The Consistency of SYMEVAL

Frank M. Brown
Department of Computer Science
The University of Texas at Austin
Austin, Texas 78712

TR 138 February 1980

The Consistency of SYMEVAL

Abstract

In the past few years we have developed a powerful automatic theorem
prover: SYMEVAL which has been used to prove numerous theorems in number
theory, set theory, algebra, meta methamatics, and various intensional
logice. The problem remains that if the basic logical laws used by the
theorem prover are inconsistent then the proofs are worthless. For
this reason, in this paper we show how to prove the consistency of the

classical logic used by SYMEVAL.

1. Introduction

In the past few years we have developed a powerful automatic theorem
prover SYMEVAL which has been used to prove numerous theorems in number
theory [1,2], set theory [3,4,5], algebra [6,7] meta mathematics [8,91,
and various intensional logics [10]. However, it has been pointed out to
me that if the basic logical inference rules and axiom schematta used
by SYMEVAL were inconsistent then all these proofs would be essentially
worthless. For this reason, in this paper we sketch how to prove in
second order logic the consistency of the logical inference rules and
axiom schematta used by SYMEVAL. Itshould be noted that the actual laws
used by SYMEVAL differ considerably from those used in other systems
[11,12,13] and thus this consistency proof is quite new. For example
SYMEVAL' Sunification axiom schemma unlike Robinsons [12], sometimes
combines nested skolem functions together for efficiency. In Section 2,
we first define SYMEVAL'S single universal inference rule. We then
define all the axiom schema for classical logic used by SYMEVAL. in
Section 3, we provide the consistency of this inference rule and these
schematta relative to second order logic. Finally in sec%ion 3 we make

a few conclusions.

2. Symeval

We first define in section 2.1 the universal inference rule used by
SYMEVAL. Then in Section 2.2 we describe the logical schemata used by
SYMEVAL.
2.1 The Universal Inference Rule

Our theorem prover SYMEVAL consists of an dnterpreter for mathematical ex-
pressions and many items of mathematical knowledge. This interpreter

is a fairly complex mechanism, but it may be viewed as applying items of

mathematical knowledge of the form: ¢ +» ¢ or ¢ = ¢ to the theorem being
proven, in the following manner. The interpreter evaluates the theocrem
recursively in a call-by-need manner. That 1s, if ifal...an} is a sub-
expression being evaluated, then the interpreter tries to apply its ltems
of knowledge to that sub-expression before evaluating the arguments
alasaans For each sub-expression that the interpreter evaluates, in

turn it tzries to match the ¢ expression of an item to that sub-expression.
If, however, during the application process an argument a, doeg not match
the corresponding argument of the ¢ expression, then a, is evaluated, and
the system then tries to match the result of that evaluation. I1f ever
the interpreter finds a sub-expression ¢6 which is an instance of ¢ of
some item, then it replaces that expression by the corresponding instance
V8 or ¥, At this point all memoxy of the sub-expression ¢86 is lmmediately
lost and the interxpreter now evaluates Y8, If no items can be applied to
a sub~expression then the sub-expression is not evaluated again but is
simply returned.

Sometimes it will be the case that our interpreter will need to use
items which are valid only in certain domains II. In such a case we could
represent the item as a conditional item of the Fform:

M > (% > Yx)

or Ix - (¢x = Yx)

The interpreter handles conditional items in the same way in which it
handles non-conditional items until it has found a ¢8 which matches the
sub-expression being evaluated. At this point on a conditional item, the
interpreter tries to match each element in the conjunction lx with some
expression which it believes to be true. If such matches .are found with
substitution 8¢ then 6o is returned. Otherwise the interpreter tries to

apply another item as previously described.
2.2 The Logical Schemata

#

Our theorem prover has knowledge about twelve logical symbols which

are listed below with their English translations:

A and

Y4 or

" not

| true

L[] false
> implies
Aaed iff

L

there exists

v for all

= equal ‘

-+ implies (This symbol is called a sequent arxrow)

and and (This symbol is used to form an implicit conjunction of
sequents)

The sequent arrow may be defined as follows:
pl, ,pn+ql, vee g qm"-'z af (pl/\”.i\pn) -+ (qlvs,.%/qm)

where pi and qj are sentences. Thus a sequent may be thought of as being
a database of statements Pyv «ee 4P called assertions which occcur before
the sequent arrow, and statements ql, ase 3 qm called goals which occur
after the sequent arrow. The implicit conjunction of different sequents
may be thought of as being a group of different databases.

