A DEDUCTIVE SYSTEM FOR THE
SEMANTICS OF INTENSIONAL LOGIC

Frank M. Brown, Nelson Bishop,
Jack Woodward

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-132 April 1983

Table of Contents

1. INTRODUCTION
2. DESCRIPTION OF THE THEOREM PROVER

2.1 Logical Knowledge
2.1.1 Assertion Schemata
2.1.2 Goal Schemata
2.1.3 Replica Creation Schemata
2.1.4 The Unification Schema
2.1.5 Other Logical Schemata

2.2 Theory of Modality
2.2.1 Notation
2.2.2 The Logical Axioms of Modal Logic
2.2.3 The Possibility Problem

2.3 A Sequent Calculus for Modal Logic
2.3.1 Rules of the Sequent Calculus
2.3.2 The Standard Form
2.3.3 Completeness and Expressibility

P 2.3.4 Rules Defining Modal Concepts

3. RELATIONAL SEMANTICS
3.1 Definitions of Relational Semantics

3.2 Basic Theorems of Relational Semantics
3.3 Results

4. FUNCTIONAL SEMANTICS

4.1 Definitions of Functional Semantics

4.2 Basic Theorems of Functional Semantics
4.3 Examples

4.4 Results

5. REFERENCES

QI B BD BD B e et s e
QMR = e O NN N

o
[3]

bt |

ABSTRACT

We give an axiomatization of the modal quantificational logic which captures the notions of logical
truth. This modal logic is stronger than S5. Next we describe a sequent calculus for this modal logic, and
show that it is complete in the traditional sense.

We then show how two semantical systems for intensional logics can be represented in our modal
logic, thus allowing our sequent calculus to prove theorems about the semantics of intensional logics.

Finally we describe an automatic theorem prover for proving theorems about the semantics of inten-
sional logics. These new semantical system involve no set theoretic concepts. Instead, they are based on a
formal calculus consisting of a very strong modal logic. We believe this calculus more closely corresponds
to intuitive common sense semantical concepts. The effectiveness of this theorem prover, and the seman-

tical systems on which it is built, is exemplified by its proof of a number of theorems in relational and

functional semantics of intensional logics.

[3]

1. INTRODUCTION

This report describes an implementation of a deductive system for modal logic which is capable of
proving theorems about the semantics of intensional logic. This deductive system is similar to earlier
theorem provers by Brown and described in [Brown 1, 2, 3, 4, 6, 9, 17, 18]. This theorem prover is based
on a modal logic and some semantical systems which have recently been developed in [Brown 7, 8, 12, 16,
19].

This deductive for modal logic system is described in Section 2. In Section 3 we discuss one of these
semantical systems: Relational Semantics and list a number of theorems our automatic theorem prover
has proven. Some example theorems are also discussed. In Section 4 we discuss the other semantical sys-
tem: Functional Semantics and list some resuits and examples. Finally, in Section 5 we compare these two
semantical systems and draw a few conclusions.

2. DESCRIPTION OF THE THEOREM
PROVER

Our theorem prover consists of an interpreter for mathematical expressions and many items of
mathematical knowledge. This interpreter is a fairly complex mechanism, but it may be viewed as apply-
ing items of mathematical knowledge of the form: ¢ « ¥ or ¢=19 to the theorem being proven, in the
following manner. The interpreter evaluates the theorem recursively in a call-by-need manner. That is, if
(fal...an) is a sub-expression being evaluated, then the interpreter tries to apply its items of knowledge to
that sub-expression before evaluating the arguments a,...a . for each sub-expression that the interpreter
evaluates, in turn it tries to match the ¢ expression of an item to that sub-expression. If, however, during
the application process an argument a; does not match the corresponding argument of the ¢ expression,
then a, is evaluated, and the system then tries to match the result of that evaluation. If ever the inter-
preter finds a sub-expression ¢ which is an instance of ¢ of some item, then it replaces that expression by
the corresponding instance ¥8 of ¥. At this point all memory of the sub-expression ¢¢ is immediately lost
and the interpreter now evaluates ¥6. If no items can be applied to a sub-expression then the sub-
expression is not evaluated again but is simply returned.

Sometimes it will be the case that our interpreter will need to use items which are valid only in
certain domains IT. In such a case we could represent the item as a conditional item of the form:
ITx — (¢x « ¥x)
or ITx — (¢x = ¥x)

The interpreter handles conditional items in the same way in which it handles non-conditional items

until it has found a ¢4 which matches the sub-expression being evaluated. At this point on a conditional —~

item, the interpreter tries to match each element in the conjunction ITx with some expression which it
believes to be true. If such matches are found with substitution o then 980 is returned. Otherwise the
interpreter tries to apply another item as previously described.

2.1 Logical Knowledge

The symbols of classical logic are listed below with their English translations:

PAq pandq

pVa porq

p—4q if p then q

P+ q P iff q

~p not p

T true

F false

Vx ¢x for all objects x, ¢x holds

Ix ¢x for some objects x, ¢x holds
Vp ¢p for all propositions p, ¢p holds
dp ¢p for some propositions p, ¢p holds.

Letters such as X, y, z, range over objects, whereas letters such as p, q, r, w, u, range over propositions.

Our theorem prover has knowledge about twelve logical symbols which are listed below with their
English translations:

= equal

= implies (this symbol is called a sequent arrow)
and and (this symbol is used to form an implicit
conjunction sequents)

The sequent arrow may be defined as follows:

PPy = gy, = df (p,A-.Apy) — (qV.-.Va,)
where p; and q; are sentences. Thus a sequent may be thought of as being a database of statements
PP, called assertions which occur before the sequent arrow, and statements qg,...,q, called goals which
occur after the sequent arrow. The implicit conjunction of different sequents may be thought of as being
a group of different databases.

The items of logical knowledge, which are all schemata because they involve ellipses (i.e. dots
representing arbitrary expressions), are listed below:

2.1.1 Assertion Schemata

T=: (T.=.)e (. .=)
F=: (.F) «T
~ = (..~p.=.) « (. .=p..)
A= { p/\q =.) + (.p,g..=.)
V = (.pvq.=.) <« (.p.=.) and (.q..=.)
— =$ (.p—q.=..) « (.. .=p.) and (.q.=.))
- = (.p=q.. .) + (.pq.=.)and (.. .. 2pq..)
3= (-3x ¢x..=.) « (Lo(f*,.%). =)
where f is 2 new skolem function and *,..* are all the unification
variables which occur in ¢x.
V= (..vx d>x..==>..) o (V(x*)ox,0%.=..)
where * is a new unification variable
= = (Ta...{2=!}. [a= da...pa) < (ITt.[t=¢t.yt)

where a is of the form (f*,...*) and f is a skolem function not occurring in t.
This is our version of the law of Leibniz.

2.1.2 Goal Schemata

= T: (=.T.)+~T

= F: (.=.F.)e(=..)

=~ (.=.~p.) e (p=..)

= A (.=.pAq.) « (.=.p..) and (.=.q..)
= V: (-=.pvq.) » (-=..p.q.)

= — (-=.p—q.) = (-p=.q.)

= (.=p+q..) <« (.p=.q.) and (.q=..p..)
=V (=.Vx ¢x..) « (=0(0%.. %))

where f is a new skolem function and *l...*n are all the unification
variables which occur in ¢x.

= 3 (.=.3x ¢x..) « (.=.3(x*)¢x,0*..)

where * is a new unification variable.

[

2.1.3 Replica Creation Schemata

V()= o (V(x.)ex.=) o (WYX F)dx %)
where * is a new unification variable and no more than one unification variable occurs in (x...).
= 3() : (.= 3(x..)9x.) ~ (=.3(x%)ox, 0%

where * is a new unification variable and no more than one unification variable occurs in (x...).

The items V()= and =3() are used to create additional replicas: ¢*, a universally quantified assertion
V(x...)¢x, and an existentially quantified goal 3(x...)¢x. The replica ¢* is exactly like the original formula
except that the initial quantifier is deleted and the bound variable associated with that quantifier is
replaced by a new free unification variable.

A Unification Variable is a free variable which is created by V=, =3, V()=, or =3() items, and
which may later be instantiated to some term by the unification item (see Section 2.1.4). Unification vari-
ables are written as a star sign: * possibly followed by a number such as: *1, *2, *3.

In these four items we have seen formulae of the form V(x...)¢x and 3(x...)¢x which are not usually
thought of as being well formed sentences of logic. Such formulae should be interpreted as respectively
Vx¢x and Ix¢x which are well formed sentences of logic. The ... list, which is called the replica instance
list, is used merely to store certain pragmatic information used by the deductive system. This infor-
mation is basically the list of unification variables (or more precisely the list of instantiations of the
unification variables, see Section 2.1.4) that were produced from this quantifier by applications of the V=,
=3, ¥()=2, and =3() items.

2.1.4 The Unification Schema

Unify: [(..p;-.=..q;-.) and .. and .. (.p,..=..q,..)] + [(.p;y-=..q}) and .. and .. (.p,.=..q,.)] 0

where 1<i<n and § is any one of the sets of substitutions of terms for unification variables which satisfy
both the forcing restriction and the instantiation restriction. These two restrictions are described below.

The forcing restriction is the requirement that the substitution makes tautologous the greatest
number of sequents starting with the first sequent and progressing towards the nth sequent.

In the case that there actually is some substitution which will make all the sequents tautologous,
without further unification variables being created by the V= and =3 items, then 6 will be one such
substitution. As a minor point, if § makes all the sequents tautologous, then the unification schema is
defined to return.

