time varying images, that is, sequences of
images representing systematic time order samplings of scenes. The
question addressed is: How is the complexity of the occlusion analysis
problem affected by the addition of time variation, i.e., sequences of
images? The broad answer to this question is that time variation
simplifies some aspects of the problem, complicates other aspects, and
introduces several new problems. These points are discussed on a general
level in the following, and are described at a detailed level in later

sections where specific dynamic scene analysis systems are presented.



The time variation can simplify the initial feature extraction phase
of processing through both the redundancy inherent in the dynamic scenes
and the opportunities provided for acquiring new information. Typically
the sampling rate along the time axis is such that the majority of the
scene does not change through short sequences of images. This property
has been exploited for data reduction by frame to frame encoding of video
signals, Mounts [6], but can also be used to attenuate noise and produce
more reliable feature values. The new information can be obtained from
the changing views of the objects in the scene. For instance, if one of
the occluding objects in the foreground is moving, then additional
portions of the objects it is obscuring will become visible in each
successive image. Similarly, since any three-dimensional object is
self-obscuring, the object's motion will usually bring into view
previously unseen portions of the object. This concept has been used in
a system, Underwood and Coates [7], which forms a three-dimensional
description of a planar object from a sequence of views taken while the
object rotates. The description is in terms of the object faces and
their interconnections, which are "learned" as previously hidden faces
become visible. New views also result from changes in the orientation
of the image plane caused by eye (camera) movement. In these situations,

-areas of ambiguity in a given image may be clarified by the additional
information contained in the subsequent images.

The continual change in the information content of the images, which
js an advantage when the change adds information, can be a disadvantage
when the change results in a reduction of available information. In each

of the information adding cases discussed above, there can be a complimentary
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aspect in which information is lost. For instance, the moving foreground
object is probably proceeding to obscure some other objects or even other
portions of the same object that it is elsewhere uncovering. This aspect
raises the question as to what can be said about previously visible
features once they are no longer visible. If a recently obscured

feature is part of an object which is still partially visible, then

the relationship of the feature to the currently visible portion, as
determined in preceding images, can be used to infer the Tocation and
orientation of the feature in the present scene. This type of implication
is based on the assumption that the object is rigid and thus that the
spatial relationships of the various features of an object will remain
constant through time. This is an extremely important scene domain
constraint which will be discussed in more detail in later sections of
this chapter.

The information flux in time varying images also creates new problems
at the image segmentation and object identification Tevels. The problems
encountered here involve the additional "semantic noise", Guzman [8],
exhibited in time varying images. Tyvpical systems for static image analysis
must be capable of interfacing with preprocessors which occasionally fail
to detect, erroneously produce, or incorrectly locate image feature
descriptions. Systems for time varying images will have similar
preprocessing problems but must furthermore be prepared to interpret
features which, through time, may take on different values yet signify the
same scene component semantically. For example, the effects of shadows on
a textured outdoor surface, i.e., a gravel road bed, will vary as the sun

angle changes throughout the day.
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This problem of identifying "apparently different but semantically
identical objects", Futrelle and Potel [9], indicates a fundamental concept
in the analysis of time varying images: in order to understand the changes
that a given aspect of an entity in a scene may be undergoing, there must
be some form of constancy in other aspects of that same entity to serve as
the identifying features of the entity. This is particularly important
when there are several objects moving about the scene, because the simple
detection of change cannot attribute that change to the proper object.

As an illustration, consider the illusion depicted in Figure 2. Here
four identical disks are attached pairwise to the ends of two crossmembers
which are slightly offset in depth and spin in opposite directions about
the center point. They exhibit constancy in both shape and color. These
features make it easy to track the disks while they are moving through
positions such as that of Figure 2a. However, when the position shown in
Figure 2b 1is reached, the constancies no longer serve as identifying
features and thus admit an ambiguity to the interpretation of the position
displayed in Figure 2c.