The items of logical knowledge, which are all schemata because they
involve ellipses (i.e. dots representing arbitrary expressions), are
listed below:

2.4.1 Assertion schemata:
g -
o~

G.@ «.> ..) <= (L. ..+ .0
t.g ..»..) < ®
Vot (ae AP L. >) e (el .. Hp L)
A+ (Lo pAG L L) (L P .. > L)
Vo (o PY Q.o) = (Lop .o ..)and (bog .. > ..)
{
{
({

:3 -+ 3

b i

e PTG e o) (0. o p LL) and (L. g L. L)
ce PER g o0 o) = (0L pg w. > L) and (.. .. P,Q L.)

i+ o dx bk Lo L) e (L, é{?*z 2o *r) s P o)

where f 1s a new skolem function and *l ‘e *n are all the
unification variables which occur in ¢x.
Vo o (oo ¥ 6% .. > ..) > (., Vi{*idx, % .. ~ ..)

where * 1s a new unificaticn variabls

i
+

{la ... {a=t} .. Ta > ga ... pa)e> (It .. Tt = ¢t .. Yt)
t=a
where a is of the form (ﬁ*l ces *n) and ¥ is a skolem function

not occurring in t. This is our version of the law of Leibniz.
2.3.2 Goal schemata:
+8 : (.- ..m..) — &

+ 0 (eo > oo BT o) > (o> oo LL)

BT T I P - SD T o T GUPUE -= S

A (.. LPAG L) = (L. o+ L. P oeesdoand (.. > .. g ..)
+V (.G*..qu..)H(..‘B*..p,q..)

+F s (.. =+

s PG o) =+ (Lo pr oL g L)

F e (. * L, P e g oLl e (L. P .. g ..) and (.. g* .. p
Vo (eer L VX X L) e (L, QLAY el) L)
where £ is a new skolem function and *l cas *n are all the
unification variables which occur in dx.
nd BT U . PO S B S S S I (x*)ox, $* ..
where * is a new unification variable

2.3.3 Regplica Creation Schemata

YO+ 2 (00 V(X..0)9x o0 > L) < (.. Viko..*)dx, ¢* .. > ..)

where * is a new unification variable and no more than one

- unification variable occurs in {x...).

30+ (.. > .. I (ke dx L0) =+ (L. > .. (... %)V dx, % ..

where * is a new unification variable and no more than one

unification variable occurs in (X...).
The item V()+ and +3() are used to Create additional replicas: ¢*,
a universally quantified assertion ¥Vi{x...)¢x, and an existentially
quantified goal F(x...)¢x. The replica ¢* is exactly like the original
formula except that the initial quantifier is deleted and the bound
variable associated with that quantifier is replaced by a new free
unification variable.

A Unification Variable is a free variable which is created by

¥+, +3, V()+, or +3() items, and which may later be instantiated to some
term by the unification item (see section 2.1.4). Unification variables

are written as a star sign: * possibly with numeric subscripts, such as:
PLEFTIET

In these four items we have seen fcrmulae of the form Vi{x...)¢px and
3(%...)¢x which are not usually thought of as being well formed sentences
of logic. Such formulae should be interpreted as respectively ¥x9x and
Ix¢x which are well formed sentences of logic. The ... list, which is

called the replica instance list, is used merely to store certain pragmatic

information used by the deductive system. This information is basically

the list of unification variables (or more precisely the list of instanti-
ations of the unification variables, see section 2.1.4) that were produced
from this quantifier by applications of the ¥», »3, Vi)>, and +31{) items,

2.3.4 The Unification schema :

Unify: [(.. Py - % .. 9, .-} and .. and .. (.. PLoen e q ce)]

f(‘i pi na+«n qi -a) ai’}d ® e and s @ (-a pn s 0 LI qn a.)]@

where 1 21 <n andQis any one of the sets of substitutions of terms for

unification variables which satisfy both the forcing restriction and the

7

instantiation restriction. These two restrictions are described below.