The instantiation restriction is the requirement that no unification variable be instantiated to a
term which already occurs in the replica instance list of the quantifier of the given sequent which contains
the unification variable. The rationale behind this restriction is that if a term t occurs in the replica in-
stance list of a quantifier such as V in (..Vx¢x..=»..) then the sub-formulae of ¢t must already occur in
some sequent which must be proven in order to prove the theorem.

2.1.5 Other Logical Schemata

atom: (..p.=..p) «= T

and: (.and T and.)) « (.. and ..)

The logical items are not all used at the same time. In particular the V()=>, =3(), and unify items
are used in a special way. Initially, the interpreter evaluates each sequent trying to apply items in the
following order:

1. Non splitting assertion items:
T=, F=p, ~=, A, I, = =

2. Non splitting goal items:
=T, =F, 22~, 2V, ==, =V

3. Non logical items

4. The atom and "and" items

5. Splitting goal items: =A, =+

6. Splitting assertion items: V=%, —=}, ++=$
7. =3

8. V=

After the above items have been applied as many times as possible, the interpreter then tries to
apply the unify item to the resulting conjunction of sequents.

If the application of the unification item results in T then the processes terminates because the
theorem has been proven. But, if the application of the unification item does not result in T, then the
interpreter applies the V()= and =3() items to certain formulas, and then repeats the whole process start-
ing at step 1.

One major difference between this theorem and our previous sequent logic theorem provers [Brown

1, 3, 4, 6] is that the =3 and V= have been inserted into the initial evaluation procedure as steps 7 and 8,
and thus one instance of every quantifier is initially created before the unify rule is every applied. The
reason for this is due to the vast numbers of trivial quantifiers produced by the modal sequent logic
described in Section 2.2. It was found that unless instances of these quantifiers were produced before
unification takes place, many important bindings would not be found quickly enough and irrelevant bind-
ings would be produced by the forcing restriction, due to the fact that the relevant formulae would not be
available for matching.

2.2 Theory of Modality

We first describe a very strong modal logic which captures the notion of logical truth of the meaning
of object language sentences. That is, for example, letting }— be the modal symbol for logical truth, and M
be our recursive meaning function [1] then |—(M S) states that the meaning of the object language sen-
tence S is logically true. Thus, amazing as it may seem, we can construct a definition of logical truth
without the use of any set-theoretic concepts.

After explaining in Section 2.2.1 the logical notation that we use, we give in Section 2.2 the logical
axioms of our modal logic. In Section 2.3 we discuss what we call the Possibility Problem of modal logic,
and explain why any thecry formulated in modal logic should also include certain specific non-logical
axioms about possibility.

2.2.1 Notation

We now explain our notation.

The symbols of modal logic are:

p p is logically true

pq p entails q

op p is possible

(World p) p is a world

The last three modal symbols are defined in terms of the first one as follows:
Hpa =df (p — q)

°op =df ~ } ~p

(World p) = df (op) A Ya(i-p a) A (—p(~q))

2.2.2 The Logical Axioms of Modal Logic

Our theory of modality is based on a very strong modal logic which is described in [4, 5]. It consists
of a single primitive unary symbol: |- which is interpreted as logical truth. This modal logic is stronger
than S5 and can be described by the following minimal set of inference rules and axioms:

RO: from p infer }—p

Al:}-p—p

A2: =(p—q) = (~p — Fa)

A3:pVE ~p

A4: (Vg World*q — +qp) — p
The inference rule RO and the axioms Al, A2 and A3 are essentially the S5 modal logic. The last axiom
A4 expresses Leibniz’s intuition that something is logically true only if it is true in all worlds. The World*
and + symbols are essentially the same as World and }— which are defined later in Section 2.2.2.

Our automatic theorem prover does not use the above axioms but is based on the sequent calculus
derived from these axioms which is described in [5]. We describe this modal sequent calculus in Section

2.2.1 and then list some definitions of modal concepts used by the theorem prover in Section 2.2.2. Finally, =

in Section 2.2.3 we discuss the possibility problem of modal logic.

This modal logic consists of the symbols and laws of classical quantificational logic plus the unary
necessity symbol |— and the following axioms and inference rules:

RO, A1, A2, and A3 are essentially the inference rule and axioms of S5 modal logic. Axiom A4 which we
call Leibniz’s postulate expresses his intuition that something is logically true if it is true in all possible
worlds. A good introduction to modal logic is given in Hughes and Cresswell [10].

2.2.3 The Possibility Problem

The possibility problem of modal logic is that from the logical axioms of modal logic we cannot
prove certain elementary facts about the possibility of conjunctions of distinct possible negated atomic
expressions consisting of non-logical symbols. For example, if we have a theory formulated in our modal
logic which contains the non-logical atomic expression (ON A B) then since ~(ON A B) is not logically
true, it follows that (ON A B) must be possible. Yet o(ON A B) is not a theorem of our modal logic.

Thus, for any theory expressed in modal logic, a certain number of non-logical axioms dealing with

e

possibility should also be added. For example, in the case of the propositional logic, or in the case of the
quantificational logic over a finite domain since it reduces to propositional logic, one sufficient but in-
efficient axiomatization would be to assert the possibility of all consistent disjunctions of conjunctions of
literals as additional non-logical axioms:

o(v(ALiterals))
A more computationally efficient axiomatization which is obtained by noting that the possibility of a
disjunction of sentences is implied by the possibility of any one of those sentences:

op — o(pAq)
is to assert only the possibility of all consistent conjunctions of literals:

o(Aliterals)

Using our meaning function [1] this may be done in a finite manner by adding the single axiom:
(Conj S) A (Consist S) = o(M S)
where Conj and Consist are recursive functions defined as follows:

(Conj S) — df (Lit S) A 3T 3R (S=[T’AR] A (Lit T) A (Conj R))
(Lit S) = df (3T S=['~ T] A (Atomicsent T)) V (Atomicsent S)
(Consist []) =dfF

(Consist [S.L]) = df (Consist2 S L) A (Consist L)

(Consist2 S []) =df F

(Consist2 S[T.L] = df ~(Opp S T) A (Consist2 S L)

(Opp S T) — df (IR S=['~R] A T=R) A (IR T=['~R] A S=R)

The methods for representing object language expressions in our logic and for obtaining their mean-
ings are defined in [1, 7] [1977d]. For example [T’AR] is essentially a structural descriptive name of (M T)
A (MR).

2.3 A Sequent Calculus for Modal Logic

We give in Section 2.3.1 some theorems of our modal logic which when used as rewrite rules will
form the basis of a method for translating every expression of our modal logic into the standard form

described in Section 2.3.2. In Section 2.3.3 we show that these rewrite rules form the basis of a complete

proof procedure for modal logic. In Section 2.3.4 we list some definitions which are also to be used as
rewrite rules. These rules are intended to be added to a classical sequent calculus such as: [Brown 1, 3, 4,
6].

2.3.1 Rules of the Sequent Calculus

We list below thirteen theorems of our modal logic of the form p«q or r=>(p++q) which may be used
to rewrite rules replacing p by q in any context in which r is a hypothesis. The symbols World* and »
have the same meaning respectively as world and |-, but are never to be replaced by their definitions in a
proof procedure using these rules. Furthermore any initial theorem given to such a proof procedure must
not itself contain the world* or + symbols, although it could of course contain the World and }— symbols.

b (+p) + Vw(World*w) = rwp)

A (World*w) — ((-w(pAa) o (-w b Arwaq)
v (World*w) — ((+w(pVa)) « (rwpVrwq)
Eo (World*w) — ((-wip—a) e (-wp—+wa)
b e (World*w) — ((+w(p+q)) < (rwp < rwq))
o~ (Worldw) — ((-wi~p)) o (~rwp)

T (World*w} — ((rw T) «+ T

- F: (World*w) — ((rwF) « F

Vv (World*w) — ((+w(Vx ¢x)) « (Yxrwox))
3 (World*w) — ((rw(3x ¢x)) + (Ixrwex))
a (World*w) — ((-w(¥p 4p)) e (Vprwep))
e (World*w) — ((-w(3p ¢p) e (Ip-wp))
Fh (World*w) — ((-w(i-p)) o b

The |-V and |3 theorems pertain to quantifiers of object language variables whereas the |—a, |—e
theorems pertain to quantifiers for propositional variables. The |-V and |3 theorems are equivalent to
the fact that something is an object iff it is logically true that it is an object. All these theorems hold
regardless of whether propositions are objects or not.

In order to try to prove a theorem % with a proof procedure using these rules, sometimes it must
actually try to prove }—y instead. There is a deep and beautiful reason for this which is basically that this
initial |~ inserted before ¢ is a symbol of the metalanguage of this logic as are all the + and World*
symbols. Essentially |~ is the statement in the metatheory that ¢ is logically true, and it is this rather
than y itself which we are trying to prove.

Unlike sequent calculi for weaker modal logics [11] our sequent calculus leads to a very efficient
proof procedure, as can be seen from the fact that the |- law is an explicit definition of |- in terms of +w,
and that the remaining twelve laws are essentially a contextual definition which eliminates all occurrences
of the +w symbol which do not occur immediately before an atomic sentence. Thus in a proof procedure
based on this sequent calculus it makes no essential difference as to which of the thirteen laws is first
applied. Furthermore it makes no essential difference to which subformula of the theorem being proven a
law is first applied. All possible strategies of applying these laws, so long as they are applied as many
times as possible will led to the standard form described in Section 3.2.