Is the pair of velocities labeled A in Figure 2c the correct
interpretation or is the pair labeled B correct? An assumption of minimal
velocity change for each object results in a perception according to the
velocities labeled A. In such a perception the disks appear to have
circular paths and pass completely through one another at positions such
as those shown in Figures 2b and d. A rather more complicated proximity
criterion, which holds that the disk last viewed completely in a given
quadrant will return immediately to that quadrant, yields a perception

according to the velocities labeled B. In this latter case, each disk
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Figure 2. A motion illusion with four spinning disks.
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sweeps both back and forth through a given quadrant as bounded by the
positions shown in Figures 2b and d. At these positions the disks appear
to "bounce" off each other thus exactly reversing their velocities.

The two cases discussed above can, however, be understood in terms
of two different types of constancy, one involving velocity, and the other,
occupancy. These constancies can only be used to resolve the ambiguity
in an indirect way because the ambiguity occurs when one is trying to
understand the progression from an image of a position such as that of
Figure 2b to the immediately succeeding image. In the constant velocity
case for example, the instantaneous velocity is measured as the
displacement in disk location between two successive images. But the
location of the disk in the image after that of Figure 2b is precisely
what is in question. Thus the analysis of these two images in isolation
cannot resolve the ambiguity. Instead the velocity information must be
derived from the preceding images in which the constancies of shape and
color can be used to locate each disk, thereby allowing the calculation
of its velocity. The velocity information can then be applied to the
given pair of images as part of a predictive analysis or as the criterion
for a hypothesis and test procedure.

In this introductory section we have discussed several of the general
problems in understanding occlusion as they relate to the analysis of time
varying imagery. In the remaining sections we discuss the various problems
encountered and the solutions derived in specific systems (for further
references see Martin and Aggarwal [10], Nagel [11], and WCATVI [12]). We
turn first to systems which reduce each image to point patterns and analyze

the changes in successive patterns. Then we discuss several systems which
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operate on the object boundaries. Finally we conclude with a discussion
of general representation problems and other areas for further research

involving time varying imagery.
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2. Dot Pattern Analysis

This section presents several specific dynamic scene analysis
systems. These systems preprocess the image sequence so that each image
is transformed into a dot pattern, where each dot constitutes a "token"
of some significant feature in the image. In addition to spatial
location, various attributes of the image features may be associated with
their respective dots. In some cases the features represented by the dots
are whole objects which, due to the scene domain, do not occlude or
otherwise closely interact. For this type of scene, simple one-object
tracking procedures (e.g., matching by shortest Euclidean distance) can
be applied independently to each dot in a given image in order to identify
the represented feature in the next image of the sequence. Identifying a
particular feature in every image of the sequence by matching the proper
dots in every pair of consecutive images allows the system to form a trace
of the positions occupied by the feature throughout the sequence (as an
example see Greaves [13]). Several motion measurements such as linear
velocity, angular velocity, and acceleration can be computed from these

traces.

2.1 Combined Motion and Correspondence Processes

If the represented features are objects which are likely to occlude
one another, or are parts of a single object and interact closely, then
the simple tracking procedures will not be applicable. In order to
elaborate on this point we will discuss a system described in an early

paper on cloud tracking, Endlich et al. [14]. This system represents the
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clouds by "brightness centers." The centers are obtained by first
thresholding the satellite pictures to separate the clouds from the
background, and then applying a clustering procedure, ISODATA, Ball and
Hall [15], to the designated cloud pixels.

The brightness center representation is appropriate for images of
clouds because the detailed description of the cloud region boundaries
is quite complex and is continually changing. Through short time intervals
these changes along the cloud boundaries have 1ittle effect on the location
of the resulting brightness centers. Thus the amorphous nature of the
clouds can be ignored while retaining a fairly reliable indication of the
cloud Tocations and brightnesses. These attributes do not provide a
sufficient basis for identifying the corresponding brightness centers
between consecutive images of the sequence. However, the system is
capable of successfully matching the'centers under the assumption of a
fairly uniform yet unknown common motion for most of the centers within
arbitrarily selected subimages. The correspondence is determined by
hypothesizing for each center in a selected subimage of a given image
several pbssib]e matches to the centers in the appropriate subimage of the
next image of the sequence. FEach hypothesis specifies a motion vector so
that the procedure initially yields a set of vectors. The most common
vector in this set is chosen as the representative motion for the subimage.