The forcing restriction is the requirement that the substitution

makes tautologous the greatest;number of sequents starting with the first
sequent and progressing towards the nth sequent,

In the case that there actually is some substitution which will make
all the sequents tautologous, without further unification variables being
created by the ¥ + and + 3 items, then 0O will be one such substitution.

As a minor point, if 0 makes all the sequents tautologous, then the unifi-
cation schema is defined to return .

The instantiation restriction is the requirement that nc unification

variable be instantiated to a term which already occurs in the replica
instance list of the quantifier of the given sequent which contains the
unification variable. The rationale behind this restriction is that
if a term t occurs in the replica instance list of a quantifier such as
Vin (.. ¥x¢x .. - ..) then the sub-formulae of ¢t must already cccur in
some sequent which must be proven in order to prove the theorem.

2.}.5 Other-logical schemata:

atom: © (.. p .. > .. p ..) > B

and: (.. and B and ..) <+ (.. and ..)

The logical items are not all used at the same time. In particular
the ¥()+, 3 (), and unify items are used in a special way. Initially,

the interpreter evaluates each sequent trying to apply the items in the
- following order:
(1) Non splitting assertion items:
-, O, v, A>, I+, = >
{2) Non splitting goal items:
8, >0 , v, oV, >D, »¥
{3) Non logical items
(4) The atom and "and" items
(5) Splitting goal items: A , > <>
(6) Splitting assertion items: V¥ >, >+, <+ »
7y 1
(8) LR
After the above items have been applied as many times as possible,
the interpreter then tries to apply the unify item to the resulting con-
junction of sequents.
If the application of the unification item results in B then the
processes terminates because the theorem has been proven. But, if the

application of the unification item does not result in B, then the

inteép;ééer éﬁplles the ¥{()» and +3() items to certain formulas, and then

romaasta the whnle rnyacroce eravbine 2+ aroen (1)

3. Consistency of Symeval

We first prove the consistency of the Universal infereﬁce rule in
section 3.1 and then in section 3.2 give consistency proofs of a representative set of
the logical schematta. All these proofs are carried out in second order
logic and hence the consistency of the system is relative to the consistency
of second order logic.

3.1 Consistency of the Tniversal Inference Rule

The universal inference rule has two simple versions:
from p ¢ q and yYp infer yq
from p = g and Yp infer yYq
which may be viewed as instances of the universal inference rule's two
conditional versions where C = true.
from (C + (p < q) and (C ~» ¥p) infer C - yq
from (C ~ (p = q)) and C » Yp infer C > yq
These can be rewritten as meta theovems [8,9] as
C=G= DA C»vp) » (€ g
C(p=a9A > yp)> (C > Pg)
which would be true if:

(e A VP > Yp

(p = Qayp > ¥gq

However since
P g AYp > v logic
vp < yp

and since

P =4qgna ¥p * {Ygqg

(v¥ ¥p < Yga Yp » yYgq i def. of = in 2nd order logic
PO:=y06 : substitution
Up < Yg A Yp > Ygq : logic
vg > da : logic

it follows that the versions of SYMEVALS universal inference rule are
consistent relative to second order logic.

3.2 Consistency of the Logical Schematta

We will now prove that the following schematta of our sequent logic are
consistent: A, >y, >, +§f, %fES +Unify, and = » Proofs of the consistency
of the remaining schematta may be obtained analogously.