2.3.2 The Standard Form

If the rewrite rules given in Section 3.1 are supplemented by enough laws of classical logic which
when used as rewrite rules suffice to put the sentences of classical logic into skolemized prenex conjunctive
normal form, then every sentence of our modal logic will be rewritten to an equivalent sentence in the
following standard form:

1. First a sequence of universal quantifiers (i.e. skolem functions) consisting of:
(a) object variable quantifiers: Vx
(b) proposition variable quantifiers: Vp (except those introduced by the |— and }—}— rules)
(c) propositional variable quantifiers introduced by the }— rule. These quantifiers are essen-
tially treated as world quantifiers as the (World*w) hypothesis is always kept next to the
quantifiers: (Iw(World*w) =...).

2. Second a sequence of existential quantifiers (i.e. unification variables) consisting of:
(a) object variable quantifiers: 3x
(b) proposition variable quantifiers: 3p (except those introduced by the |- and |~} rules)
(c) propositional variable quantifiers introduced by the |— rule. These quantifiers are essen-
tially treated as World quantifiers as the (World*w) hypothesis is always kept next to the
quantifier:
(3w(World*w)...).

3. And finally a matrix consisting of:
(2) a conjunction: A
(b) of a disjunction: V (i.e. of sequents) (c) of negated: ~ or unnegated

10

(d) atoms consisting of an entailment symbol +w whose first argument is a variable quantified
by a quantifier of type (1c) or (2c), and whose second argument is either (i) a variable quan-
tified by a quantifier of type (1b) or (2b), or (ii) a nonlogical atomic sentence containing no
variables of type (1c) or (2c).

Schematically this standard form can be represented as:
VXVpV¥w(World*w) = IxIpIw(World*w) A Matrix
where the matrix is of the form:

P
AV{~}rw {(¢px)}
where ¢ is a non-logical symbol.

The fact that sorted quantifiers can be pulled out of the matrix and skolemized can be justified by
the following theorems of classical logic:

= Yw: (Vw(World*w) = (sA(tVew))) « (sA(tV(Vw(World*w) = ¢w)))
= Jw: (Iw(World*w) A (sA(tVew))) « sA(tV(IwWWorld*w) A ¢w)))
Skolem: (IxJTxA(Va a=> ¢xa)) « (Va(VxITx = (ax)) = (Ix/TxA¢x(ax)))

The = Vw and = 3w theorems depend on the truth of the theorem: 3w(World w). The "a® in "(ax)" of
the Skolem theorem represents a skolem function.

2.3.3 Completeness and Expressibility

We consider the fragment of our modal logic which does not contain any propositional variables and
where propositions are not objects. Given the standard form described in Section 3.2 we can prove the
completeness of this fragment relative to classical state logic. Classical state logic is a classical quantifica-
tional logic containing two distinct sorts, namely objects and worlds such tat each non-logical symbol
contains exactly one argument position which contains a world variable. This completeness proof is carried

out merely by forming an isomorphism between expressions of our modal logic and expressions of state

logic by translating each atom Pw(qb“Xl...Xn) of our modal logic containing an n-ary non-logical symbol ¢
into an (n+1)-ary atom of state logic: (¢"*t1X,..X w).

We now state the Completeness Theorem:

Completeness Theorem

For every sentence (a) of this fragment of our modal logic, there is an equivalent sentence (b) of our
modal logic such that there exists a sentence (s) of classical state logic which is isomorphic to (b). There
fore (s) is provable iff (b) and (a) are provable. Using this isomorphism we may also obtain an Expres-
sibility Theorem for our modal logic:

Expressibility Theorem

For every sentence (t) of state logic there is an equivalent sentence (s) of state logic in skolemized
prenex conjunctive normal form such that there exists a sentence (b) of our modal logic which is isomor-
phic to (s).

The expressibility theorem shows that everything expressible in state logic is expressible in our
modal logic.

2.3.4 Rules Defining Modal Concepts

The laws are all of the form p+>q and are to be used only to replace an expression of the form pf by
an expression of the form qf.

Df-: Fpa (p—a) "p entails ¢"

D= : p=q « {p+q) *p is synonymous to "
Do : op +» ~}=-~p " is possible®

Ddet : (Det p q) ++ ~p qVp~q *p determines q"
Dcom : (Complete p) + Vg(Det p q) *p is complete®

Dwor : (World p) + opA(Complete p) *p is 3 world"

12

3. RELATIONAL SEMANTICS

The basic idea of Relational Semantics [8] is to define the proposition that p is necessary holds in a
world w as the proposition that p holds in all worlds u related to w by some binary relation R:

DR: }-w Mp « d f (VuRwu — |—up)
From this definition it is clear that the necessity symbol for various modal logics will be easily definable
by assuming various axioms for the R-relation. The R-relation will be assumed to be an intensional sym-
bol, and thus the following axiom shall hold.

RA1: (p~q) — (ViRpr «+ Rqr) A (ViRrp « Rrq)
In particular this axiom is used to prove theorems RT1, RT4, RT5, and RT6 in Section 3.2. Also it does
not seem unreasonable to interpret the R relation as being the same in all worlds.

RAZ2: oRxy — Rxy

Static Relational Semantics is a degenerate case of Relational Semantics that may be obtained by
assuming either the intensional logic sentence:

HVp (Mp — H1p)
or the semantic condition of theorem RT11:

VuVvVw(Rvw — Rvw)
Essentially such an assumption makes ihe first argument of the relation R irrelevant to its meaning. For
this reason; alternatively the same effect could be achieved by simply replacing the definition DR by the
definition DSR:

DSR: ~wlp « (YuRu — |—up)
involving a unary predicate R whose argument is the second argument of the relation R. The utility of
the DSR rule lies in the fact that if some intentional concept satisfies the axiom -Vp[lp — [p then it
will be more efficient to use the single law DSR as a rewrite rule rather than use both DR and that axiom.

After defining some basic concepts in Section 3.1, we list in Section 3.2 a number of theorems deriv-
able from the axiom definitions DR and DSR. It will be seen that the theorems which relate laws of inten-
sional logic to their semantic conditions on the R relation in DR or the R predicate in DSR are generaliza-
tions of many well known results about Relational Semantics. Proof of all these theorems are given in [9].
Some example proofs are given in Section 3.3. In Section 3.4 statistics of our automatic theorem prover’s
attempt to prove each of these theorems is given.

3.1 Definitions of Relational Semantics

We first make a few definitions:

D1: Ap «+ ~[l~p

D2: (M-det p q) « M(p—a) vV N(p—~q)
D3: (M-complete p) + Vg(M-det p q)

D4: (M-world p) + Ap AlM-complete p)

D5: (M-valid p) + Vq(r-world q) — M(q—p)

3.2 Basic Theorems of Relational Semantics

The main theorems of Relational Semantics are listed below. Variables u, v, w, range over worlds.

RTO: Vp(p—HTlp) « T

13

RTI: HMp—ag-—>(p—Tq « T

RT2: ((r-valid p) — Mp) « T

RT3: F-(MVx¢x + ¥x Méx) ~ T!

RT4: F(3xM¢x— M3Ix¢x) - T

RTS: vp(rp — Ap) « VYw3uRwu *deontic® existence
RT6: - Vp(Ap) — Mp) + JuWVYw(RwuARwv — u=v) uniqueness
RT7: - Vp(Mp — p) -+ VYwRww *T* reflexive

RTS: - Vp(p — NAp) + VYu¥v(Ruv — Rvu) "B* symmetric

RT9: - Yp(Mp — MMNp) + Yu¥v Yw(Ruv A Rvw — Ruw) 254" transitive
RT10: |} Vp(rip V M ~ Mp) + VuVvVw(Ruv A Ruw — Rvw) ng5n
RTI11: b V¥p(rp — +p) + VuVvVYw(Ruw — Rvw) *Static®

SRTO: Vphlp—HTIp

SRT1: H(n(p —) = (Mp — MNa)

SRT2: F((M-valid p) — Mp

SRTS3: F(MVxgx « VxM¢x)

SRT4: F(3x MN¢x — N3xgx)

SRT5: F(Vp(rp — Ap) ++ 3JuRu "Deontic* existence
SRT6: F(Yp(Ap — Mp) + VYu¥v Ru A Rv - u=v uniqueness
SRT7: (vp(Np — p) +« VwRw " T* reflexive
SRTS8: H(vp(p — ' Ap) + 3IvRv — VuRu *B* symmetric
SRT9: H(Vp(Mp — MNp) « T "S4* transitive
SRT10: (¥p(Mp V M~Tp) o T "G5

SRT11: H(vp(rp — Ip) « T “Static"

It is interesting to note that the modal laws of the SRT9 and SRT10 theorems become true without any
restrictions on the R verb. Also it follows that the modal laws of the SRT7 become equivalent to the
conjunction of the modal laws of SRTS5 and SRT8:

F¥p(rp — p « (FVpMp — Ap A Vp(p = NAp))
¥wRw + (3wRw A (3wRw — VwRw))

VwRw < (3wRw A VwRw)

YwRw + VwRw

reflexitivity < existence A symmetry

Irhe reader should not be disturbed by the fact that RT3 holds in our Relational Semantics where as in Kripke’s [8] work
it did not; because this is merely a consequence of Kripke’s way of defining the classical logic operation of substitution. In [9]
we show how %o obtain quantifiers such that RT3 does not hold.

