-
B

A LOGIC MODEL FOR CONSTRAINT PROPAGATION
Larry S. Davis
Computer Sciences Department

University of Texas
Austin, Texas

TR-137 ' February 1980

This research was supported in part by the National Science Foundation
using funds derived from NSF Grant ENG-7904037.

ABSTRACT

Relaxation algorithms are widely used in computer image analysis.
This paper shows how discrete relaxation can be modeled as an inference
process in predicate calculus. The advantages of a predicate calculus
representation over a relational representation for constraints are
discussed.

1. Introduction

During the past few vears a class of algorithms, referred to as
"relaxation" algorithms, have been used to solve a variety of computer vision
problems. Relaxation algorithms attempt to reduce the ambiguity inherent in
any context—free interpretation of picture segments by, effectively, intro-
ducing context sensitive knowledge, represented as binary constraints, and
then iteratively applying those constraints to reduce the ambiguity of the
initial context free interpretation. Davis and Resenfeld [1] contain an
overview of such processes and examples of their applications to specific
computer vision problems.

There are two types of relaxation processes which have been inves-
tigated. The first is a "discrete" procedure where the context~free inter-
pretation assigns a set of labels to each plcture part, and the relaxation
process reduces the size of the sets by eliminating interpretations which
fail to satisfy the constraints (modeled by binary or higher-order relations).
Discrete relaxation is a constraint propagation process. The second relax-—
ation process is a "continuous' procedure where the context free interpretation
associates a likelihood, or probability, with each label for each picture part,
and the relaxation process attempts, e.g., to reduce the entropy of the
probability functions at each picture part, while at the same time maintaining
consistency between probabilities, as defined by the constraints. The con-
straints are modeled by compatibility functions, rather than as discrete
binary relations.

This paper is concerned with discrete relaxation. 1In particular, we

will show how discrete constraint propagation can be modeled as an inference

re

process in logic. A discussion of the advantages of such a representation
is deferred until Section 4. Section 2 presents discrete relaxation based
on binary relations as a knowledge representation for constraints. The
discussion in Section 2 closely follows the development in Rosenfeld et al,
[2] and Zucker [3]. Section 3 presents a logic model for constraint pro-
pagation, based on a predicate calculus knowledge representation for con-

straints.

2. Discrete Relaxation

In this section we will describe the model proposed by Rosenfeld
et al [2] for labeling a set of objects, or picture parts, subject to a set
of binary constraints.

let A= {ai,....,an} be the set of objects to be labeled. A may
be a set of image segments, image pixels, etc. Let D = {dl,....,dm} be a

set of labels, or descriptors, which can be used to describe the a, . A
labeling, L, is a mapping:

L: A —> ZD
which assigns a subset of labels to each object. Let Li denote L(ai}.

Constraints specifying the allowable pairs of labels (d,d")

which can be simultaneously assigned to a given pair of objects (aigaﬁ)
J

are represented by a binary relation Ri‘:
J

R,, ¢DxD
ij —

A labeling, L, is called consistent if, for all i,j:

d e 1, ==> there is a d' ¢ L, with {(d,d') « R_,
i 3 i3

Rosenfeld et al {2] show that for any labeling, L, and constraints,

%
R,., there is a labeling L <1 such that:

1]
* & 2
1y L is consistent, and
*
2) for any comsistent L' ¢ L, L' < L .
* 2 K3
i.e., L 1is a greatest consistent labeling. Note that L' ¢ L means that
L7 € L,,..0,L ' L,
I -1 n — mn

*
A parallel, iterative algorithm exists for computing L from L and
T

it is called discrete relaxation. It is defined as follows. (Note: L

denotes the labeling computed after the rth iteration of the algorithm.)

2y For i = 1,...,n do

LY, = LE - {d: d ¢ Lz and for some j, there is no d' with
ay d' « L?, and b) {(d,d"') « R*j}
2y s T , ®
3) 4if L; = Li , i=1,...,n, then set L = {L’l,...,L‘ﬁ}and stop.
+
43 Lt L {L'l,,..,L‘n}; r=r+1; go to (1).

Discrete relaxation can be illustrated using the following example
from Rosenfeld et al [2]. The task is to label the sides of a triangle
which has been (partially) cut out of a piece of paper. If the triangle has
been completely cut out, then it can lie either entirely in front of, or
behind, the original plane of the paper. FEach edge of the triangle can have

one of four possible interpretations:

1) convex edge: the edge may be attached to its surrounding, and
the triangle is bent out of the plane of the paper along the edge, towards

the viewer. Such an edge will be labeled with -.

2) concave edge: similar to (1), except that the triangle is

bent away from the viewer. The label is <.

