ANALYSIS OF SCENES CONTAINING
SEVERAL OCCLUDING CURVILINEAR OBJECTS'

K. R. Yam?,
W. N. Martin®, and
J. K. Aggarwal?:’

TR-135 February, 1980

1This research was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 77-3190.

2Computer Sciences Department
The University of Texas at Austin
« Austin, Texas 78712

3flectrical Engineering Department
The University of Texas at Austin
Austin, Texas 78712




Abstract

This report describes the techniques used and the results obtained
by a system developed to analyze edge pictures derived from scenes
containing several occluding curvilinear objects. A library of allowable
object types is maintained to aid the recognition processes of the system.
The images of the scenes are analyzed to yield edge pictures from which
surface boundaries are extracted. These boundaries are then transformed
into a description which effectively and efficiently represents the shape
of the boundaries and facilitates the matching of those shapes to the

stored library models.



ANALYSIS OF SCENES CONTAINING SEVERAL OCCLUDING CURVILINEAR OBJECTS

Section 1

This report describes the techniques used and the results obtained
by a system developed to analyze edge pictures derived from scenes
containing several occluding curvilinear objects, Yam [1]. This broad
problem is made manageable by a few simplifying assumptions and
restrictions. It is assumed that the objects in any one scene are all
instances of a single object type. For a given scene the object type
is not known, however, it is restricted to be one of a set of object
types defined by the system. Each object type is represented by the
simple closed boundary derived from the edge picture which is the library
view of the standard object for that type.

In each scene it is assumed that at least one of the object instances
is completely visible and that all of the instances are at similar depths
from the camera. In this way the scenes are much like overhead views of
parts bins. Each bin might contain one type of part with the parts
stacked in a pile. This pile might be fairly randomly arranged except
that there would be at least one topmost part that is not occluded.

In this system the scene is viewed by a TV camera yielding a 128x128
pixel image with eight bits per pixel representing the intensity
information. This image is transformed into an edge picture by the
algorithm described in McKee and Aggarwal [2]. Each pixel of an edge
picture is marked by a 1, i.e., as an edge point, if the corresponding
area in the image contains a significant discontinuity in 1ntensity’va1ue;

otherwise the pixel va]ue js set to 0. The edge finding algorithm also



thins the connected components of 1's in the edge picture so that the
intensity discontinuity boundaries are only one pixel thick. That is,
every edge point has at most two 8-connected neighbors which are also
edge points, except if the original edge point occurs at the intersection
of several boundaries. These intersection points are called vertices,
and the connected set of edge points joining two vertices is an edge.
Figure 1 shows an edge picture with annotations indicating the vertices,
eg. V1, and edges, eg. E6, derived from an example scene containing

two objects.

One can note that these sorts of vertices and edges partition the
edge picture into a set of areas, which we call surfaces. Every edge
separates exactly two surfaces and each surface is bounded‘by a simple
closed curve comprising one or more edges connected at their common
vertices. For the background surface, "bounded" is not quite the
appropriate word, however, there is a set of vertices and edges which
separates the background from the surfaces of the objects in any
connected "pile". This concept of surface is fundamental to the approach
of this system. As stated earlier, each allowable object type is
defined in terms of the boundary of the surface derived from a Tibrary
view of a standard object. This boundary is represented by a spatial
coordinate 1ist of its edge points. The order of the Tist is such that
a sequential scan through the 1ist corresponds to a clockwise traversal
of the boundary with consecutive Tist elements being neighbors in the
image. By "clockwise" we mean that for each traversal from the pixel of
a list element to the pixel of the immediately succeeding 1ist element

the surface of interest is to the right of the direction defined by that



PICTURE OF EDGE ARRAY

[

enooo
A SAEY

o

G W@

Bl2305678951234557’398'123&5578991231567E§E!2315673931234567895123‘5678951234557395)2345679951ZJ466799!l23156799'123l557895lzalﬁ?

Figure 1. An edge picture containing two objects, four vertices,
six edges, and four surface boundaries.



traversal.

This spatial coordinate list is then transformed into a representation
(to be discussed later) which allows the system to match boundary shapes
regardless of their orientation and scale. The shapes matched by the
system are the various object models against the surfaces in the given
image. These two types of shapes are conformable because both the object
models and the image surfaces are simple closed boundaries. In fact, the
surface corresponding to the unoccluded object on the "pile" should be a
perturbed instance of one of the object models. In this manner the main
task of the system can be stated in the following steps: form the edge
picture; extract the edge points of the surface boundaries; form the shape
representation of each boundary; and determine which of the boundaries
match one of the object models. This Tatter step will, at the same time,
determine which surfaces are unoccluded and "recognize" which type of
objects the scene comprises. In addition, the shape matching process will
calculate the scale of the scene objects relative to the model object.
This scale factor along with the knowledge of the type of scene object
will allow the system to analyze the remaining, occluded portions of the
image.