14

3.3 Examples

RTS: Vp(Mp—Ap) « VwiuRwu Rules
6y: T
»

RT5A = Vw3uRwu — Vp (Mp—Ap) =
vwIuRwu =V x1 + x1 Vp (Mp— Ap) (=Y, Y
VuduRwu = Vp + ci (Mp— Ap) S AL
VwIuRwu =rcl (1 ¢2) — + c1 (Ac2) =4 DF
V2 Relx2—+x2c2), VWithwu = + cl (A ¢2) D1,
V2 Rel x2 — + %2 ¢2), VWwiuRwu = ~ + ¢1 (M~ ¢2) s=b~ ,DF
V3 Reclx3—+x3(~c2), Vx2 Recl x2— + x2c2), WilRviu = W=, —=

V(3 #*1)(R c1 X8 — + %3 (~ ¢2)), r *x1(~ c2),

V x2(R ¢l x2 — + X2 ¢2), VwIuRwu = .

(1), ~+ %1 ¢c2, Vx2 (R ¢l x2 — + x2 ¢2), VwIuRwu i~ V=, o=
W, Y2 *2)(R ¢l x2 — + *2 ¢2), r ¥2 ¢2, VwduRwu = + *1 ¢2 V=3, J=
),(2, » *¥2 ¢2, V(w *3) JuRwu, R *3 (c3 *3) = + *1 c2 :unify

T (¥1 = %2)
(1), (2),vwiuiRwu = + *1 c2, R cl *2 V=, =
(1),(2),V(w *4)JuRwu, R *4 (c4 *4) = r %1 c2, R cl *2 :unify
T (*1 = (c4 *4), *4 = c1)

(1),vx2 Recl x2— + x2c2), VwluRwu = R c1 #1 V=, — =
() ,V(x2 *5) (R ¢1 x2 — + X2 ¢2), + *5 ¢2, VwJuRwu = R cl *1 V=, =
(1),(3),+ %5 ¢2, V(w *6) JuRwu, R *6 (c5 *6) = R cl *1 unify

6, (fail-substitute, reinstate, try again)
(1),(®) ,YwduRwu =+ R c1 *1, R c1 *5 ' V=, 3=
(1),(3),¥(w *7)JuRwu, R *7 (c6 ¥7) =+ R cl *1, R cl *5 ‘unify

T (%6 = (cB6 *7), *7 = c¢1)
91: V(x3(c4 *4))(R c1 x3 ~ + x3 (~c2)), V(x2(c6 *7)) (R cl x2 — + x2 c2),
+(c6 ¥7) ¢2, V(w *6) JuRwu, R *6 (c5 #6) = R ci (c4 *4) :reinstate
V(x3(c4 *4)*9) (R c¢1 x3 — + x3(~c2)), R cl %9 — + *§ (~ c2),
V(x2(c6 **8Y (R ¢l x2 — + X2 ¢c2), R c1 *8 — + *8 ¢2, +(c6 *7) c2,
(4) ,R *6(cb *6) =% R c1(c4 *4) Db 2z

(5),R cl *¥9 — + ¥§ (~c2),(6),+ *8 c2, +(c6 *¥7) c2,(4),R *6(c5 *&)

= R c1(c4 *4) [
(8),F *3(~c2),(6),r *8 c2, +(c6 *7T)c2,(4) ,R *6(c5 *6) =+ R c1(cd *4) e~
(5),~+ *9 c2,(6),r *8 ¢2,+(c6 *7) c2,(4),R *6(c5 *8) = R c1(cd *4) Lo
(5),(6),r *8 c2,-(c6 *¥7)c2,(4) ,R #6(c5 *6) = R cl (c4 *4), + x§ c2 CrT T anih

T (#8 = ¥@) or (¥ = (cB *7)) '
5),(6),r %8 c2,+(cB *7)c2, (4),R *6(c5 *6) = R ci(cd *4), R cl *9 ‘unif

T (%6 = c1, *9 = (cb *6) # (c6 *7))
(8),R c1 *¥9 — r *9(~c2),(6),-{(c6 ¥7)c2, (4) R *6(cE *6)

= R c1{c4 #¥4), R cl1 %8 -
(5),r *¥9(~c2),(6),r(c6 *¥7)c2, (4),R *6(c5 *6) = R c1(c4 *4), R c1 *8 .
(5),~ + %9 ¢2,(6),+(c6 *7)c2, (4),R *6(cb *68) = R ci(c4 *4), R c1 *8 P
(5),(6),r(c8 ¥ c2,(4) ,R *6(c5 *8) = R c1(c4 *4), R cl *8, + %9 c2 ;unif

T .

(5),(6),-(c6 *7)c2,(4) ,R *6(c5 *6) = R c1(c4 *4), R cl %8, R cl *9 ;unif
T .

et

9 .

o -

15

RTSB =+ | V¥p([p—Ap)—+VwiuRwu
V xt + x1(vp(Mp—Ap)) = VwluRwu
V(x1 *2)+ x1(¥p(Mp—Ap)),Vp + *¥2(Mp—Ap) =+ I(u *1) Rcl u, R el #

< :Uu:n

(2),V(p *#3)r *¥2(Mp—Ap), + *¥2(MN *3)— + *¥2(A *3) = (1),R cl1 x1

(2), (@), ¥2(A *3) =(1),R c1 *1
(2),(3),~ r #¥2(N~*3) =(1),R c1 *1
(2),@)=(1), Rel *¥1, ¥V x2 (R *2 x2 =+ x2(~ *3))
(2),(3),R *2(c2 *3 *2) = (1),R c1 *1, ~+(c2 *3 *2) *3
F(c2 *3 *¥2) *3,(2), (3),R *¥2(c2 *3 *2) = (1),R cl *1
T (¥1 = (c2 *3 %2), %2 = cl)
2),@=(1),R c1 *1, r *2([7 *3)
2, @=01),R cl *1, V x3(R *2 x3 -+ x3 x3)
R *2(c3 *3 ¥2),(2),(8)=(1), R c1 *1, r(c3 *3 *2) *3
6, (fail, try again)

c1(c3 *3),V(x1 ci)r xt (Vp(p—Ap)), Y(p *3)+ cl(Mp—Ap)

J(ule2 *3 *2))R ci u, R c1(c2 *3 ¥2), +(c3 *3) *3

c1(c3 *3), VY(x1 c1 *4) r x1(Vp(Mp—Ap)), + *4(Vp(Mp—Lp)), (3)
= J(u(c2 *3 *2) *¥5) R cl u, R cl %5, R c1(c2 *3 #2), r(c3 *3) *3
c1(c3 *3), (4) ,V(p *6)r *4(Mp—Ap),+ *¥4(N *6)—+ *4(A *8),(3)
=(5), R c1 %5, R c1(c2 *3 *2), +(c3 *3) *3

R c1(c3 *3),(4),(6) ,+ *4(A *8),(3)
=(5), R ct %5, R c1(c2 %3 *2), +(c3 *3) *3
R c1(c3 *3),(4), (8),~r *4 (N~ *B),(3)
=(5), R cl *5, R c1(c2 *3 %2), +(c3 *3) *3
R c1(c3 *3),(4),(6),(3)=(5),R c1 *5, R c1(c2 *3 x2),+(c3 *3) *3,
¥ x4(R %4 x4 — + X4(~ *6))
R *%4(c4 *6 *4), R c1(c3 *3),(4), (),
=(5),R c¢1 *5, R c1(c2 *3 ¥2),-{c3 *3) *3, ~r(c4 *6 *4) *6
F(cd *6 *4)%6, R *4(c4 *6 %4), R c1(c3 *3),(4),(6), (3)
=3 R c1 *5, R c1(c2 *3 *2), r(c3 %3) *3
T (%5 = (c3 *3))
R c1(c3 *3),(4),(6),(3)=>(5) ,R c1 %5, R c1(c2 *3 *2),
+(c3 *x3)*3, r *4([*6)
R c1(c3 #3),(4),(6),(38)=(5),R cl *5, R c1(c2 *3 *2),
F(c3 *#3)%3, V ¥x5(R *4 X5 —+ X5 *6)
R *4(c5 %6 *4) ,R c1(c3 *3),(4),(®), 3
=(5),R c1 %5, R c1(c2 *3 *2), +(c3 *3) *3, r(cb *6 *4) *B
T

==

=Y, =3,V=,rV

V=, b
D=

DL, r~
1~=2,DR

A S
T~

:unify

‘DR

=Y, =, —
:unify

:reinstate
V=,

U e |

D1, r~
:~=>,DF
=Y, =, h e~
M afa

‘unify

Dt
=V, = —

‘unif;

Observe that in the "A*® part of this proof, much effort could be saved by reducing Vw3uRwu before the proof begins to split.