3) a positive occluding edge: the edge has been cut, and is in

front of the plane of the paper. The label is + .

43 a negative occcluding edge: the edge has been cut, and lies

behind the plane of the paper. The label is ~.

Figure 1 contains all possible physically realizable labelings of
such triangles. The constraint relation, R, is the same for all object pairs

and can be read directly from Figure 1.

Rij = {(+3+)’ ("9"): (+9+)9 (+’+>3 (‘3+)> (éa")}

To illustrate the application of the relaxation algorithm, consider
0 0

the labeling shown in Figure 2. Here, 1(83> =1 5 = {+], Lo(az) =17, =
£

{+,-,%}, L{a) = Lgl’={+3+}. Then in step (2) of the algorithm:

0 , , . .
13 L'3 = 1 3 since + at a3 is consistent with + at al and az.

2y L'

il

{+} since - at a, is not consistent with + at a. and

2 2 3

<+ at a, 1s not consistent with + at a3¢

3) L’ji = L1 since both - and + at al are consistent with + at

For this example, the algorithm terminates after one iteration,

and 17 = 11 = {L' L, L7, 0.

-

a) triangle "floats™ in

front of paper

b) triangle behind paper.

4

AN

SN

¢) triangle bent out

towards viewer

d) triangle bent away

from viewer

Figure 1 - All physically realizable triangle labelings.

Figure 2 - An initial labeling.

3. A Predicate Calculus Model for Constraint Propagation

In this section we will describe a logic model for constraint
representation and propagation. Again, let A be the set of objects to be
labeled, and let D be the set of possible labels.

In Section 2, a labelding was a function. Here, a labeling, L, is

a set of n formulae {Ll""’Ln}' Each Li is of the form:

[dil(ai) v diz(ai) V...V dipi(ai)] A

(L

~ d (a,) Avooon~d, (a,)
Py 1 ig; 1

Here, Py + qi =m, and each d, is mentioned exactly once in L Each Li can

i i’

be viewed as being composed of one positive clause and qi negative unit
clauses. FEach of the 9 negative unit clauses represents the assertion that
a, is not some specific label. The logic counterpart of discrete relaxation

will manipulate this set of formulae by adding more negative unit clauses,
and decreasing the size of the positive clauses. The positive clauses which
remain when the logic algorithm terminates will correspond to the L* of
discrete relaxation.

The binary constraints employed by the discrete relaxation are
modeled as a set of Horn clauses {4]. We will introduce R as a binary
relation indicating that two objects are related (e.g., they might be
adjacent). It is not absolutely necessary to introduce such a predicate,
but it makes what follows somewhat more intuitive. In a particular appli-

cation several such predicates might be necessary (e.g., it might be

necessary to distinguish between "above' and "inside™).
For each predicate, R, there are m constraints, Cl,...,Cm, one
for each l1label in D. The form of Ci is:

Vj{di(aj} —> yki ‘R(a:,ak —
J

djl(ak) V..V dji(ak>}

For the purposes of applying the constraints, it is convenient to use the

contrapositives of the expression enclosed in []. Notice that when this

is done, the inner universal quantifier becomes an existential quantifier.
Doing this, and eliminating the universal quantifier and the second impli-
cation, we obtain:

~d.,{a,) <-— 3k{R{a,, A ~d, (a
(@) [R(aj o) A~ d; (

1 k

YA LA Ndji(ak)j

Finally, a relation model, 7, is a set of unit clauses of the form

R(ai,a:}, and specifies which pairs of objects are in the relation R.
J
Intuitively, we include R(a{,aj) in the relation model if, in the relational

model, Rfj c DxD ~ i.e., if some label on a, constrains the possible labels

on a,-
i .

The constraint propagation mechanism in Section 2 can be modeled

as in inference process. (Consider the constraint:

Ndi(aj} o Bk[R(aj,ak) A Ndjl{ak} Auu o Ngji{ak)}

If, for some j and k:
1 Ndi(aj) £ L,
23 R{aj,ak) ¢ K, and
3) for r=jl,...,ji, Ndr(ak> e L
then Ndi{a») can be inferred and added to L, and di(aj) can be removed from

the positive clause in L corresponding to aﬁ. When no further ~di(aj) can

*
be inferred, then the resulting labeling is equivalent to the L 1labeling
which the discrete relaxation process computes.
As an example of how the logic process operates, consider the tri-

angle example presented in Section 2. For this example, L = {N(-(a3)),
~{+{53}}, N{*(a3)), ~(+(al)), N(w(al}}, ~(+(a2))}, plus the corresponding
positive clauses {which we will ignore in the example); R=={R(al,az),

.

