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ABSTRACT

This paper contains a survey of image texture analysis
techniéues. Three broad classes of methods are discussed:
pixel~based, local-feature based and region-based. The pixel-
based models include grey level cooccurrence matrices, difference
histograms and energy-measures. The local feature-based models
mostly rely on edges as local features and include Marr's primal
sketch model and a generalization of cooccurrence matrices.
Region-based models include a region-growing model and a topo-
graphic model which treats the texture image as a digital
terrain model.

INTRODUCTION

This paper presents an overview of techniques for image
rexture analysis, emphasizing methods for describing image
textures for the purpose of image classification.

A textured area in an image 1s characterized by a non-
uniform spatial distribution of image intensities. Although
-coloy images also contain textures, we will limit our attention
to grey scale images. Very little research has been devoted
to computational models of color textures which make essential
use of color information.

The variation in intensity which characterizes a texture
ordinarily reflects some physical variation in the underlying
scene. Although it is possible, in principle, to account for



s the texture by modeling this physical variation, in practice
this is quite difficult to do. Horn (1) discusses such image
models. Rather, the approaches which we will discuss will treat
texture as a two-dimensional pattern of intensities, and will
not consider the physical basis of the texture. In fact, we
will adopt an dintuitive model for image textures in which a
texture is composed of pieces: the size, shape, shades, and
spatial arrangement of the cells are the critical factors in dis-
criminating between different textures. Notice that the cells
might actually form a partition of the image (i.e., form a
mosaic) or might be scattered on a homogeneous background (as
"bombs'" dropped on a field). Although it is possible to develop
formal mathematical image models for such patterns (see, e.g.,
Ahuja (2}, Schachter et al (3) or Zucker (4)), this paper will
not consider the development of texture analysis procedures
based on such models. Rather, the texture description models
which we will discuss are more heuristically motivated. They
have been applied tc a wide variety of practical problems,
including, e.g., texture analysis of many biomedical images and
satellite images.

Texture description models can be broadly classified into
three main classes:

1) pixel-based models, where the texture is described by
statistics of the distribution of grey levels, or intensities,
in the texture,

2} local feature-based models, where the statistics are
computed with respect to the distribution of local features,
such as edges or lines, in the texture, and

3) reglon-~based models, where the texture is first
segmented into regions, and then statistics on the shape and
spatial arrangement of the regions are used to characterize
the texture.

Section 2 of this paper reviews pixel-based models;
Section 3 deals with local feature-based models, and Section 4
discusses region-based models.

PIXEL~-BASED TEXTURE MODELS

Perhaps the most widely used pixel-based texture model
is the grey level cooccurrence matrix, or GLCM. GLCM's were
first introduced by Haralick et al (5), and are defined as
follows. Let f be a digital image and let D = {{éxi,dyi)} be

a set of image displacement vectors. Then the GLCM of f with
p



respect to D, CD’ is:

CD(gl,gz) = H(x,y),&"',y")): f(x,y) = 8> f(x',y") = 8ys

and for some i,

x =x' + dxi, and v = y' + dyi}
where #5 is the size of set S.

Thus, CD(gl,gZ} is a count of the number of pairs of points

in f which have grey levels 81 and 89> respectively, and are

separated by one of the displacement vectors in D.

We can intuitively relate the structure of the cooccurrence
matrix to the structure of the texture on which it is computed.
Suppose, for example, that the set D includes all displacement
vectors of length less than 2 (i.e., we consider a point and its
eight neighbors in computing the cooccurrence matrix), and that
the texture itself is very 'busy' - i.e., contains very many
small pieces. Then many pairs of adjacent points will have
different grev levels, so that the cooccurrence matrix will have
large values at positions far from its main diagonal - i.e.,
where fg]-gzi is high. Suppose, on the other hand, that the

texture is composed of a relatively few, large pieces. Then
most pairs of adjacent pixels will have similar grey levels
(they will either both be in one of the pieces or in the back-
ground) and therefore the cooccurrence matrix will have high
values only on those elements which lie on or near the main
diagonal. Any statistic computed from the cooccurrence matrix
which is sensitive to the spread of values away from the main
diagonal should be helpful in discriminating between such
textures. One such statistic is the CONTRAST statistic defined
as:

L2 .
CONTRAST = Z (i-3) *CD(l,J)
i,]

Haralick et al (5) contains a much more extensive list of such
statistics.

