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Abstract

This paper continues the analysis contained in {3] concerning the
design of edge detection procedures for textures. Edges are detected in
textures by a combination of thresholding edge operator responses and then
choosing local maxima of the surviving points. The thresholding step was
analyzed in [3]. Here, we analyze the effects of neighborhood size on the
computation of local maxima. The analysis indicates that only small neigh~
borhoods are requlred to attain reliable local maxima selection. This
result is consistent with experience with real images.



1. Introduction

It has been stressed in [1] and elsewhere [2] that an important
first step in computer vision systems is to transform a digitized picture
function into an edge position array and various edge property arrays. The
success of subsequent processes based on these edge properties critically
depends upon the quality of the individual assertions about the edge elements.
An edge detection procedure designed specifically to detect edges in cellular
textures was introduced in [3]. This procedure 1s based on a class of omne

dimensional contrast operators defined by

ek(i) = LS{i) - RS(i) where
k
1 g
LS(i) = — ZEJ £f(1 -3 and
k=1
1 k
RS(i) = — zg: £C4i+ 3
k

j=1

In the above expressions f is the digitized picture function and i is the
point at which the contrast is to be computed using a neighborhood of size
k on each side of this point.

The edge detection procedure involved the following three steps:

a) Compute ek(i) for all points i.

b) Discard all points 1 for which lek(i){ < t for some value

of t. This thresholding step is intended to discriminate between edge

points and deep interior points.
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c¢) Discard all points i for which lek(i)i is not a local maximum
in a given interval of width r and centered at point i. This non-maxima
suppression step is intended to discriminate between edge points and near
edge points.

The analysis of step b) reported in [3] is briefly reviewed in
Section 2 and the remainder of this report addresses the problem of non-

maxima suppression.



2. Thresholding

Thresholding is analyzed by first synthesizing the image using
region based one dimensional models. These models are generated by dropping
cells on a line and coloring the cells by choosing one of m coloring pro-
cesses according to a given probability vector (pl,...,pm). For analytical
gimplicity, only two coloring processes C1 and C2 will be used. Each coloring
process colors a cell by assigning the intensity to each point in that cell
independently from a normally distributed population of intensities. If w
is the random variable describing cell widths then examples of cell width

models are

a) Constant cell width model

1 4if w= b
P (w) =
(&4
0 if w# b

b) Uniform cell width model
/b if 0 € w < b

P (w) =
u
0 if w >0

¢} Exponential cell width model
Pe(w) = bExp (-bw)

Notice that, given a one dimensional cell structure model, one can derive a
component structure model where a component is a set of contiguous cells

colored by the same coloring process.



Using these texture models it is possible to determine the distri-

bution of e at edge points and deep interior points. This is achieved by

computing the expected value and variance of e, at edge points and deep

k

interior points and assuming that e, is normally distributed. The validity

k
of this assumption is discussed in [3].

Finally, the prior probabilities of an edge point and a deep
interior point are determined by deriving a component structure model from
the given cell structure model and using general results on random incidence
into a renewal process [4].

Knowing the distribution of e, at edges and at interior points and

k
the prior probabilities we can compute the minimum error threshold t cor-
responding to any given value of k and the plot of t versus k determines

the overall best k for the model of interest.

Notice that the analysis described above could have been done by
synthesizing the image with one dimensional component structure models
directly. 1Instead, an ordered pair <P,C> where P is a cell width model and
C is a set of coloring processes, has been used to allow generality for

possible extention of the analysis to two dimensional models.



3. Non-maxima Suppression

To get a better insight into the problem of non-maxima suppression
we must be able to answer the following key question - what is the probability

that the value of ;e at a point which is not an edge point is a local

"
maximum? The answer to this question will give the probability of detecting
an edge distance § away from a true edge.

Let D be the interval of width r = 2d + 1 centered at a point of
interest i, where non-maxima suppression is to be performed. We will

restrict our attention to values of r such that d < k.

1f Iek(i)f is a local maximum then Iek(i)! > fek(j){ for each j in
D. To evaluate Prob{[ek(i)] is a local maximum] we cannot simply evaluate
Prob[lek(i)‘ > ]ek(j)!} individually for every point j in interval D. This

is because the expressions for e, at points 1 and j may involve evaluating

k

the picture function at common points. This means that for points jl and
. . . . 1 .

iy in interval D Prob[‘ek(i)I > !ek(Jl)l, [ek(l)l > ;ek(Jz){] is not equal
to Prob[[ek(i)l > }ek<jl)1] Prob[iek(i){ > {ek(jz)u.