R(%Zga}), R{az,&3), R(aggaz), R(al,a3> R(aBBal)} and C=={C+,C_,C%,C«;

where

>
4

DG, =~ Hay) <= IKIRG,,a)
J

DA @) A ()]

>
?

2y ¢ o= o~ ~(3j) < ak{R(aj,ak) —(ak) A% (akﬁ}

Lad
”
o

14

C =~ +(aj} <o Hk[R(ajeak) +(3k)]

4y C =~ +(aj} < Ssz<aj,ak) A~ —(ak>j

The constraint propagation process can, as in Section 2, be viewed
as an iterative process which, at each iteration, considers all unit clauses

di(aj) such that Ndi(aj) ¢ 1, and attempts to derive Ndi(aj) from L, C and R.
If successful, Ndi(aj} is added to L; when no further negative units can be

added to L, the process terminates.
For the example, at iteration 1:

a) Nw(az} can be inferred by binding k to 3 and j to 2 in C_.
b}’w+(az} can be inferred by binding j to 2 and k to 3 in C .
No other clauses can be inferred at this iteration, and, in fact,

no new inferences can be made at the next iteration, so the process terminates

with the same labeling computed in Section 2 by the discrete relaxation process.

4. Advantages of the Logic Model

The logic model for discrete relaxation introduced in Section 3 has
several distinct advantages over the relational model presented in Section 2.
First, logic is a far move natural representation for such constraints, since
i+ is closer to the natural language statements which originally specify the
constraintrs. Since a significant amount of research has been devoted to
translating natural language into logic, "friendly" systems could be con-
structed for specifying a constraint propagation model for a particular
image understanding task.

A related point is that the logic representation provides a more
general point of view about the role of constraints in picture interpre-
tation. The relational model simply requires that an interpretation for a
picture has a consistent interpretation at each neighboring picture part.

The logical model can certainly represent that requirement, but, more
generally, it enables us to specify a set of locally verifiable conditions
that must hold for a picture part to be labelled with a particular label.
That is, we are not restricted to constraints of the form described in
Section 3, but any formula of the form:

Ndi(aj)<‘« ¥

can be used as a constraint.

In practice, rvestrictions are placed on the form of F both to
guarantee that the inference process is computationally efficient and to
limit the information flow between different objects. Ordinarily, a re-
laxation process is regarded as operating on a graph containing nodes,
which correspond to the objects being labeled and edges connecting objects
whose labellings constrain one another. The edges mav be labeled to dis~
tinguish one class of neighbors from others (e.g., adjacent, above, etc.).
Mose generally, at each itevation each node "reads"” the state of the entire
graph and updates its label set based on the distribution of labels arocund
the graph. In order to limit the amount of information flowing into each
node, and also to simplify the computations performed at each node, most

relaxation algorithms constrain the flow of information to a node to

&

include only the label sets at each neighboring node and the labels on

the edges to those neighbors. However, most relaxation algorithms also
place severe limitations on the analysis of that information - e.g., the
digscrete relaxation algorithm outlined in Section 2. The logic formulation
enables us to generalize this so as to allow for an arbitrary analysis of

the information flowing into each node.

-

In summary, then, ¥ may, in
theory, be any formulas referencing the labeling at any node and the rela-
tionships between any nodes but in practice we constrain F to reference
only the labelings of adjacent nodes and the relationships to those

odes,

p

adjacent n
Secondly, there are classes of constraints whose representation as

relations would require very high-order relations, but whose representation

in logic is very efficient. Tor example, consider the constraint : If a

picture part is labelled with a dl, then some adjacent picture part must be

labelled with a dz. This constraint cannot be represented using binary

relations. In fact, the order of this constraint is not well-defined,
but if a picture is decomposed into n parts, then for the analysis of that
picture the constraint may require an (n-1)-ary relation, because the

adjacency graph for the picture might be a star - i.e., suppose that dl is

a possible guess for a and that all of ay5...,a are adjacent to a,. Then,

1° 3 1

to check that at least one of 8yseeed has label 4, associated with it, the

2
relaxation procedures introduced by Rosenfeld et al must be generalized to
n-ary relations (see Haralick et al [5]) and the n-ary relation must include

all n—tuples of the form:

(éﬁi sks- v 37'*,@:227",. -v*)

where dz can appear in any position from Z to n, and the * can represent
any label. If there are m possible labels, then just to represent this
S ¥]

e . . , n . . .
single constraint requires a relation of size m , which is clearly unac-
ceptable.
In logic, this constraint is simply represented as:

~dd — ~ ~ s 7
ai{ai) < vj{ dz(aj) v ADJASENT(ai,aj)}

Applying such a constraint can be accomplished as simply as applying the
constraints discussed in Section 3.