A second important aspect of texture which can be captured
in cooccurrence matrices is directionality - i.e., the differences
in grey level correlation as a function of direction. To compute
directionally sensitive texture statistics, one can design the
set D to include only displacement vectors of a fixed direction,
and then compute cooccurrence matrices for a variety of



directions, and compare the statistics for each direction. One

tool which has been developed to accomplish this is the

polarogram which is a polar plot of a directionally sensitive
texture statistic (such as the contrast statistic of a direc-
tionally specific cooccurrence matrix) as a function of

direction (6). Statistics which measure the shape and size of

the polarogram are quite sensitive to texture directionality,
while at the same time being invariant to the orientation of

the texture in the field of view. TFigure 1 contains two texture
samples, while Figure 2 contains polarograms for the two textures.

Notice that they have quite different shapes and sizes.

The utility of statistics computed from GLCM's depends on

the choice of the displacement vector set, D. Zucker (7)
describes a procedure for choosing good displacement vectors
based on measures of statistical independence of the rows and
columns of the cooccurrence matrices. Applying this technique
to the LANDSAT data set used by Weszka et al (8) in their
experimental study described below enabled him to achieve com—
parable classification rates to those reported in (8) without
exhaustively classifying a large training set using many sets
of cooccurrence statistics.

A second pixel-based texture analysis tool which is closely
related to the cooccurrence matrix is the difference histogram.
A difference histogram is a frequency count of the number of
pairs of pixels whose grey levels differ by a fixed amount.

More specifically, let D be a set of image displacement vectors
as defined above. Then the difference histogram of a texture
with respect to D, HD’ is defined by:

H (V) = H(Gn) L &y [EGy) - £y ] = v,

and for some i, = = x' + dxi, v =y o+ dyi}

Notice that the grey level difference histogram for a set
of displacements D can be directly obtained from the GLCM for
D by summing along diagonals of the GLCM which are parallel to
the main diagonal. Pairs of points which contribute to the
main diagonal of the GLCM, e.g., have difference of grey jevels
0. Thus, the grey level difference histogram contains strictly
less information than the GLCM. 1If, however, it turns out in
practice that texture classifications based on statistics
derived from the difference histograms are as high as those
based on statistics derived from GLCM's, then the difference
histogram would be the preferable tool, since its storage
requirements are lower than GLCMs, and it is computationally
less costly to compute statistics from difference histograms



than it is to compute them from GLCMs.

The structure of difference histograms can also be intui-
tively related to texture structure. For example, suppose that
the set D contains all image displacements vectors of length
less than 2, as we did for GLCMs. Then, for a busy texture,
since most pairs of points will have different grey levels, we
would suppose that the difference histogram will have relatively
high values for large differences. For coarse textures, on the

ther hand, since most pairs of adjacent points will either both
be in the same texture element, or bdth be in the background, we
would expect that the difference histogram would have relatively
high values for small differences. One statistic defined for
difference histograms which can capture such distinctions is the
MEAN statistic defined as:

MEAN = :E: i*HD(i)

K
ES

Weszka et al (8) describe a comparative experimental study where
classification results based on statistics derived from GLCMs
and difference histograms were compared for several texture
discrimination problems. They found that the difference histo-
grams performed just as well on those problems as the GLCMs.
That study alsc investigated statistics derived from the tex~-
ture's power spectrum, but they resulted in lower overall clas-
sification rates.