To determine Prob[lek(i)] is a local maximum] in interval D we will

instead model the pattern of responses as a multivariate normal distribution
of 2d random variables, each one of which corresponds to a particular point

3 # 1 in D. More specifically we will consider

Prob[le (1) - le, GO s Te (D] = e, (G0 [1 = N(m, <)



where m is the mean vector and c is the covariance matrix

m = (ml,...,mzd) mj = E[{ek(i)Q - ‘ek(j)l] and j # 1
c(3y>d,) = Covlle, (W] = le, G|, Je (D] = e, GHD
and jl,...,jZd are the points in D other than point i.

3.1 The mean vector

Let 1 and j be two points in D, i # j and let i be distance 61

away from the nearest edge E. WNotice that 61 < k. For the purpose of

analysis we will assume without loss of generality that this edge is located

to the left of point i as illustrated in Figure 1. Also let Hy and Mo be

the means of the coloring processes that colored the cells <y and ¢, on the

left and right of E respectively and P, and Pr be the probability density

2

functions that describe the width v, of cy and the width LA of c. respectively.

Finally let a be the average a = PHy + (1~p)u2 where p is the probability of

choosing the coloring process with mean Hy
We will derive expressions for the expected value of LS(i) and

RS(i). There are two cases to consider for E{RS(1)].

a) v > k + 51

b) Zslswrsk+61
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If L > k 4+ 61 then E[RS(4)] is 61“2 + (k - Gl)uz or kuz.

Next suppose that 261 < W < k + 61. If we assume that the k + 61 - v

pixels not in c. are colored independently by processes C1 and C2 with

probability p and 1-p, then the expected value of RS(4i) is 61“2 + i, +

(k-8.-x)a where x is w_ - 28

1 T 1’
Remembering that W is at least 261 since i is distance 61 away

from the nearest edge, we combine the two cases a) and b) above and obtain

k*él

E[RS(1)] = S yu, + /[xuz + (k-6 -x)alP_[26, + xizél]dx

o}

o

+ ] (k~61)u2Pr[x{261] dx

k+61

Now consider E[LS(i)]. Distinguishing the two cases

a) ng_k—él

b Wﬁ> k - 61

one can derive the following expression for E[LS(1i)]
k—ul

E[LS(i) = 61u2 + j{ {Xul + (k—61~x)a]P£ [x]dx

o

+ / (k=6 ), P, [x]dx

k—ul



For the models considered in [3] and in this report, the cells on
the left and on the right of an edge have identical width distributions.

Let 62 be the distance from point j to edge E. Two cases need be considered.

a) j is to the right of E.

b) j is to the left of E.

If point j is to the right of E then the expressions for the ex-
pected values of RS(j) and LS(j) are similar to the ones at point i if we
assume that E is also the nearest edge to j (i.e., non-maxima suppression
is considered only for points not too far from edges, thus avoiding inter-
ference from other edges).

k-62

62u2 + ./.[xuz + (k—éz—x)a]Pr [262+x] 262]dx

it

E[RS ()]
o]
+ f (k—szmzyr[x}zaz]dx

k+62

k—62

62u2 +/ {xul + (R-—SZ-X)a]Pz [x]dx

o]

I

E[LS(3)]

+ / (k-—@z)ulPl [x]dx

k—62

Now suppose that point j is to the left of E as illustrated in Figure 2.

Reasoning as for points to the right of E one can derive the following



expressions for the expected values of RS(j) and LS(j).

I
2
E[RS(§)] = zalu2-+j( [xuy + (6,-0)alP, [x]dx

o]

oG

+ P
f 62u1 Q[X]dx

%2
k-28, -6,
+ / [xu, + (k=26 - 8,-x)alP_ [28, + x | 26, 1dx
o

oo

+ / (1{—261 - 62) uzPr [x]dx
k-—62

E[LS(3)]

i
N

P
o

lav]

)

::;4:
[a W
b

+ ./' [xu; + (k=x)alP, [8, + x]dx

O

+ ./' kuyP, [x + 6,]dx
k

From the above expressions we obtain

E[ e, (D] - e (] 1= [BLS(D)] - E[RS(D) ]| - [E[LS(I)] - E[RS(H)]]

The expressions for the expected values for LS and RS at points to

the left of E are rather complicated. In actual computations we will instead



assume that E is the nearest edge to j and symmetry of e with respect to

the position of E. Thus, only the simpler expressions for points to the

right of E will be used.
3.2 The covariance matrix.