RT7: | Vp(Mp—p) «+ VwRww

6,:

RT7A = YwRww — Vp(Mp—p)

VuRww = ¥ x1 + x1(¥p(Mp—p))

VuRww = Vp(+ ci(Mp—p))

VwRww = + c1(7 ¢2) — + ¢c1 ¢c2
¥V x2(r ¢l x2 — + 32 ¢2), WRww = + ¢1 ¢2

6y:
RT7B = | (vp(Mp — p)) — VuRww
V xt + x1(vp(Mp — p)) — VwRww
V(x1 *1) » x1(Vp(p — p)). Vp+ x1(NMp — p) = Recl cl

1),V *2) + ¥1(Mp — p), r ¥1 (M *2)— + *1 *2 = R cl cl

(1),r *1 ¢2, V(v *2) Ruw, R *2 %2 = r ¢l c2

T (*1 = c¢1)

VwRww, (1)=3 + ¢l ¢2, R cl *1
V(w *¥3) Rww, R *3 #3, (1) = + c1 ¢2, R c1 *1

T (#3 = c1)

(1),(2),r *1 ¥2 = R cl cl
6, (fail-cannot reinstate)

1),(2) = Recl cl, » *1([7 *2)

(1),(2) = Reclcl, V2R *1 x2 — + x2 *2)

R *1(c2 *2 *1), (1),(2) = R cl c1, +{(c2 *2 *1) *2
6, (fail-cannot reinstate)

16

V(2 ¥*1)(R cl x2 — + X2 ¢2), + *¥1 c2, VWRww = r ¢l ¢2

= -
(=Y, rY
=V,
:=—,DR
V=3, =3

V=

‘unify

V=3
:unify

e s

1=V, V=, -y

V= b
‘unify

:DF
1=V, = —
;unify

17

RT9: | Vp(rip — Mrp) « VuVeVu((Ruv A Rvw) — Ruw) Rules
'

RT92 = VuvVwWw((Ruv A Rvw) — Ruw) — | Vp(rp — MnNp) = Ty .
VuvvWw((Ruv A Rvw) — Ruw) = V xt + xt(¥p(Mlp — MNp)) =V, -V
VuVyVw((Ruv A Rvw) — Ruw) = V p + c1((lp — MMp)) 1Y, s
vavvww((Ruv A Rvw) — Ruw) = = c1(1 ¢2) — + c1(MNp) :=— ,DR
VX2 cl x2 — + x2 ¢2), VuvwWw((Ruv A Rvw) — Ruw) = + c1(MN ¢2) ‘DR
Vv 2R ¢l x2 — F x2 ¢2), VuvwWu((Ruv A Rvw) — Ruw)

= ¥ x3(R c1 x3 — » x3([7 c2)) 1=V, =— ,DR
Rcl c3, Vx2@R cl x2 — + x2 c2), Yuvwww((Ruv A Rvw) — Ruw)
= V x4(R c3 x4 — + x4 ¢c2) Y, = V2, =, =
R c3 c4,R ¢l c3,V(x2 *1) (R c1 x2 — + x2 ¢2),+ *1 c2,VuVwWVu((Ruv A Rvw) — Ruw)
= + c4 ¢2 V=t V=, V=, ==
R ¢3 c4,R ¢l ¢3,(1),r *1 ¢2,V(u *2)VvVw((Ruv A Rvw) — Ruw),
V(v *3)Vw((R *¥2 v A Rvw)— R ¥2 w),
V(w #4) (R %2 #3 A R *3 w) — R %2 W) ,R %2 ¥4 = + ¢4 ¢2 ‘unify
T (*1 = c4)
R c3 c4,R ¢l ¢3,(1),r #1 ¢2,(2),(3),(4) = r c4 c2,R *¥2 *3 A R *3 %4 1= A
R c3 c4,R ¢l ¢3,(1),r ¥ c2,(2),(3),4) = r c4 c2,R %2 %3 cunify
T
R c3 c4,R c1 ¢3,(1),+r *1 ¢2,(2),(3),(4) = » c4 c2,R *3 *4 ‘unify
T
R ¢3 c4,R ci ¢3, (1),VuvvWw((Ruv A Rvw) — Ruw) = + c4 c2,R c1 *1 V= V= V=, -
R c3 c4,R cl ¢3,(1),V(u *5) ((Ruv A Rvw) — Ruw),V(v *6)Vw((R ¥56 v A Rvw) — R *5),
V(w *7)((R *5 *6 A R %6 w) — R *5 w),R *5 *7 = + c4 c2,R c1 ¥ :unify
T (%6 = ¢1, *7 = c4)
Rec3 c4,Rel c3,(1),(6),6),(7) =+ c4 c2,R cl *1,R %5 %6 A R *86 %7 =3 A
R c3 c4,R ¢l ¢3,(1),(5),(6),(7) = + c4 c2,R cl *1,R *5 *6 unify
T (%6 = ¢c3)
R c3 c4,R ¢l ¢3,(1),(6),(6),(7) = *+ c4 c2,R cl *1,R *6 *7 :unify
T
6,:

RT9b = | Vp(Mp — MNp) — Vuvvvw((Ruv A Rvw) — Ruw) =,
V xt +» xt(¥p(Np — MNNp)) = Yuvvvw((Ruv A Rvw) — Ruw) 1=V, =Y, =2V, 2D A= V0
R ¢2 c3,R c1 ¢2,V(x1 *1) + xt(¥p(Mp — NMp)).Vp + *1(Mp — MMp) = R c1 ¢3 V=, b
R c2 c3,R c1 ¢2,(1),V(p *2) + *1(Mp — MMp) ., *1(N *2) — + *1(MN *2) = R ¢l c3 T

R c2 c3,Rcl ¢2,(1),(@,+ x1 (M7 *2) = R cl1 ¢3)]
Rc2 c3,Rcl ¢2,(1),(2),V x2(R *1 x2 — *~ x2(17 *2)) = R ¢l c3 V=, —=31
R c2 c3,R ¢l ¢2,(1),(2),V(x2 *3) (R *1 *2 — + x2(M *2)),+ *¥2(M *2) = R c1 ¢3 1D
Rc2 c3,Rel ¢2,(1),(@,3),V x3(R #3 x3 — + x3 *¥2) = R cl ¢c3 V=, o=
R c2 c3,R ¢t ¢2,(1),(2),(3),V(x3 #*4) (R *3 x3 — + X3 ¥2) - ¥4 ¥2 = R c1 c3 ‘unif:
6, (fail-try again)
R c2 c3,R ct ¢2,(1),(2),(3),(4) = R cl1 c3,R *3 %4 ‘unif:
T (*3 = c1, *4 = ¢2) or (*3 = ¢c2, ¥4 = c3)
R c2 ¢3,R c1 ¢2,(1),(2),(3) = R ¢l c3,R *1 *3 ‘unif
T (*1 = c1, *3 5% cl)
R c2 c3,R el ¢2,(1),(2) = R cl c3, + *1(*2) D
Rc2 c3,R el ¢2,(1),(2) = Rel ¢3, V4R *1 x4 — + x4 ¥2) (=Y, =

65:

18

R *1(c4 *2 *1),R c2 c3,R c1 ¢2,(1),(2) = R c1 ¢3,-(c4 *2 *1) *2

6, (fail-try again)

R c1(c4 *2) ,R ¢2 c3,R c1 c2,V(x1 c1) + xt(¥p(Mp — MNp)) ., V(p *2) r ci(Mlp — Irp)
= R cl ¢3,~(c4 *2)
R ci(cd *2),R ¢2 c3,R c1 ¢2,V(x1 c1 *5) + x1(¥p(Mp — MMp)) .+ *6(¥p(Mp — MMNp)), (8)
= R ¢l ¢3,r(c4 *2) *2
R c1(c4 *2),R c2 c3,R c1 ¢2,(6),Vp + *5(Mp — NNp) ., (5)
= R ¢l ¢3,-(c4 #2) %2
R c1(c4 *2),R ¢c2 ¢3,R c1 ¢2,(6),V(p *6) v *5(Mp — MMp),+ *5(NMN *6), (5)
= R ¢l ¢3,+(cd *2) *2

R ci(cd *¥2),R ¢2 c3,R ¢1 ¢2,(6),(7),~ 51N *6),(5) = R cl c3,r(c4 *2) %2
R c1(c4 *¥2),R ¢2 c3,R ci ¢2,(6),(7) ,V x5(R %5 x5 — + x5(*8)), (5)

= R ¢l c3,+(c4 *2) *2

R ci1(cd *2) R c2 c3,R ¢l ¢2,(6), (7),V(x5 *7) (R *5 x5 — + x5(I1 *6)),r *¥7([*6), (5)
= R c1 ¢3,-{c4 *2) *2

R ci(cd *2),R 2 c3,R ¢l ¢2,(6),(7),(8).,V x6(R *7 x6 — + x6 *8), (5)
= R ¢l ¢3, r(ca *2) *2

R c1(c4 *2),R c2 c3,R ¢l ¢2,(6),(7),(8) ,V(x6 *8) (R *7 x6 — + xB *6) ,+ *8 %6, (5)
= R ¢l ¢3,r(cd %2) *2
T (6 = %2, *8 = (c4 *2))
R ci(c4 *2) ,R %2 ¢3,R gl c3,(8),(N,®,(9,(B) = R ci c3,-(c4 *¥2) *2,R *7 *x8
T (7 = c1

R ci(c4 *2),R ¢2 ¢3,R c1 ¢2,(6),(7),(8),(6) = R cl1 c3,r(c4 *2) R *5 *7
6, (fail-do not try again)

R ci{c4d *¥2),R c2 c3,R c1 ¢2,(6),(7),(5) =% R cl ¢c3,r(c4 *2) *2,r *5([*6)
R ci(cd *2) ,R c2 ¢3,R c1 ¢2,(8),(7),(5) =2 R c1 c3,r(cd *2) %2,

V x7(R *6 X7 — r X7 *6)

R *5(c5 *6 *5) ,R c1(c4 *2),R ¢2 ¢3,R ¢1 ¢2,(6),(7), ()

= R ¢l c3,-(c4 *2) *2,-(cb *6 *B) *6
6, (fail-do not try again)

‘unify

:rTeinstate
ey

V= b

:Di

V=, o=

V=, =

‘unif;

‘unif;

runif,

Dl
1=V, =~

;unif;

3.3 Resulits

19

All of the theorems of Relational Semantics and static Relational Semantics were tested on the
theorem prover. The results of this testing are recorded in the tables which follow. Although a number of
the proofs failed, the results are instructive, as noted in the examples. Even the failures terminate in a

reasonable amount of time.