These proofs will be carried out in the second order logic similar to that which
Frege used in Begriftschrift. In particular the skolem functions:

f used in our logic will be represented as universally quantified

function vaviables Vf. In these proofs:

(1) Vf represents a sequence of universal quantifiers: Vfl...an.
(2} i* represents a sequence of existential quantifiers:
3% L, 3%
1 n
{3) S represents a conjunction of seqguents: SlA...ASF
i
{(4) ¢ when it occurs within a seguent represents a saquence

of formulas @l, ...,¢n otherwise it represents =z
conjunction of formulas.

(5) Y when it occurs within a sequent represents a sequence of
formulas, otherwise it represents a disjunction ¢
formulas,

Recall that a sequent (¢ -+ ¥) or rather: (¢l"’°’¢n -+ ¢l’°°’¢n)

is interpreted as:

{¢ D ¢) or rather: {fé.ixx...;\én = n,’il\, “'vl’bx‘)

We will now prove the consistency of each of the above six rules in

succession:

A VEIRE AW (pAgD : def of sequent
VEI*(E A(¢ Y v “?/\ff”) : logic
VEIXBAG D WV p) Ay Vgl)) : logic

Vi 3i(§ Al Dy \/?)) A (U f/{)) : def of sequent

VE RS AT U0 A (6 g

+\ VF 3%(8 A (¢ Ve (p ‘v’@}}) : def of sequent
VL IF(S A D YV \/éé‘}) : def of sequent

vF 3%(8 Al¢ ¥, pag))

AT/ Eifgj\ (o + ¥, $) : def of sequent
Vi 3RS A S v vy . logic
FAEE AGA R D)) : def of seguent

VE I*(S A6, P> P))

+ ¥ ¥ 3%(S A (¢ > ¥, VxPx)) : def of seguent
Vi 3*(8 A D (¢ v (VxPx)))) :oorenwning X by a
gencyred variable a
Vi 3%(E A e o (N (Vakal)) : sic o does not
carour in
Vi 3:@_ Al o Valy v Pa)l) : osince a does not
oncur in ¢
Vi 3*(5 AVa(d O (y v Pa))) : ince a does not
. S
vf 3% va(s A (¢ D (v Pa)) : det of sequent
V:i 3:‘1 Va(é Al ~ Y, Pa)) : def L 'Ej
Vi g«kl“”g*n va(sS A (¢ ~ ¢, Pa)) ;. second order logic
vf d* ...d% va i* (S b Y, Pla*) .
i 1 n=~i? n\”—/\(@ ve Bl 1’” :
vF A% B * A, { 3 {g* * B . S pm ;
| 3% va i 2»”5 n(§_ Al > U Pla EE ﬂ-l))) ¢ second order logic
Vi Va 3% ...3% (8 A (6 > ¥, Plat ...%) : %
7 ail inif\(g} Y, {al ﬂ))} def of i*

Vi Va i¥(5 A ($ >y, Pla¥* ...* 1))

ook
fent

The law of second order logic that is used n times in this proof is:

{(4* va(ll a #)) <> va i¥{fl(a *)*)

-
-

Note that Vi Va is a sequence of universally quantified varlables, and hence

is essentially of the same form as V#.

+ 3

vE 3*(S A (¢ > ¥, (3xPx))) : def of sequent

VEI*(E A 2 ¥ v 3xpx)))) - : logic

renaming the second
X to a gensyned
variable x

VA AXS A0 D (b v 3xBx) vV (3xPx))))

V5 3*(8 Al D (¥ v (3xPx) v (JaPa)))) : since g does not
occur in Px

VFEA%(S AP o (¥ V Jal({d3xPx)V Pa)))) i since o does not
occur in ¥

V3% (8 A D daly v (xpx)V Pa))) : since o does no-

occur in ¢

VF IF(8 Adald D Y v Ix Px v Pa)) : since o does not

cccur in 8
vf 3% Ja(8 A D (Y v Ix Px v Pad)) : def of sequent

Vi 3% da(s A (¢ » ¢, IxPx, Pu)))

Note that 3% Ju is a sequence of existentially guantified variables and

hence essentially of the form of i*.