For notational convenience let

X = |ek(i)$
Vo= fe (G
z = le (3,)]

where i, j. and jz are in D, iy # 1 and j2 # i, Alsoc let

1
dl =X - Y
dZ =X - Z

Then we can write the following

Cov(dl, dz} = E[dldzj - E{dl]E{dz]

it

Eld;d,] = E[(X - V)X - 2)]

it

B[x°] - E[X2] - E[XY] + E[YZ]



If m_ my, and m, are the expected values of X, Y and Z respectively, then,

E[dll = E[X] - E[Y]
= m - 1
X b

E{dz} = B[X] - E[z]
=m_— m
K z

oAl = — —
E[dleLdz] (mx my)(mX mz)

= m - mm ~mm -+ mm
X Z

i

Cov(dl,dz) E[Xz] - E[Xz] - E[XY] + E[YZ]

- mz 4+ mm + mm - mm
X X Z Xy y z
- @K1 - w0 - (B[XZ] - mm)
- (E[XY] - mxmy) + (E[YZ] - mymz)

= Var[X] - Cov[X,z] - Cov[X,Y] + Cov|Y,Z]

Assuming equal variance v for the regions on either side of an edge we can

write
Var[X] = 2kv/k2 = 2v/k
We make the additional miid assumption that ek(i), ek(jl) and ek(jZ) are

all of the same sign. This assumption is reasonable since we are assuming

no interference between edges. Then,



Cov[X, Z] = (n1 - nz)v/k2

where n, is the number of terms with the same sign and n, the number of

terms with opposite sign common to the expressions of ek(i) and ek(jZ)'
1f [i-j,| = A then

n, = 2(k - A)

A-1 if A > 0

04if A =0

Similar simple expressions can be derived for Cov(X,Y) and Cov(Y,Z).
Finally, we have the following expressions for the covariance terms, with

two cases being distinguished

a) i, =1,
in this case dl = dz = d and
Cov[dl, dz} = Var{d]
[ . 2
= 2v/k - v(2k - 3|1 - Jll + 1) /k
, . 2 2
- v(2k - 3]i - §;| + D/ + 2kv/k
) 2
= 6v|i - Jl}/k
b) iy * 3,

i 2
— g e a . . . I
Cov(dl,dz) = v(3]|1i - 311 + 31 - 32| ~3]jl = d,0 - 1) /k
And, of course, the covariance matrix elements are specified by

C(jl,jz> = Cov{dl,dz)



4. Interval Width Selection

The above analysis has been applied to image models with exponen-

tially distributed cell widths. The curves in Figure 3 show Prob[[ek(i)l

is a local maximum] as a function of the distance § from point i to the
nearest edge and for several values of the width r of the interval D in
which non-maxima suppression is performed. These curves have been computed
using an IMSL (International Mathematical and Statistical Libraries) routine
for generating samples from a multivariate normal distribution. For each
value of r, a total of 1000 (r-1)-dimensional points are sampled in order

to compute Prob{ek(i) is a local maximum] for each value of the distance §
from i to the nearest edge.

Prob{ie {i)i is a local maximum] 1s highest at the edge and decreases

when we go farther from the edge, assuming there is no interference from other
edges. Also, it can be noticed that the curves for different values of r are
not only similar but close for small values of §. This means that, at least
for points not too far from edges, no sensible increase in the performance

of the non-maxima suppression step should be expected when the width of the
interval in which it is performed is dincreased. 1In other words, the error
rate around edges will remain approximately the same over a range of values
of r. Since non-maxima suppression is a process intended to discriminate
between edge points and near edge polnts (which are points with small §
values) this suggests that non-maxima suppression need only be performed in
small intervals. This also enhances the computational efficiency of non-

maxima suppression.
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Figure 3. robability of a point being a local maximum as a function

of its distance from the nearest edge and for different
values of the non maxima suppression interval width, r.



5. Conclusions

Our ultimate goal for designing edge detectors for textures is to
produce as reliable a "cartoon” of a texture as we can using computationally
simple techniques. Va;ious first- and second-order statistics of the dis-
tributions of edges in the texture can then be used to discriminate between
different classes of textures, as in [5-7]. The effectiveness of such an
appreoach clearly depends on the reliability with which edges can be detected
in textures.

The analysis presented in this paper, in conjunction with that
presented in [3] prescribes how the parameter of a minimum error edge
detection procedure can be chosen given parametric information about the
distributions of size and colors of the texture elements. Given an unknown
texture, one must estimate the latter parameters; or, more generally, given
an image which contains many different textures, the image must be segmented
into regions where these parameters are constant. The design of procedures

to estimate these parameters as well as their application to a variety of

natural textures will be discussed in a subsequent paper.
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