A third point involves the use of negative context in constraint
propagation. For example, consider the constraint:

A picture part is a d, only if no adjacent picture part is a dz.

1

This type of negative context cannot be easily represented in a
relational framework. TFurthermore, the obvious generalization of discrete

relaxation to include such constraints is to delete dl from any object a
which is adjacent to any other object a' having possible label ézg but
this leads to obviously undesirable results, since it is possible that d2

will subsequently be eliminated from a’, thus removing the negative context

which caused the removal of dl from a. Notice, that if d2 were the only

ossible label for a', then it would have been correct to delete d, from a.
b 1

One possible solution to this problem is to simply not apply such
constraints usiﬁg discrete relaxation. But this does not address the more
fundamental question of what classes of constraints should not be applied.

When the question is posed in the logic framework, then its answer
becomes evident. There are no constraints which, theoretically, cannot or
should not be applied. However, some constraints, such as the negative
context constraint, may not immediately be applicable. Consider the logic

representation of the above constraint:
v, d.{a,) —~> v, [~ADJACENT(s,,a,) v ~d_{(a, .
(a,) ;1 (a,a,) v ~d, (@)1
which can be rewritten as:

gl o J—— I i { 1
élidi) < Ej {AEJACEWT(ai,aj; A ﬁz\aj,\ﬂ

Notice the important difference between this constraint and the ones
discussed in Section 3; namely that there is now a positive unit labeling
'2{3j}} to the right of the implication sign. In order for this

constraint to be applicable, the formulaze for a, in the labeling, L, must

contain that positive unit clause - i.e., all other possible labels for aj

must have been eliminated by the constraint propagation process.

One last point involves the design of hierarchical relaxation
processes. Such processes have been discussed by Davis and Henderson [6]
for shape recognition using discrete constraints, by Hayes for handwriting
recognition using fuzzy constraints [7], and by Zucker for linear feature
enhancement using fuzzy constraints [8]. An important aspect of such
hierarchical systems is that not only are there constraints between labels
at each level in the hierarchy, but there are a wide class of implicit
constraints which are determined by the mapping from one level of the
system to the next., 1t is important that these two classes of constraints
be consistent with one another. In both Davis and Henderson and in Hayes
this is accomplished by actually compiling the constraints between labels
at a fixed level from a declarative representation of the mapping functions
from one level to the next. However, neither system 1s capable of accepting
in any uniform way, external kmnowledge in the form of additional constraints
which are perhaps not implicit in the between level mapping model. For
example, in [6], discrete constraints are compiled from a grammatical model
describing the shape at airplanes in terms of adjacency of airplane pileces,
geometric properties of pleces and geometric relationships between pieces.
If external knowledge were available concerning the shape of an airplane,
e.z., that the wings make an angle of 353° with the fuselage, there was no
simple wav to integrate it dinto the analysis {even though the grammar knew
about axes of wings and fuselages) or to check that the knowledge was con-

gistent with the current grammatical model. A hierarchical relaxation

system which is based on a logic model of constraints would be able to
accept such knowledge, and to check the consistency of that knowledge

with its current knowledge base of constraints.

[

REFERENCES

5

i.. Davis and A. Rosenfeld, "Cooperative processes in low-level vision'.
Univ. of Texas Computer Sciences Dept. TR-123, Jan., 1980.

A. Rosenfeld, R. Hummel and S. Zucker, ""Scene labeling by relaxation
operations’, IEEE Trans. on Systems, Man and Cybernetics, 6, 1976,
pp. 420-433.

Zucker, S., "Relaxation labeling and the reduction of local ambiguities',
in C. H. Chen {(ed.), Pattern Recognition and Artificial Intelliigence,
Avademic Press, N.Y., 1977.

A. Deliyanni and R. Kowalski, "Logic and semantic networks', Artificial
Intelliigence.

1lick, L. Davis, A. Rosenfeld and D. Milgram, '"Reduction Operators
or constraint satisfaction™, Information Sciences, 14, 1978, pp. 195-219.

Bdo s

I.. Daviz and T. Henderson, "Hierarchical constraint processes for shape
analysis”, Univ. of Texas Computer Sciences Dept. TR-115, Nov., 1979.

K. Haves, "Reading handwritten words using hierarchical relaxation’,
Univ. of Marvliand Computer Science TR-783, July, 1979.

S. Zucker, "Vertical and horizontal processes in low-level vision',
in E. Riseman and A. Hanson (eds.), Computer Vision Svstems, Academic
Press, N.Y., 1978,