THEOREM OUTCOME

RTO
RT1
RT2
RT3
RT4
RT5A
RTS5B
RT6A
RT6B
RT7A
RT7B
RT8A
RTS8B
RT9A
RT9B
RTI10A
RT10B
RT11A
RT11B

-3

R R R RO R Rl ROl RN B B B B e

Avg. of twelve

*In milliseconds

TIME*

138
575
2709
524
342
2258
878
5500
447
251
266
484
2035
624
4715
714
8721
556
1745

sucCcesses:

GC

OB OO OO ONODOMOO

CONSES

407
1556
4057
1485

836
3534
2322
6783
1283

761

845
1375
3098
1865
7360
1906

10834
1529
2413

2030

SEQUENTS

12
31
54
32
18
50
43
88
22
17
15
31
44
37
47
39
79
32
26

36

THETAKT

HOHOHOHOHOP‘)—‘HI—‘OOMOO

o

20

THEOREM OUTCOME TIME GC CONSES SEQUENTS THETAKT
SRTO T 147 0 402 12 0
SRT1 T 491 0 1537 31 0
SRT2 F 2545 1 4070 54 1
SRT3 T 498 0 1465 32 0
SRT4 T 323 0 870 18 0
SRTHA T 405 0 1168 27 0
SRT5B T 484 0 1288 24 1
SRT6A T 1027 0 2841 44 1
SRT6B F 2163 1 3368 33 1
SRT7A T 258 0 749 17 0
SRT7B F 282 0 820 15 1
SRT8A T 494 0 1368 32 0
SRTSB F 572 0 1733 26 1

SRT9 T 298 0 849 20 0
SRT10 T 314 0 879 22 0
SRT11 T 277 0 849 19 0

<

Avg. of twelve successes: 1189 25

21

4. FUNCTIONAL SEMANTICS

The basic idea of Functional Semantics is to define the proposition that p is necessary holds in a
world w as the proposition that p is entailed by the strongest proposition which is necessary in that world
w. We let (f w) be the propositional function value which represents the strongest proposition which is
necessary in that world. Thus we say:

DF: 1w p «H(f wlp
From this definition it will be possible to define the necessity symbol for various modal logics by assuming
various axioms for the (f w) function value.

Static Functional Semantics is a degenerate case of Functional Semantics that may be obtained by
assuming either the intensional logic axiom:

VpMp — FH1p
or by assuming the semantic condition

Vu Vw —fu fv
Essentially such an assumption makes the propositional function f a propositional constant since it must
then have the same meaning for all worlds. For this reason, alternatively the same effect could be ach-
ieved by simply replacing the definition DF by the definition DSF:

DSF: }w Mp « fp
involving a propositional constant f. It should be noted that if a particular concept satisfies the axiom
V u¥v | fu fv then it will be easier to prove theorems about it using DSF instead of using hoth DR and
that axiom.

After defining some basic concepts in Section 4.1, we list in Section 4.2 some theorems which can be
derived from the axiom definition DF and some theorems which can be obtained from the axiom definition
DSF. It should be noted that in each case the theorems are similar to those which can be obtained from
the Relational Semantics described in Section 3. The advantage of our new Functional Semantics over
Relational Semantics is however that it is usually much easier to obtain proof in this new semantic sys-
tem. Evidence supporting this assertion is given in Section 4.3 where we present a few example proofs
obtained by our automatic theorem prover. Proofs of all these theorems are given in [9]. Statistics of the
automatic theorem provers attempt to prove each of these theorems is given in Section 4.3.

4.1 Definitions of Functional Semantics

We first make a few definitions:

D1: Ap ++ ~[~p

D2: (M-det p q) < M(p—q) V M(p—~q)
D3: (M-complete p) + Vq(r-det p q)

D4: (M-world p) + Ap A(M-complete p)

D5: (M-valid p) + VYq(M-world q) — M(q—p)

22

4.2 Basic Theorems of Functional Semantics

We assume the definitions D1-D5 given in Section 2.1. The main theorems of Functional-semantics
are listed below.

—

FTO: Vpbp—MNp - T L

FT1: F N(p—q) — (Mp — Na) T wTe

FT2: b ((M-valid p) — MNp « T *atomic®

FT3: F (MVx ¢ x — Vx M¢x) «~ T scomplete®

FT4: - (3x M ¢ x — N 3Ix¢x) «T

FT5: b= Vp(Mp — Ap) « (Ywofw) *Detonic existance®

FT5:* - ¥p(rp — Ap) « YwIuf—ufw) *Detonic existance®

FTé6: - Vp(Ap — IMp) « (Yw complete (fw)) “uniqueness*

FT6:* - Yp(Ap — Mp) « YwWVIV—ufwAl-viw — u=v

FT7: = Vp(rp —p) < Ywl—wiw) sT*® "reflexive®

FTs: b= Vp(p — N Ap) + VaVbl—bfa— |—afb B *symmetric®
FT9: b Vp(Mp — M Mp) + VaVbVel—cfb Af-bfa—}—cfa "S54* *transitive®
FT9:* b= ¥p(Np—TMp) « Vavb¥e | cfb A }-bfa —}-cfa "S4* *transitive®
FT10: b ¥p(MpvM~Mp + Va¥bj—bfa — fafb 855

FT10:* b= Vp (Mpvl~Mp < VavbVc A}—-cfa — |- cfb EShu

FT11: V(Mp — - MNp) « Vu¥y |- fu fv "static®

FT11:* V(rp — b Mp) < YuWVw |— w fu — |-w fv "static"

It is interesting to note that if 1 is interpreted as }— and if fw is interpreted as true than all these
theorems will be theorems of our original modal logie.

SFTO: Vpbp— Ip

SFT1: Fn(p—q) — (Mp—nq)

SFT2: F((rvalid p) — IMp)

SFT3: (MVx¢x « Vx M ¢x)

SFT4: (3x N ¢x — N3x¢x)

SFT5: FVYp(Mp—Ap) « of *deontic® existence
SFT6: FVp(Ap—Tip) + Jutuf (completelT) uniqueness
SFTT7: Fvp(rp—p) - f =T*# reflexive

SFT8: FVp(p—NAp) « (f—f) *B" symmetric

SFT9: Fvp(rp—rnp) < T *S4" transitive
SFT10: FYp(MpVM~Ip) «+ T ng5H
SFT11: l——‘v‘p(ﬂp—*}—ﬂp) - T "static®

4.3 Examples

We now give some example proofs of some theorems of Functional Semantics that were be obtained
by our sequent logic theorem prover using the rewrite rules for our modal logic and the axioms of the
semantical system.

FT5:

23

FTBA:

1 Vu ofw = = Vp (NMp — Ap)

3 Vu ofw = Vx1 + x1 Vp (Mp — Ap)
5 Vw ofw = Vxi + x1 Vp ([p — Ap)
7Vwo fw=VYp+cl (Mp— AP

Pr b ph b A
DN N OO
<TT <<T

18(1),P*ifc1—+k*1~c2,V12'-x2(fci-—»cZ),Vwofw::

19
20

24

25

28

32

39
41

44

46

47

B0
52

- feclc2, Vwe fw =+ cl A c2

(f el —c2), Vwo fu=rcl & c2

¥2r-x2 (fcl = ¢c2), Vwo fw = + cl A c2

W rFrx2 (fct —-c¢2), Wwof2 =~rcll~c2
fel ~c2, Vx2rx2 (fcl—c2), Weo fu=
(fel —»~¢c2),Vx2rx2 (fcl—c2, Wo fw=

WBrx3 (fcl—-~cD, Vx2rx2 (fcl—»c2), Weoelf2=

(1), »*1 ~c2, ¥x2+rx2(fcl - c2), Wo fw=
(1), ~+ *1¢2, V2 +rx2 (fcl —c2), Wwo f2 =

(1),(2), » *2 f c1 — + %2 ¢c2, Vw o £2 = + *1 c2

(1),(2), r ¥2 c2, Yw o £2 = r *1 c2

(1),(2,(3), » %2 ¢2, ~ |~ f *3 = + *1 2
1,2.@®), r*2c2, =V x4rxd~ 1 *3, %1 c2

(1),(2),@), r (c3+3) f *3, + *¥2 c2 = + *¥1 C2
T %2 = *1
(1,2, Vo 2 = r ¥2 ¢c2, + *1 2

(1):(2);(4), ~ '—— ~ f %4 = + ¥2 c2, + ¥ c2
1,(2.,@), =V x5+ 35 ~ f %4, + %2 c2, + *1 ¢2
(1),(2), @), = ~ r (ca *4) f %4, r %2 c2, + *1 c2

W,2,@), r (c4 %¥4) £ x4 = + %2 c2, + *¥1 c2
T ¥4 := c1, *1 = (c4 x4), *¥2 := %1

W, veerx2px2Ecl —+c2), We f2=1rx%11cl

(1),(6), r ¥5 £ ¢1 — + *¥5 ¢c2, Vw o 2 = r %1 { cl

(1),(6), » ¥5 ¢c2, Yw o 2, = +r *1 f ci

(1),(6),(6), + ¥5 ¢2, ~ |-~ f *6 = + *1 { cl
(1),(6),(6), - 5 c2 =V X6 - X6 ~ f %6, r *1 f cl
(1),((),(6), r *5 ¢2 =~ + x6 f %6, + *¥1 f ci