A texture model which is computationally very similar to
difference histograms has recently been introduced by Faugeras
and Pratt (9). They propose a texture synthesis model whereby
a stochastic texture array is produced by applying some spatial
operator to an array of independent identically distributed
(i.1.d.) random variables. They suggest, therefore, that to
analyze a texture one should attempt to decorrelate the grey
levels in the texture to compute an approximation to the i.i.d.
field; first-order statistics of the decorrelated texture
should, then, be valuable texture statistics. This decorre-
lation can be achieved by a whitening transformation, but due
to the computational cost of applying the whitening trans-—
formation, they suggest as an alternative that a gradient
operator, such as a Sobel operator (10) or a Laplacian (11) be
applied to the texture.

One last pixel-based model deserving attention is a recent
set of "texture energy' transforms introduced by Laws (12).
These transforms are fast since they can be computed by one~-
dimensional convolutions and simple moving-average techniques.

They can also be made invariant to changes in luminance,



contrast and orientation without any image preprocessing.
Figure 3 contains one set of the one-dimensional convolution
masks which Laws describes. The one letter names are mmemonics
for Level, Edge, Spot, Wave, Ripple, Undulation and Oscil-
lation. The 1x3 vectors form a basis for the remainder of the
vector set. For example, each 1x5 vector canm be generated by
convolving two 1x3 vectors.

Two-dimensional masks can be produced by convolving a
vertical 3-vector with a horizontal 3-vector. Texture infor-
mation can then be extracted from an image by convolving the
3%x3 masks with the texture. The fact that the two-dimensional
masks are separable means that they can be computed very fast.
A 5x5 convolution, for example, can be achieved by performing
twe 3x3 convolutions.

Laws described the results of a comparative classification
study where statistics derived from his texture energy trans-
forms were compared to grey level cooccurrence statistics. The
textures used were digitized version of the textures in
Brodatz (13). The texture energy measures gave 87% classifi-
Cation accuracy versus an accuracy rate of only about 70% for
the cooccurrence statistics.

LOCAL FEATURE-BASED TEXTURE MODELS

Local feature-based models describe image textures using
statistics based on the distribution of local image features,
such as edges, in the texture. They are most useful for what
are called macro-textures, i.e., textures where the cells, or
texture elements, are relatively large, say several pixels in
diameter. For such textures, pixel-based statistics depend
more on the tramsitions between grey levels in the texture
elements than they do on the size, shape and spatial arrange-
ment of the texture elements.

Perhaps the most salient local feature in textures are
edges. Davis (14) contains a survey of edge detection techniques
for general image analysis. When we restrict our attention to
macro-textures, then it is possible to construct mathematical
models which describe the size and spatial arrangement of the
texture elements and to use such models to guide the design of
optimal edge detection procedures. Davis and Mitiche (15-16)
present a minimal error edge detection procedure based on such
mathematical models for macro-textures.

The simplest texture model based on edges describes textures
using first-order statistics of the distribution of edges. For
example, the average contrast of edges, or the variability in



their orientations are first-order edge statistics. However,
such first-order statistics do not seem to result in very
reliable texture discriminations.

Marr (17) suggested that instead of computing first-order
statistics of a raw edge map of a texture, one should first
construct relatively large segments of edges in those maps by
applying certain similarity grouping operators to the edge map.
He claims that first-order statistics of such extended edges can
be used to account for most texture discriminations which humans
can perform. This conjecture is consistent with recent psycho-
physical results reported in Julesz (18).

In practice, however, the computational cost of Marr's
similarity grouping operators might prohibit their application
to a texture analysis problem. Davis et al (19) suggested as an
alternative that second-order statistics of the raw edge map
might be a computationally cost-effective alternative. Such
second-order statistics can be collected from cooccurrence
matrices computed from the edge map. In order to compute useful
cooccurrence matrices, it is necessary to generalize the notion
of a cooccurrence matrix. This generalization involves replacing
the set of displacement vectors, D, with a spatial predicate, P.
The spatial predicate has at its arguments a pair of edges and,
based on properties of the edges such as their position,
orientation and contrast, returns a value of either TRUE or
FALSE. Those pairs of edges which satisfy the spatial predicate
(i.e., result in a TRUE value) are used to construct the edge
cooccurrence matrix. Figure 4 contains a simple example.