The extraction of the surface boundaries is discussed in Section II.
The shape representation and matching is described in Section III.
Section IV presents the "recognition" process. While an example is

discussed and some concluding remarks are made in Section V.



Section Il

This section will present the algorithm used by the system to extract
the surface boundaries. Now to be conformable to the object models the
system needs to form the surface boundaries so that they are closed curves
with the coordinate points ordered in a clockwise traversal. This could
be done by sequentially scanning the edge picture until an edge point was
found. This scan would necessarily start in the background surface and
the edge point found by the scan would be on the boundary of that surface.
One could then determine the clockwise edge point neighbor of the given
edge point, store the neighbor's coordinate values, and continue tracing
the boundary in a clockwise direction until the original point was
encountered again. Since every non-vertex edge point bounds two surfaces
this boundary tracing algorithm could then be applied to the once traversed
edge points by determining the clockwise neighbor relative to the remaining
surface. Continuing this process until every non-vertex edge point has
been traversed exactly twice, the system could form the coordinate Tist
of the boundary of every surface in the edge picture.

In the system discussed here, however, the edge picture is first
preprocessed to yield a table of edges. For every edge, this table
contains an edge name, the two associated vertices, and a pointer to the
coordinate 1ist for the non-vertex edge points of the edge. From this
table another table, called the Edge Traversal Order table, is formed with
each element containing an edge name, a "rear" vertex, a "front" vertex,
and a boundary name. Every element of the edge table generates two ETO's,
elements of the Edge Traversal Order table. Each of the two ETO's are

given the edge table element's edge name, then one of the ETO's has the



first vertex associated with the edge table element as its "rear" vertex
and the other associated vertex as its "front" vertex, while the other ETO
has the associated vertices in the opposite entries. These two ETO's
correspond to the two traversals of the edge in opposite directions, where
the clockwise traversal is from the rear vertex to the front vertex. The
boundary name entry is initialized to a null value and will be filled in
by the algorithm given in Figure 2.

The process begins with this initialized ETO table and terminates
with a set of 1ists representing the set of surface boundaries. Each list
corresponds to one boundary and is a circularly connected list of ETO's
ordered to yield a clockwise traversal of the boundary when the edges of
successive list elements are connected at their common vertices, i.e.,
front to rear or rear to front. Figure 3 shows the edge table, ETO table,
and resulting boundary lists derived from the edge picture of Figure 1.
These boundary descriptions are now transformed into a shape representation

as discussed in the next section.



Algorithm:

1.
2.

10.

11.
12.

Initialize the ETO table from the edge table of the input scene.
Select an unmarked ETO from the table and call it CURRENT;

call the front vertex of CURRENT V1; call the edge of CURRENT El;
and call the rear vertex of CURRENT VS.

Initialize the boundary 1list with CURRENT as the first and only
element.

Find the set of ETO's with V1 as a rear vertex and call the set S.
From S determine the ETO for which the edge is rightmost with
reference to E1 at V1, and then call it CURRENT.

Add CURRENT to the boundary 1list.

Mark CURRENT as visited in the ETO table.

Set E1 to be the edge of CURRENT.

Set V1 to be the front vertex of CURRENT.

If V1 is not the same as VS then return to step 4, otherwise
continue.

Store the completed boundary Tist.

If any ETO's remain unmarked, i.e., not visited yet, then return
to step 2, otherwise terminate: all surface boundaries have been

found.

Figure 2. Surface boundary extraction algorithm.



Edge Table Edge Traversal Order Table

edge two associated edge rear front boundary
name vertices name vertex vertex name
El 1 3 El 1 3 Bl
E2 1 2 E2 1 2 B3
E3 3 1 E3 3 1 B3
E4 2 4 E4 2 4 B3
E5 4 2 E5 4 2 B1
E6 4 3 E6 4 3 B3
£l 3 1 B2
E2 2 1 B1
E3 1 3 B2
E4 4 2 B4
E5 2 4 B4
E6 3 4 B1

Boundary Lists

boundary name circular Tist of ETO's yielding a clockwise traversal
(name, rear, front)
B1 ((E1,1,3),(E6,3,4),(E5,4,2),(E2,2,1))
B2 ((E1,3,1),(E3,1,3))
B3 ((£2,1,2),(E4,2,4),(E6,4,3),(E3,3,1))
B4 ((E4,4,2),(E5,2,4))

Figure 3. Results of applying the surface boundary extraction algorithm
to the input scene of Figure 1.