V=, Do

t~=, D
=Y, e~

e dad

;unify

V=3, Do

i~=%, D
=V, b~

T

runify

V=3, o

V=, Do

T~~=b, Db
(=Y, b~

Ne-dad

24

55 (1),(),(8), » (cb *6) £ *6, r ¥5 ¢2 = + *1 f c1 ‘unify
57 (1),(6), Ve f2 = r x5 f cl, %1 £ cl V=, Do
b9 W,E, M, ~F~ %7 =rx*x{cl, % fct (=3, Db
61 1),E), (7N, =2VXTrxXT ~ %7 +35fci, »*1 fci =Y, b~
63 (1),6),.(M, =~ (cB*7) £ %7, + x5 f c1, » ¥1 f ci Ch
64 (1),), (@M, v (c5*6) £ %6 = + *5 f c1, + ¥1 f ci ‘unify

*7 1= ¢l, ¥5 = {(c6 *7)

T

6 starts here
6), V(x2 (6 #8) + x2 f ¢1 — ¢2, V(x3 c4 ¥9) +r xB f cl — ~ ¢2,

r (c6 *6) £ *6, r c6 ¢c2, r ¥8 (fcl —¢c2), r ¥ (fecl -~ ¢c2) =+cdfcl

66 (8),(8),(9), rc6c2, %9 (fcl -~ c2), +r*8fcl -+ *¥c2=rc4fecl b
67 (6),(8),(9), + (cb #6) £ *6,+ c6 c2,r ¥ £ ¢1 — + *¥§ ~ ¢c2, r ¥8 f ¢] —
rx8 c2 = rc4fcl sy
68 (6),(8),(9), + (c5 *6) f *6, r c6 ¢c2, r ¥ ~ ¢c2, - ¥8 fcl, r*x8c2 =+ c4 f cl T~
69 (8),(8),(9) ., (cb *6) f *6, » c6 c2, ~ +F ¥9 c2, + ¥8 f cl, r 8 c2 = + c4 f ci Do,
6),(8),(9), + (c5 %6) f %6, + c6 c2, - ¥8 ¢c2, = + ¥9 ¢c2, r c4 f ci :unify
*¥9 ;= ¢6, *¥8 = *9
T
(6),(8),(9), + (cb *6) £ *6, r c6 c2 =+ *8 f cl, r ¥9 ¢c2, + c4 f cl unify
*6 = cB, *¥9 := (cb *6), ¥8 := %9
T
®), 8, (9.,r (c& *6) f %6, r c6 c2,r ¥8f cl —+ +*Bc2 = c4fcl, r*01fcl T
(6),(8),(9), + (c5 *6) f *8, r c6 c2, r *8 c2 = + c4 f cl, + %9 f ci unify
¥6 1= ¢1, *¥9 = (cb *6), *8 = *9
T
6),(8),(9), v (c5 %6) f *6, r c6 c2 =+ *8 f cl, r ¥3 fcl, rc4 fcl ‘unify

6 1= c1, *¥9 = (cb ¥6), *¥8 = ¥9
T

25

FT6B:

1 (Vprp — Ap) =W o 2

3Vxtrxt (Vplip— 4p) =W e fw
5Vxtrxt (Vplp —4p) = ~F~1fcl
TVrx2~fecl, Vxt rxt (Vplp — Ap) =

9), ~r*t fct, Vxirxt (Vplp — Ap) =
13 (1),(@), Vpr*2 (Mp — Ap) =+ *1 f cl
16 (1),(2),(3), r *¥2 M *3 — + ¥2 A %3 = r *1 { cl

16 (1),(2),3) » ¥2 A %3 = +» %1 f ci
17 (1),(2),(8) ~ + ¥2 [T~ *3 = + *¥1 f ¢l
19 D), @,B8) = %2 ~ %3, +r %1 f et
20 1D,@,QR8) = (f ¥2 — ~ *3), + %1 { ci
21 (1),(2,@8) =2V3+rx3 (f*2 —~ %3), v %1 £ ci
23 (1),(2,@) =+ (c2 %3 ¥2) f %2 — + (c2 *3 *2) ~ *3, + *1 f ci
26 (1),(2),(3) + (c2 *3 *2) f *2 = ~ r (c2 *¥3 *2) *3, r *x1 f c1
27 (1),(2),@38) r (c2 *3 *¥2) *3, + (c2 *3 *2) f *¥2 =5 + *1 f ¢}
*2 = cl, ¥1 = (c2 *¥3 *¥2), %3 := f c1
T

28 (1),(2),(3) = + %2 M *3, + %1 f cl

29 (1),(2),(3) =+ £ %2 %3, + %1 f c1

30 (D). (D,3) =} (2 — *3), r ¥1 £ ci

31 1D,2@,B) =2Vx4rx4 (f+2 — *x3), + %1 f ¢l

33 (1),(2),(3) » (c3 %3 ¥2) f *2 — + (3 *3 *2) *3, r *1 £ ¢l

35 (1),(2),(3) + (c3 %3 %2) £ %2 — r (3 *3 *2) *3, + ¥1 { ¢k
*3 = f *¥2, %2 = ¢, ¥1 = (c2 *3 *2)
T

: ==, DI~

1V, Do
I =~~, Dl
V=, b~

o~ V=2, Y

V=, b

: DA
toe~=, B0
> D

: D~

1 =Y, -
D=, b~
Do~

. unify

FT7:

FT7A:

iwrwfw=} (Vp Np —p
Swruwfw=Vxlrxi (Vpp —p)

SVWwrwfw=Vpreclifip—rclp
TWrwfw=rclilc2—rclc2

9 felce2 VWwrwiws=+rclc2
10F (fct — ¢2), Wwr wivw=rclc2

11Vx2+rx2 (el —c2) VWrwifws=+clc2

26

14 (1), »*1 fcl — %1 ¢2, Vwr w fwu = + ¢l ¢2

15 (1), + %1 ¢2, YWwrvw fw = + ci ¢2

17 (1),(@, r *¥1 ¢2, v ¥1 ¢2 = + ¢l ¢c2
T 1 = ¢l

20 (1), Vw rw fw = +» *¥1 £ c1, + ¢l ¢2

21 1),@3) =r*1 fc1, rclc2

T=*3 = c¢1, *¥1 ;= c¢1

D V=

: unify

V=

: unify

27

FT7B:
1 (vpMp —p) = Vu rw f2 . =—, D
3Vxtrxt (Vpp —p) =Yuryfv T =Y, V=, V-
7 (1), Vpr*x1 (Mp —p) =+ cl{cl V=, o
9 (1),(2), v *1 M*2 — r *x1 ¥2 = + ¢l { ¢l C e
10 (1,2, r ¥ %2 = rclfcl : unify
¥1 = cl, ¥2 = f cl
T
11 (D,@) =+ *1 %2, rc1 fcl DN
12 (1,2 =+ f*x1 %2, rc1 fcl : Df—
13 W, =2 (f*x1 — %), rc1 fecl : D
14 W, =»vxerx2 (f*x1 = *2), rci1fcl =Y, -
16 (1),(2) = +r (c2 *2 ¥1) f *¥1 — r (2 *2 *1) *2, r c1 { ci D=
18 (1),(2) = r (c2 *2 x1) f *#1 = + (c2 *2 ¥1) %2, r c1 f cl ~runify
T*2 :=f c1, ¥1 (= cl
Note: although it is obvious that we now have a proof, the theorem prover must reinstantiate and go through

another theta level because it doesn’t check to see if ¥*2 and *1 are equal.

28

FT9:

FTSA:

1 Va Vb (+b fa — }— fb fa) — - Vp Ip — MMp

3VaVb (+b fa — | fb fa) = ¥x » x1 (Vp Mp — MNnp)

5VaVb (+b fa — |- fb fa) = Vp + c1 (Ip — NMp)

7 ¥a Vb (+b fa — }— fb fa) = + ci ([p — Mrp)

9 fclc2, VaVb (+b fa — |- fb fa) = + cl [c2

O (f c1 — c2), Va Vb (+b fa — |- fb fa) = + c1 M c2

1Vx2rx2 (fcl —»¢c2), VaVvb (+b fa — | fa fb) = + ¢l [c2

oV rx2 (fecl - c2), VaVvb (vb fa — | fa fb) =} £ ¢1 1 c2

3Vxerx2 (fecl —c2), Vavb (+b fa — | fa fb) = (f ct — [1 c2)

AV rx2 (fcl = c2), VaVb (+b fa — | fa fb) =V x3 + x3 (f ci =11 c2)
BVYVx2+x2 (fci - c2), Vavb (+b fa - fa fb) =} c3fcl — + ¢c3 1 c2
19rc3fecl, VX2 (f cl — ¢c2), VaVb (+b fa — |- fa fb) = |- fa fb) = + f c3 c2
20rc3fel, VX2 (fct — ¢c2), Vavb (+b fa — | fa fb) = |- fa fb) =} (f ¢8 — ¢2)
21 rc3fcl, VX2 (fcl —-c2), VaVvb (vb fa — | fa fb) =V x4 + x4 (f 3 — ¢2)

re3fel, V2 (fel —»¢c2), Vavb (+b fa — |- fafb) = + c4 f ¢c3 — + c4 c2

o8+ c4 £ c3, Fe3fel, (1), %1 fcl —» + %1 c2, Va Vb (+b fa — | fa fb) = + c4 c2

29 (1), +cAfc3, rc3fcl, r*lc2, Vavb (vb fa — | fa fb) = + c4 c2

33 (1),(2.,@), r*1 ¢2, vcafc3, re3fcl, -1 %31 %2 =1+ cdc2
34 (1),(2,@3), -*1 c2, rcafc3d, re3fcl, I (f*3— f*2) =+ c4c2
35 (1),2,@), r*1 c2, rcd fc3 +c3fcl, Y5+ x5 (f %3 - £ %2) = + c4d ¢2
37 (1),2),@®), r*¥1 ¢c2, vcdfc3, reB3fecel, ¥ *x3 — r ¥4 f %2 = + ¢4 ¢2
38 1),2.@, r %1 ¢c2, wc4 £ c3, rc3fecl, x4 f*2 =r c4 ¢c2
T %1 = c4
39 (1),(2),(3), v *¥1 ¢2, rc4f 3, rcBfcl, =+ *3f %2, Fc4d c2
T *1 = ¢4
40 (1),@2),@), v *¥1 ¢c2, v c4c3, +c3fcl, =+ %31 %2, r c4 ¢c2
T *1 = c4