' :
Unify We let 4% be the sequenceof existential quantifiers whose variables

are instantiated by the substitution § = [*'+ 1 of the unification
rule. We let 3* be the quantifiers for any other unification
variables,

3

We let T be the sequents which are made tautologous by the substi-
tution 6 and let S be any other sequents.

Vi_gi,iff§,ﬁ\3 » ©die implied by:

vf 1%(s AT) [*'< £] : substitution
v §§j§ﬁff « 1)y A LTlE « F1) : T is made taut-
ologous by €

vE IXEle < £ AR

V1% s0xt « £

P

1z

One final point is that we define the substitution t*1 for ﬁc into a skolen
- ‘ ,

function f*O as f*l. This 1s clearly consistent since VFf vt (¢ (f(?:*l)) (t*l))

is implied by vf Vt(@(f*o) (t*o)) .

Note that every occurence of F in Vin{@(:’(t*l)) (t*o)) i€ required to cortain

a term equal' to t*O ‘as its argument.

Y Va % (8A(Y, (a%...%)=tk > y)) : def. of sequent

VE wva 3 * {(Sa ((tgﬁ% (a 7%1...7*n)=—.tic_} =y) ¢ legic

vi wva gz * (Sn ((a*l..*n)=tﬁ (ﬁg@w})) : 2nd order logic
vE va 5 * (5a((¥T I’(a*l,.*n) “ Tt) = (%’)?l)”) ¢ dinstance

% * = [a% % 1
Fak .5) = @D W) [ax ...]

vE va g * SA(@3 ¥ o @3yt @3 y)): logic

5

vi va g% SA@D V) [t] : def. of sequent

vE Va g% S,@=) [t]

3. Conclusions

We have shown how to prove the consistency of logical laws used by
our automatic theorem prover SYMEVAL relative to second order logic. We’
feel that this provides some evidence that the proofs obtained by this

theorem prover are correct.

10.

il.

1zZ.

13.

14,

References

Brown, F. M., "A Deductive System for Elementary Arithmetic,”
2nd AISB Conference Proceedings, Edinburgh, July 1976,

Brown, F. M., "Doing Arithmetic Without Diagrams,"
Artificial Intelligence Vol. 8, Spring 1977.

Brown, F. M., "A Theorem Prover for Elementary Set Theory,"

IJCA15 Conference Proceedings, MIT, August 1977. Also the abstract
is in the Workshop on Automatic Deduction Collected Abstracts, MIT,
August 1977.

Brown, F. M., "Towards the Automation of Set Theory and its Logic,"
Artificial Intelligence Vol. 10, 1978.

Brown, F. M., "Towards the Automation of Mathematical Reasoning,
Thesis for Ph. D., University of Edinbrugh 1977

Brown, F. M. and Tarnlund, Sten-Ake, "Inductive Reasoning in
Mathematics,” IJCAI 5 Conference Proceedings, MIT, August 1977.

Brown, F. M. and Tranlund, Sten-Ake, "Inductive Reasoning on Recursive
Equations" Artificial Intelligence, Vol. 12, 1979.

Brown, F. M., "An Automatic proof of the Completeness of Quantificational
Logic," DAI Research Report 52, 1978.

Brown, F. M., "A Theorem Prover for Metatheory," De-artment of Computer
Sciences, U.T. Austin, Technical Report #85 to appear in 4th Workshop
on Automatic Theorem Proving Conf. Proc., Austin, Texas, 1979.

Brown, F. M., "A Sequent Calculus for Modal Quantificational Logic,"
3rd AISB/GI Conference Proceedings, Hamburg, July 1978.

Prawitz, D., "An improved proof procedure' Theoria 26, 1960.

Bledsoe W. W. "Splitting and reductions hewristics in automatic thecrem
proving” Artifical Intelligence Vol. 2 1971.

Pastre D., Demonstration Automatique de Theorems en Theorie des Ensembles.
These de 3eme cycle, Paris 1976.

Robinson J. A. A Machine-Oriented Logic Based on the Resolution Principle"
J. ACM Vol. 12 Nov. 1965.