Hypothesized matches which generate motion vectors that vary
significantly from the representative motion are discarded, thus reducing
the number of possible matches. An iterative application of this procedure
is used to obtain unique assignments, i.e., no center is matched more than

once. Having established the acceptable matches the system can use the
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vectors specified by those matches to form a vector map of the wind
velocities over the area viewed in the image.

In some cases, however, centers will be left unmatched indicating
that there is not a center in the second image which when hypothesized
as a match for the given center yields a motion vector consistent with the
chosen representative motion. It is reasonable to have unmatched centers
because clouds tend to both dissipate and gather through time. However,
it is also possible that the selected subimage contains clouds from several
altitudes which are moving with radically different velocities.

Figure 3 illustrates this situation (for a similar example, as
processed by the system, see Figure 5 of [14]). Two consecutive frames
are displayed in Figure 3 with the majority of the dots moving down and
to the left. There is also a small group of dots moving to the left and
slightly up. Due to the statistical weight of the downward moving group
of dots, the chosen representative velocity vector is similar to the
vector labeled A in Figure 3c. This choice precludes the correct matchings
for the dots in the smaller group, which would result in vectors such as
the one Tabeled B in Figure 3c. Since there are no matches for the dots
of the small group that yield vectors similar to A, these dots are left
unmatched in both frames.

A more extreme case is displayed in Figure 4. In this example two
equally numbered sets of dots are moving in perpendicular directions with
approximately equal speeds, as indicated by the dashed vectors of
Figure 4c. These velocities in conjunction with the original locations
of the dots allow an alternate interpretation in which a single vector,

such as the solid vector of Figure 4c, can be chosen as representative of
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Figure 4. Dot patterns with dual motion interpretations.
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the motions of all the dots. No dots will be left unmatched, but the
chosen vector will specify an incorrect match for every dot. The problem
arises from the essentially circular use of hypothesized motions in
determining the dot correspondence. The motion measurements are
necessarily based on the derived matches, thus the correspondence must
itself be based on some other constancy feature of the moving objects.
Otherwise, limitations must be imposed on the types of movement allowed,
making the motion constant in some respect. In this system the motion

is assumed to be nearly constant over the subimages.

2.2 Separate Correspondence Determination

A similar approach to the matching problem is taken in a recent book
on motion, Ullman [16], where it is argued that the "correspondence
process is a low level operation which precedes, or is independent of,
the [3D] interpretation scheme." The correspondence process receives each
image in the form of a set of tokens and constructs a "minimal" mapping of
those tokens to the ones of the previous image in the sequence. It is
referred to as a minimal mapping because the computational mechanism
suggested creates the mapping by minimizing a cost function which reflects
the most 1ikely movement of the tokens. "Most likely" is in terms of an
assumed probability distribution function for the velocities exhibited by
the tokens in the image. In a discussion of human visual behavior,
evidence is given for an affinity function upon which the Tow level
correspondence process could be based. It can reasonably be argued that
a typical human response to the example of Figure 4 would be that there is

only one group of dots and the group is moving horizontally to the right.
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This interpretation is consistent with a spatial proximity affinity
function. However, the correct interpretation can only be made if
information other than the dot displacements between the given two frames
is used in the analysis. This information might be in the form of
projected movements derived from previous frames in the sequence. Such
projections would provide a probability distribution for the motion of
each dot in a given frame which had been successfully matched to a dot
in the immediately préceding frame. The most Tikely match for each dot
would then depend on its associated distribution rather than a globally
assumed distribution. The minimizing function could begin with a much
closer initial estimate containing fewer candidate matches to choose from.
The problem that would arise is in trying to allow for objects which
change their direction or speed of travel. Such movement variations
invalidate the previously compiled projections leaving the analysis system
with the original problem again. This complication is also encountered in
higher Tevel predictive schemes, for example see Chow and Aggarwal [177].

Other information useful to this analysis but not necessarily dependent
on previous frames of the sequence is the spatial relationship of the dots
in a given frame. This would involve grouping the dots into another Tevel
of tokens with each new token having as an attribute the spatial distribution
of the dots grouped under that token. The new tokens could be matched
between consecutive frames by this additional attribute, thus removing
hypothesized motion measurements from the correspondence process. The
problem encountered in trying to use this type of information is that of
properly grouping the dots under the higher level tokens.