Figure 4a contains an edge map where the edges are labeled H
(horizontal), V (vertical), L (left diagonal), and r (right

diagonal). TFigure 4b contains the edge cooccurrence matrix.
The spatial predicate assigns value TRUE to the pair of edges
(el,e?} if:

13 e and e, are neighbors, and

-~ i.e.,, if e, is a vertical

2) e, smoothly continues e 1

2 1

edge, then e, must be a vertical neighbor of e

2 1’

Davis et al (20} contains a comparative classification
study of edge cooccurrence with grey level cooccurrence for a
database of natural textures. The classification rates achieved
using statistics computed from edge cooccurrence matrices were
207% higher than classification rates achieved using statistics

computed from grey level cooccurrence matrices.

One can use a variety of other local features to describe



textures. For some textures it might be more appropriate to
detect linear features than edges. Or, as another alternative,
one can regard the intensity image as an elevation map and
describe the spatial distribution of peaks and valleys. Ehrich
and Foith (21) develop a hierarchical representation of such
peaks and valleys called a relational tree which they have
found useful for texture description. Such a structure is
invariant to linear transformations of the image grey scale.

REGION-BASED TEXTURE MODELS

All of the previously described texture models attempt to
describe the structure of an image texture in relatively in-
direct ways. Inasmuch as our intuitive texture model describes
textures in terms of the size, shape and spatial arrangement of
texture elements, a reasonable approach is to model texture by
directly computing such factors. Such approaches can be generi-
cally referred to as region-based texture models. Ideally, the
regions should coincide with the cells which compose the texture.

Although in principle such an approach might be preferable
to either pixel-based or local f{eature-based models, it is
important to keep in mind that computing the texture cells on
which the description of the texture will be based is an
instance of the image segmentation problem (hopefully for non-
textured segments). Thus, it wmight be very difficult to re-
liably compute the texture cells in practice.

The first region-based texture model was proposed by
Maleson et al (22) who suggested that standard region-growing
segmentation techniques be applied to a texture to extract the
texture cells. Zucker (23) containsg a survey of region growing
procedures. Each cell is then described by an enclosing
ellipse. Properties of the ellipse (such as its eccentricity
or size) as well as cooccurrence statistics between ellipses
{(e.g., how many have parallel axes) can be used to describe
texture.

Haralick (24), in an extensive survey paper, suggests as
texture regions the reachability sets of local grey level ex-
trema. The reachability set of a local maximum is the set of all
pixels reachable by that local maximum by a monotonically de-
creasing path, and not reachable from any other local paximum
by such a path. For the ellipses that Maleson employed elonga-
tion was related to eccentricity. For reachability sets,
elongation can be more generally defined as the ratio of the
larger to smaller eigenvalue of the 2xZ second moment matrix
obtained from the coordinates of the boundary pixels of the
set {(25). It should be pointed out that there has not been



a substantial amount of research devoted to applying region-
based texture models to the discrimination of different textures.

CONCLUSIONS

This paper has attempted to provide a non-comprehensive
survey of techniques for describing image textures. 1t has
concentrated on techniques which have either proved to be of
value or which are potentially of value in solving texture
discrimination problems. The techniques discussed were classi-
fied into three categories - pixel-based, local feature-based
and region-based. Pixel-based models have been extensively
applied to real texture analysis problems; neither local feature-
based nor region-based models have received the extensive testing
which will be required to gauge their actual utility in image
analysis.
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Figure 1b - Scrap metal texture

Figure 2b - Polarogram of Figure 1b for distance 5
cooccurrence matrices and the contrast
statistic.



Figure la - A grating texture.

Figure 2a- Polarcgram of Figure la for distance 3
cooccurrence matrices and the contrast
statistic.



Level mask L3 = 1 2 1
Edge mask E3 = -1 0 1
Spot mask S3 = -1 2 -1
Wave mask W5 = -1 2 0 -2
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Figure 3 - One-dimensional convolution masks.
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Figure 4 — A simple example of a GCM.