10



Section ITII

Shape representation of digital curves by chain codes was introduced
by Freeman [3]. McKee and Aggarwal [4] developed a convenient and effective
algorithm for representing the shape of a curve and determining the
similarity in shape of two curves based on a modification of the chain code.
The modifications to the simple chain code include the following: making
the code "continuous", that is, adding a multiple of 8 to code values when
necessary to make consecutive values differ by no more than 4. Compensating
for the difference in horizontal and diagonal distances on a rectangular
grid by repeating the code values for diagonal neighbors three times and
repeating all other code values twice. Smoothing to Timit the effects of
noise by replacing each code value with the average of that value, the
four code values before it, and the four code values after it.

These modified chain code values can now be thought of as a function
of the arc length along the curve measured from the starting edge point
of the chain code (see Martin and Aggarwal [5] for a different derivation
of an equivalent representation). Now to make the representation
manipulatable the pictorial graph of the function is considered and a
piecewise straight 1ine approximation of the graph is formed. In this way
the graph can be retained through a small ordered Tist of lines with each
Tine represented by its slope, length, and starting code value.

Two curves, represented in this way, can be compared for similarity
in shape by calculating the area between their graphs. Of course, any
given graph is sensitive to the orientation and scale of the generating
curve. However, the straight line approximation of a graph can be

manipulated to make comparisons which are not sensitive to these variations.

11



Scale changes to a curve are directly transformable to scale changes in
the associated graph, while a shifting and normalizing procedure can be
applied to the graph in order to represent the curve in a full range of
orientations. For details of these manipulations see [1] and [4]. In
this report we have included Figure 4, the library view for an object
type, and Figure 5, the code value versus arc length graph with the

straight line approximation superimposed, as an example of how the shape

of a curve is represented.

12



PICTURE OF EDGE ARRAY

[ERSERRREEL
H 1

1
1

)
1
1
1

hptgr

e e ot e e e e 0 B 7 0 i E3 €3 N T

F T e e L |

3123'567595\131557895)234567595123‘567835‘23‘567895123l567E§E1234557895123‘55/392]2345673951234557995l23#567!93123156739ﬂ)23L567

Figure 4. Library view of object type, OBJTYPI.

13



*p 2uanbLd4 UL umoys adA3 1090qo 40 ydeab 2pod uLeYd pBLLILPOW G @unbL4

S S

407 0¢

S
06001 -

0608~

T T
00°09-
24335
14

Go"Gh-

T

6o oe-

‘0

T

00

a0 oe

00°0h



Section IV

As stated in earlier sections this system is designed to analyze the
edge pixtures of scenes containing several occluding curvilinear objects
with the aid of a library of known object types. The shape information
stored in the Tibrary is matched against the shape information derived
from the surface boundaries of the input scene in order to both Tocate
the unoccluded, i.e., foremost, object and recognize which type of object
is in the scene. This function is performed by taking each surface
boundary in turn, comparing its shape representation to every lTibrary
model, and selecting the boundary-model pair which exhibits the most
similarity in shape.

A given boundary is compared to a chosen model by first scaling the
Tength of the code graph of the boundary to be the same as the length of
the model code graph, and then(repeated1y applying the shift and
normalize procedure to produce a full range of orientations for the
boundary code graph. For each orientation the scaled graphs are compared,
i.e., the area between them is calculated, then the orientation resulting
in the closest match is designated as indicating the actual similarity
between that boundary-model pair. The similarity of all boundary-model
pairs are then compared to find the best match. The selected boundary-
model pair simultaneously determines which object type is in the scene and
which of the surfaces corresponds to an unoccluded object instance.

Knowing the object type present in the scene and the scale factor for
normalizing the surface boundaries to the associated Tibrary model allows
the system to process the remaining boundaries which, in part, correspond

to occluded object instances. This processing can often determine which

15



object parts are visible through these occluded views, but the success of

this process depends heavily upon the severity of the occlusion.