One obvious grouping is to consider all the dots of a given frame to

21



be under a single token. This grouping is easily made, however, it will
clearly be of no utility for scenes containing several moving objects.

At the other extreme, assigning one dot to each token would not be a
Tegitimate grouping becduse the spatial relationship attribute of the
resulting tokens would be undefined. The desired grouping would be along
the spectrum between these two possibilities, but exactly where would
depend on the actual scene being analyzed. This grouping process is
analogous to classical segmentation in scene analysis. The process could
be quite complicated and depend on information from previous frames in the
sequence or from system maintained models of the scene. It is worth
observing that Ullman contends that the correspondence process operates

at a much lower level than could support this grouping process. In fact

a computational method [16] has been developed that uses the correspondence
information from a minimal matching process to derive groupings which have

three-dimensional interpretations. A discussion of that system follows.

2.3 Motion Analysis Given Dot Correspondence

The input to Ullman's "structure from motion" system is a sequence
of images, each formed by taking the orthographic projection of a three-
dimensional scene containing identifiable feature points on moving objects.
Thus every feature point or token is represented as a dot in each image
with an assumed correspondence process identifying the feature points
throughout the sequence of images. The transformations exhibited in
the resulting two-dimensional dot patterns will, under certain conditions,
give rise to a unique interpretation of both the three—dimensiona] spatial

relationship of the feature points and their motions. The conditions are
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stated in the following theorem [16] whose proof constitutes a specification

of a computational method to derive the correct interpretation.

THEOREM: Given three distinct orthographic views of four non-coplanar
points in a rigid configuration, the structure and motion compatible with

the three views are uniquely determined.

The most important of the constraints mentioned in the theorem is
that the points be in a rigid non-coplanar configuration. The remaining
details specify only minimum requirements for the computational method
in the sense that more points or views can be used and that an analogous
method can be applied to perspective projections.

The rigidity constraint reflects a more fundamental assumption of
this system. The assumption is stated as follows: "Any set of elements

undergoing a two-dimensional transformation which has a unique

interpretation as a rigid body moving in space should be interpreted as
such a body in motion." The overall strategy of the system is to find

the sets of tokens which can be interpreted as configurations representing
rigid bodies. The minimum requirements then prescribe a starting point
for the system. The set of tokens for the first view are partitioned into
four element subsets. The given correspondences specify the appropriate
tokens for the subsets in the second and third views. Thus each subset
meets the minimum reguirements and all the system need do is determine if
the rigidity constraint holds for every subset independently. The test
performed, as detailed in [16], either determines that the subset can be
interpreted as a rigid object by actually computing that configuration,

or declares the relationship of the feature points in the subset to be
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non-rigid. The set of points from rejected subsets, the latter case, can
be repartitioned and the test performed again until an interpretation is
established for all the feature points.

In a similar manner the system can iteratively test fer rigid
configurations between previously defined subsets until a minimal, in
terms of the number of subsets, covering the feature points is obtained.
The resulting subsets correspond to the rigid objects in the scene and
specify, through the successful rigidity tests, the structure and
orientation of those objects. It should be noted that due to the
orthographic projection the structure is determined up to a reflection
about the image plane, while the orientation is resolved to within a
translation in depth.

The approach taken by this system is to break the given data,

i.e., the tokens in correspondence, into "nuclei" of identifiable

features, i.e., four element subsets, which can be independently analyzed
by a general knowledge based process. It is important that the analyzing
process not depend on specific knowledge about the components of the scene
or on disjoint sources of information indicative of the three-dimensional
characteristics of the scene. The process should be such that
"segmentation, structure, rotation and translation are uniquely determined,
although none of them is determined by any ‘cue' in isolation," Ullman [16].
Equally important is that the data is broken into small "nuclei" which
having been properly analyzed can be grouped into larger structures.

These structures can then be elaborated upon to derive full descriptions

of the objects in the scene and their motions.

These considerations return us to the fundamental concept of
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exploiting the constancies in a changing environment in order to understand
the components of that environment and their transformations. At the lower
level the extracted tokens have associated features which the correspondence
process can treat as locally constant. The correspondence process uses this
constancy to identify the tokens throughout the sequence of images. At the
higher level are the constancies which reflect what the system considers to
be a significant component or object in the scene. The set of identified
tokens 1is decomposed into groupings exhibiting this constancy. The
groupings are thus taken to represent the objects of interest in the scene.