42 (1), ~c4fc3, rc3fcl, VaVvb (vb fa — |- fb fa) = + c4 c2, + ¢4 c2

45 (,6),6), c4fc3, re3fcl, I~ %61 % =+ ¥ fci, v c4 ¢c2

486 1),(6),(8), vcafc3, rc3fcl, (f 68 — £ *5) = + x1 f ci, + c4 c2

47 (1),6),(6), vcafcd, rc3fcl, Vx6rx6 (f %6 — f*5) =+ *x1 fcl, +cdc2
49 (1),6),6), (M, rcdfcd, re3fcl, r*x7f %6 — + 7T f*5 =+ x1 fcl, rcdc2
50 1),6),68),(7N, rcafce3d, re3fcl, r*7f %6 =+ % fecl, rcdc2

T %5 := ci, ¥7 := c4, *1 = c4

W,’, ., (M, reafed rc3fcl= rx7Tf %6, %1 fcl, rcdc2
T %6 := ¢3, *¥5 = ¢1, ¥7 = ¢4, *¥1 = c4
1),(6),(8), rca fc3, rc3fcl= +x*6fx*5, r*l fcl, rcdc2
T %6 := ¢3, %5 = cl, *¥7 = c4, *1 = c4

=$—, Dj—
=Y, -V
=Y, b—
=p—, T
D}

Db

N

D

D

=Y, p-—
=—, I
:D}—

:D

=Y, —

;unify

‘unify

‘unify

V=, V=, -
D~

D}
V=,

unify

:unify

runify

29

FT9B:
1 (pp = 1Np) =Va ¥ (b fa — fb fa) i=—, D
3Vxt+rxt (VpMp—Nrp) =VaVp (+b fa — |~ fb fa) =Y, =Y, =, D
8rc2fcl,Vxtrxt (WVplip—nnp) =k (fc2—1fcl) :Dp-
grc2fct,Vxtrxt (VplMp —TNp) =V x2+rx2 (fc2—fcl) =Y, =
11rc2fcl, Vxtext (VpNp—1p) =+ c3fc2—r+c3fcl i, V=, Y
16 (1), v c3f c2, vc2fcl, Vpr *t (Mp —=1Mp), =+ c8f cl V=, -
18 (1),(2), Fc3fc2, rc2fcl, FEI M2 — - ¥ N1 %2 = + ¢8 f ¢l —e
19 (1,2, »c3fc2, rc2fcl, ¥ [NT*2=r+c3cl Ay
20 D, @, rc83fc2, vc2fcl, - f %1 []%2 =+ c3cl D
© 21 W,@, rc3fc2, re2fcel, b (£*1 = *¥2) = + c3 cl ‘D~
22 W,@, re3fc2, rce2fcl, Vx3rx3 (f*1 —J1%2) =+ c3cl =, —
24 W,(, rec3fc2, +c2fcl, 2*+3f %1 — rFr*x3[1 %2 =+ c3cl —=
25 (1),(@,@®), re3fc2, re2fcl, -*x3T]*2 = r c3cl =
26 1,2,R), vc3fc2, re2fel, b1 #3 %2 = + c3 cl D}
27 (1),(2,@®), re3fc2, rec2fct, - (f*3 — x2) =+ c3cl :D—
28 1,2@,®,rc3fc2, rc2fcl, Vxarxa (f*3 — %x2) =2+ c3cl V=, —
30 W,@D,®,@4, rc3fc2, re2fcl, r*4f*3 - % $2 =+ c3cl —h
31 W,@,13),@, »c8fc2, vc2fcl, r x4 %2 =rc3cl ounify
T*3 ;= ¢2, %2 1= { c1, ¥4 = c3
33 1),2,(3),4), »c3fc2, re2fcl, =+ *41f*3, +rc3fcl
T %1 :=c1, ¥B 1= ¢c2, #*2 (= f c1, ¥4 = ¢3
34 1),@,@®, +c3fc2, rc2fcl =r*x%, +c3fecl =N
35 W,®,@, re3fc2, re2fcl = f* %2, vc3fcl D
36 W,2),@), rc3fc2, rc2fcl =2 (f*x1 - *2), +c31 cl ‘D
w37 W,@,@®), rc3fc2, re2fctl=2VY¥x5rx5(f*1 %2, rc3fect T=—
39 W,@,@, rc3fc2, re2fcl =+ (c4%2 %) f %1 — + (c4 %2 %1) %2, +r ¢c3 f c1
41 (1),(2,3), » (c4 %2 %1) f %1, » c3fc2, +rc2fcl=r (c4*2*1) %2, v c31cl ‘unify

T %1 :=c1, %3 (= ¢2, ¥2 (= { ¢, ¥4 = ¢c3

4.4 Results

THEOREM OUTCOME

FTO
FT1
FT2
FT3
FT4
FT5A
FT5B
FT5*A
FT5*B
FT6A
FT6B
FT6*A
FT6*B
FT7A
FT7B
FT8A
FT8B
FT9A
FT9B
FT9*A
FT9*B
FT10A
FT10B
FT10*A
FT10*B
FT11A
FT11B
FT11*A
FT11*B

RN R R RN R N R ol RN R R R R R N R R R R BB B

TIME

296
807

780
539
2960
603
3014
536
1037
916
4249

415
1641
855

1391
11608
1276
13736
3346

2693
954
2516

1848
2623

30

GC

ot et ek CD O e e W D WD OO e OO O OO OO

CONSES

758
2237
2197
1192
5172
1580
4584
1387
2480
2443
6769
1092
3521
1983
3040

14246
2817
13988
3047

2834
2409
3834
2159
3710

SEQUENTS

14
41
44
24
77
35
57
30
48
48
72
20
54
37
52
171
46
168
54

48
44
56
38
53

THETAKT

D e Ot O O OOl OO =000 O OO OO0

3%

THEOREM OUTCOME TIME GC CONSES SEQUENTS THETAKT
SFTO T 248 0 598 15 0
SFT1 T 903 0 2230 41 0
SFT2 F - - - - -
SFT3 T 858 0 26273 44 0
SFT4 T 446 0 2176 24 0
SFTHA T 640 0 1522 34 0
SFT5B T 775 0 1858 39 0
SFT6A T 958 0 2335 49 0
SFT6B F - - - - -
SFT7A T 386 0 1122 21 0
SFT7B T 506 0 1122 21 0
SFT8A T 970 0 2240 45 0
SFT8B F - - - - -

SFT9 T 612 0 1404 29 0
SFT10 T 560 0 1414 31 0
SFTi1 T 528 0 1121 25 0

5.

10.

11.

12.

13.

32

REFERENCES

.Brown, F. M., *A Deductive System for Elementary Arithmetic,® 2nd AISB Conference

Proceedings, Edinburgh, July 1976.

. Brown, F. M., "The Role of Extensible Deductive Systems in Mathematical Reasoning," 2nd

AISB Conference Proceedings, Edinburgh, July 1976.

. Brown, F. M., *Doing Arithmetic without Diagrams,® Artificial Intelligence, Vol. 8, Spring

1977.

. Brown, F. M., "A Theorem Prover for Elementary Set Theory,* 5th International Joint Con-

ference on Artificial Intelligence, MIT, August 1977. Also the abstract is in the Workshop on
Automatic Deduction Collected Abstracts, MIT, August 1977.

. Brown, F. M., *Towards the Automation of Set Theory and its Logic,* Artificial Intelligence,

Vol. 10, 1978.

. Brown, F. M., "A Theory of Meaning,” Department of Artificial Intelligence Working Paper

16, University of Edinburgh, November 1976.

.Brown, F. M., "The Theory of Meaning,"* Department of Artificial Intelligence Research

Report 35, University of Edinburgh, June 1977.

. Brown, F. M., Towards the Automation of Mathematical Reasoning, Ph.D. Thesis, Univer-

sity of Edinburgh, 1977.

. Brown, F. M., "A Sequent Calculus for Modal Quantificational Logic,® 9rd AISB/GI Con-

ference Proceedings, Hamburg, July 1978,

Brown, F. M., "A Semantic Theory for Logic Programming,* Colloguia Mathematica
Societatis Janos Bolyai, 26 Mathematical Logic in Computer Science, Salgotarjan, Hungary
1978.

Brown, F. M., *An Automatic Proof of the Completeness of Quantificational Logic," Depart-
ment of Artificial Intelligence Research Report 52, 1978.

Brown, F. M., *A Theorem Prover for Metatheory,* 4th Conference on Automatic Theorem
Proving, Austin Texas, 1979.

Brown, F. M., "Intensional Logic for a Robot, Part 1: Semantical Systems for Intensional
Logics Based on the Modal Logic S5+Leib,® UT Tech. Report 97, 1979. Invited paper for the
Electrotechnical Laboratory Seminar IJCAI 6, Tokyo 1979.

-