16



Section V

The system described in the preceding sections was run on several
example scenes with a library of six object types, one of which is shown
in Figure 4. Figure 6 displays a scene composed of three instances of
the object type of Figure 4. The extracted surface boundaries are shown
in Figure 7. The boundary of Figure 7a is the background boundary and
need not be considered. The results of comparing the other surface
boundaries to the library object types are tabulated in Figure 8, with
OBJTYP1 designating the object type of Figure 4, and BOUNDB, BOUNDC, and
BOUNDD corresponding to the boundaries in Figures 7b, c, and d, respectively.
Notice that BOUNDB and BOUNDD are most similar, i.e., have the least
measured area, to OBJTYP5, while BOUNDC is most similar to OBJTYPl. In
particular note that the BOUNDC-OBJTYP1 measure is the best of all the
boundary-model pairs. Thus for the example scene of Figure 6, the surface
boundary of Figure 7c is correctly identified as the unoccluded object
instance and the object type of the scene is correctly recognized as being
that of Figure 4. For further details about this example see [1].

In this report we have described an automated system for the analysis
and recognition of scenes containing multiple occluding curvilinear objects.
A few simplifying assumptions, such as the occurrence of at least one
unoccluded object instance, and a library of object types are used in
implementing a recognition scheme based on a shape similarity measure.

For this sytem the shapes of interest are the surface boundaries extracted
from an edge picture of the scene and are represented by a modified chain

code. The success obtained in this constrained domain is encouraging and

provides an impetus for further research into methods which can relax the

major restrictions needed in the present system.

17



PICTURE OF EDGE ARRAY

;2 E

68 1131131111
1 1

ilv4

ws
S8
[a—y

1
[EE3}

r

512305678901 234567 BO0 12745678991 2345678901 2345678991 2345678091 23456789F12345675901 2245679901 23456795012345678981 234567891 234567

Figure 6. An example image of three instances of the
type shown in Figure 4.

18

object



100.00 120.00 140.00

80.00

Y-AXIS

60.00

00

ugo.
L

2P.OO

0.00

0.

00 20.00

Figure 7a.

40. 00 60.00 80.00 100.00  120.00
X-AXI1S

Background surface boundary extracted from the
input image shown in Figure 6.

19

140. 00



80.00 100.00 120.00 14g.00

Y-AXIS

BP.OU

u0.00

20.00

0.00

.00 20.00 40.00 60. 00 80. 00 100,00 120.00
X-AXIS
Figure 7b. BOUNDB, a surface boundary extracted from the

input image shown in Figure 6.

20

1
140.00



140.00

120.00
tEYREE

100.00

.00

80
S R

Y-AXIS

89.00

E”“”%
i émf

20.00

o
< - ST
L. e s e A i S T e e it b ,.A,,,‘_.T, R —— T AT.” DI —— .V,v#w,,r,,,w_‘_,/ [
. 00 20.00 40, 00 60.00 80,00 [bo.00 120.00
X-AX1S

Figure 7c. BOUNDC, a surface boundary extracted from the
input image shown in Figure 6.

21

-
140.00




140.00

Y-AXIS
20.00 40.00 60.00 80.00 100.00

.00

120.00

.00 20.00

Figure 7d.

40.00 60.00 80.00 100.00  120.00
X-AXIS

BOUNDD, a surface boundary extracted from the
input image shown in Figure 6.

22

140. 00



INPUT IMAGE SURFACE BOUNDARY

measured area

between code graphs BOUNDB BOUNDC BOUNDD
0BJTYP1 6.18 2.59 6.69
0BJTYP2 8.12 | 8.71 7.74
OBJTYP3 9.58 6.06 7.54
OBJTYP4 9.06 8.57 7.21
OBJTYP5 5.42 5.41 6.02
OBJTYPE 6.32 5.09 7.21

Figure 8. Results of shape comparison between the library
models and the boundaries of the input image
shown in Figure 6.

23



References

Yam, K.R., "Computer analysis and recognition of multiple partially
occluded objects,"” Master of Arts Thesis, University of Texas at
Austin, December 1979.

McKee, J.W., and Aggarwal, J.K., "Finding the edges of the surfaces
of three dimensional curved objects by computer," Pattern Recognition,
vol. 7, no. 1, pp. 25-52, 1975.

Freeman, H., "Computer processing of line-drawing images," Computer
Surveys, vol. 6, no. 1, pp. 57-97, March 1974.

McKee, J.W., and Aggarwal, J.K., "Computer recognition of partial
views of curved objects," IEEE Transactions on Computers, vol. C-22,
pp. 780-800, September 1977.

Martin, W.N., and Aggarwal, J.K., “Computer analysis of dynamic scenes
containing curvilinear figures," Pattern Recognition, vol. 11,

pp. 169-178, 1979.

24