This strategy, however, does not depend upon reducing the input images
to dot patterns. The tokens can be more complex structures, as we will see
in the next section. In that section several systems which use edge and

boundary descriptions in the initial analysis are discussed.
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3. Edge and Boundary Analysis

3.1 Straight Edge Domain

We begin this section by discussing a system, Aggarwal and Duda [18]
and Petermann [19], which analyzes software generated scenes containing
rigid polygons. These polygons can be arbitrarily complex in shape and
can possibly contain holes. Each polygon is restricted to move in a plane
parallel to the image plane so that an input frame is formed by taking the
orthographic projection of all the object planes onto the image plane.
This projection essentially creates the silhouette of the object planes.
In this way apparent objects in the image are formed from two or more
overlapping actual polygons. The system must be able to derive descriptions
of the actual polygons from the sequence of images of the apparent objects
in motion.

The overlapping of the actual polygons creates new vertices while
removing occluded vertices and edges. The new vertices are referred to
as "false" vertices and the visible vertices of the actual polygons are
called "real" vertices. One of the main functions of the system is to
classify the vertices of the input image into the appropriate one of these
two categories. This classification process is facilitated by two
characteristics of the input domain. First, no "false" vertex can have
an interior angle which measures less than 180 degrees, i.e., is acute.
Second, any vertex which changes its angular measure between two frames
must be a "false" vertex. The first characteristic is due to the polygonal
nature of the objects, while the restriction to rigid polygons assures

the second. However, these two characteristics do not provide enough
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information to directly classify every vertex. There are vertices with
obtuse interior angles which are not "false" vertices and there are
"false" vertices which do not change their angular measure. One further
restriction is necessary and it is that no more than one "real" vertex
can appear or become occluded between any two consecutive frames. The
importance of this restriction is that it allows the system to determine
the type of change that has occurred between two consecutive frames.
This determination is based on the difference in the number of vertices
having acute interior angies along with the difference in the number of
vertices having obtuse interior angles.

With the problem domain set in this manner the system begins
processing by forming a correspondence between the objects in a given frame
and the objects in the immediately preceding frame. This is accomplished
by finding in both frames known "real" vertices, i.e., vertices with acute
interior angles, which have similar angular measures. The matching of more
than one vertex between two objects is restricted by the order in which the
candidate vertices appear on each object in question. So the tokens, in
this case the vertex points with the attribute of angular measure, are not
matched independently on their attribute values. Rather, higher level
constraints are imposed on the inter-token relationships.

The ordering constraint combines with the matching of known "real"
vertices to provide a cue to which vertices having obtuse interior angles
might be matching "real" vertices and should be compared for similarity in
angular measure. If the vertices do have matching angular measures then
the system assumes that they correspond and are "real" vertices. Of course,

if the vertices actually represent a false vertex which is not exhibiting
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any change in its angular measure then the "real" vertex assumption may be
incorrect. In this case, however, the system can either use information
from previous frames to determine that the vertex is "false" or it can
accomodate the error until there is a clear indication that the vertex is
“false".

The matching of the "real" vertices between two frames provides the
system with the correspondence (possibly many-to-one or one-to-many) of
objects in the scene. With this correspondence the system can then
determine what objects are in which one of the basic types of change and
call special procedures developed to analyze each of those types. The
function of these procedures is to create and continually update models of
the actual objects in the scene. The vertex classification enables these
procedures to decompose the apparent objects into sections comprising the
visible portions of the constituent actual objects. The visible portions
may simply indicate that the Tocation and velocity components of the models
should be updated. Or the models may require modifications such as adding
a newly visible vertex or marking as currently not visible a just occluded
vertex. In addition, two models might have to be merged or a given model
split as more frames are analyzed. In this way the system uses these
models not only to track the actual objects, but also to compile complete
descriptions of the objects even though the objects may not have been
totally visible in any of the given frames. Thus if an appropriate
sequence of partial views of an object at some point presents each vertex
and edge of that object, then the system will be able to derive a
description for the object as a whole.

An example analyzed by the system is shown in Figure 5. The input
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Figure 5. Example scene with derived models for a polygonal domain.
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Figure 5. Continued.

31




TIME 9 MODEL 9

TIME 1O MODEL 10

Figure 5. Continued.
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sequence of frames is Tabeled TIME K for each time K, while the object
models resulting from processing the sequence through time K are shown
beside TIME K and labeled MODEL K. There are three actual objects in

this scene: one large stationary object; a triangle moving to the left;
and a smaller triangle, initially obscured, but later visible as it moves
more slowly to the left. The portions of the objects which become occluded
during the sequence are displayed at their projected positions. These
projections are based on velocity estimates made while the particular
section was visible. The single apparent object present in frames 2
through 6 is correctly decomposed into its constituent actual objects.
Beginning with frame 3 this decomposition includes a partial object model
for the smaller triangle which becomes visible one vertex at a time. This
partial object model is updated when the next vertex is seen in frame 5
and is completed by the appearance of the final vertex in frame 7. Also
of interest is that each of the basic types of change possible in the

polygon domain of this system is instantiated in this example.

This system employs the constancy of angular measure at "real"
Qertices, as implied by the rigid object restriction, and several general
observations about the polygon domain in the successful analysis of complex
scenes of moving polygons. The "real" vertex constancy serves as the basis
for matching individual vertices between consecutive frames. Higher Tevel
constraints are then used to form a correspondence for the objects in the
frames. Finally, the correspondence provides cues, based on general
knowledge, which enable the system to correctly interpret the changes as
they occur and to use the interpretation to create and maintain detailed

models of the actual objects in the scene and their movements.
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3.2 Curvilinear Boundary Domain

The system, Martin and Aggarwal [20], discussed in the following,
attempts to apply a similar type of analysis to scenes containing figures
with curvilinear boundaries. The input is again restricted so that the
objects independently move in planes parallel to the image plane.
However, instead of software generated images, homogeneously shaded,
opague, planar figures are moved in front of an image dissector camera
and a sequence of images is made. The camera approximates an orthogonal
projection into the digital images which are preprocessed, McKee and
Aggarwal [21], to extract the boundaries of the figures. The figure
shading and the camera set-up form images in which overlapping figures
are merged into single apparent objects. The task of the system is thus
to derive descriptions of the constituent actual figures and their
motions by analyzing the épparent objects of the sequence of images. The
analysis of the sequence is performed on pairs of consecutive images from
the sequence and is based upon identifying shapes which are common to both
images of any given pair. The matched shapes are interpreted as two views
of the same object. In this way the moving objects can be tracked
throughout the sequence while motion measurements are made from the
displacements between the matched views.

For the system then the low level tokens are to be matched on the
basis of a shape attribute. Thus the tokens must represent structures
derived from the object boundaries having identifiable shapes, i.e.,
individual edge points are not adequate. The tokens used by this system
are circular arcs approximated by portions of the object boundaries.

The arcs are derived by analyzing the subtended angle versus arc length,
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y-s, function of a boundary as measured from an arbitrary starting point
on that boundary. This function is useful because intervals of constant
slope in the y-s function correspond to boundary sections of constant
curvature, i.e., circular arcs. The appropriate intervals are determined
by forming a piecewise straight line approximation of the pictorial graph
of the y-s function. The set of straight lines in the y-s function
approximation effectively decomposes the object boundary into a set of
arcs. Figure 6 shows an object as segmented into arcs by this process.
The shape representation, as entered in the data base which contains
all the relevant information derived from the sequence of images,
includes the coordinate list of the object boundary, the straight line
description of the y-s function, and pointers relating specific boundary
sections to the appropriate elements of the straight 1ine set. This
representation separates clearly the information needed for shape matching
from the information required in the movement measurement process. In
fact the y-s function is invariant to translation and rotation (see Martin
and Aggarwal [20] for minor qualifications) and is processed to eliminate
the effects of arbitrarily choosing its starting point. This separation
is in accordance with the system's use of the constancy in shape of the
actual figures in order to interpret the movement of the apparent objects.
The initial correspondence is based on matching the tokens through
their shape attributes, but is again aided by the higher level constraint
imposed by the token ordering along object boundaries. Contiguous arcs
from an object of one image which match, in the same order, contiguous
arcs from the second image are grouped into edge segments. This matching

js performed by first choosing two arcs, one from each image of a

35



Figure 6. Image as decomposed into arcs.
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consecutive pair, whose y-s function lines have similar slopes and lengths.
From these "seed" arcs an edge segment can be "grown" by adding contiguous
arcs to either end of the already matched segments until a dissimilarity

in the curves is found. The dissimilarity of two curves is measured by
the area between the normalized pictorial graphs of their y-s functions.
Two arcs are declared dissimilar when the measured value exceeds a preset
threshold.

Edge segments grown in this way represent the portions of the object
boundaries which have retained their shape through the sequence. Thus an
edge segment relates two views of some part of an actual figure. The
displacement between two such views provides motion measurements for the
given edge segment. These measurements are then used to group the edge
segments into object models under the assumption that edge segments which
exhibit a common motion belong to the same object.

The example shown in Figure 7 is taken from a scene containing three
actual objects: one central stationary object; one object on the left
side moving from top to bottom; and one object on the right side moving
toward the upper left corner. The first two images, however, contain only
one apparent object. When comparing the shapes of the first image to
those of the second, the system forms four edge segments. These edge
segments are then grouped into three object models based on motion
measurements. The object models formed in this way are inserted into the
data base with arbitrarily chosen names. In Figure 7 each edge segment
is labeled with the name of the appropriate object model. The observant
reader will have noticed that no edge segments are formed from the center

of the scene when the first two images are compared. This is due to the
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Figure 7. Example scene containing three occluding objects.
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extensive shape changes occurring in that part of the scene. It should
also be noted that in the last image the upper object no longer overlaps
the other object, causing the number of apparent objects to change. The

shape matching procedures handle this case making the proper correspondence

between the edges of the last image pair.
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4, Conclusion

This chapter began with a discussion of the general problem of
occlusion in scene analysis. Particular attention was brought to the
analysis of occlusion in dynamic scenes, i.e., image sequences. Then
several motion understanding systems were described in order to elucidate
the interaction of change and constancy. Ostensively these systems were
developed to analyze the changes which occur in sequences of images.
However, prior to the change analysis the systems must determine the
features of the scene which remain constant through at least short
subsequences of the images. These constancy features are necessary to
span the discontinuity inherent in the image sequence representation of
the dynamic scene. In particular for each pair of consecutive images
a correspondence must be formed to relate the appearance of a given token,
j.e., a feature of interest, in one image to the occurrence of that token
in the other image of the pair. The correspondence process essentially
tracks the tokens throughout the sequence and provides the basis for the
initial motion analysis. Convincing experimental results have been
presented, Ullman [16], indicating that for certain "competing motion"
stimuli the human visual system indeed accomplishes this task at a very
early stage in the perceptual process. However, as argued in the
introductory section of this chapter, the possibility of occlusion
requires that some higher level information be used in forming the
correspondence.

In three of the systems discussed, the movement measurements obtained

from the tracked tokens played a crucial role in deriving object level
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interpretations of the dynamic scenes. In this way the changes detected
at a Tow level are used in determining structures which provide constancy
features for motion analysis at a higher level. For an example of
top-down information flow in a hierarchical matching system see Roach and
Aggarwal [22]. 1In any case, the inclusion of change information in the
derivation of object descriptions has important implications on the data
structures used by future scene analysis systems. Not only must the
structures allow the descriptions to contain feature values which change
in time and record traces of those changes, but also the structures must
provide for features which appear, disappear, and change character. The
first two changes are caused by occlusion of the object in question. The
latter change, however, is due to the dynamic nature of the scenes being
analyzed. For example, a person in a dynamic scene might be standing
initially, then leaning slightly forward, then leaning forward and
balancing on one foot but still standing, and then finally walking. The
person has changed their status from "standing" to "walking" but has done
so by gradually varying the value of their posture feature. These
representation problems, along with the still important problems of token
correspondence, object interpretation, and the interaction of low and high
level information should form the core of much of the future research in

dynamic scene analysis.
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