Metatheoretic Constructs in
Logic Programming Languages

Frank Brown
Department of Computer Science
The University of Texas ar Austin
Austin., Texas 78712

TR 140 March 1980

abstract

We axiomatize a number of meta theoretic concepts which have been
used in Logic programming, including: meaning, logical truth, non-
entailment, assertion and erasure, thus showing that these concepts are
logical in nature and need not be defined ag they have previously been
defined in terms of the operations of any particular interpreter for

logic programs.

Contents

Introduction

A Logical Programming Language
2.1 Notation

2.2 Logic as a Programming Language

Meaning
3.1 Axiomatization of Meaning

3.2 Variations

Modality
4.1 Axiomatization of Logical Truth

4.2 Non-entailment, Assertion, and Erasure
Conclusion

References

"o

[

1. Introduction

One of the basic theses of Logic Programming [1.,2] is that programs
written in Logic can be understocd merely by relfecting on the intuitive
meaning of the programs, without veference to any particular interpreter, or
rather automatic theorem prover, thar might execute the programs. This thesis
would be very nice and have strong implications for programming methodology,
if in fact it were true. But unfortuunately. if we examine the situation
closely we will see that there are features of contemporary logic preogramming
languages [3,4.,5,6,7.8.9,10.11] which do not seem to be understandable without
reference to a particular interpreter. Such features are for example:
1. Meaning, such as the universal function of Prolog [6,7,9.10,11] systems
2. TLogical Truth.
3. Non-Entailment, such as the Thnot fanction of Plauner {31 and some of

the uses of the slash (/) function of Prolog which simuiate thnot.
4, Assertion, such as the Thassert function of Planner and the ajout

functino of Prolog.

5. Erasure, such as the Therase funcrion of Planner, and

function of Prolog,

After describing in Section 2 the logical programming language that we
use, we then give in this language a correct axiomarization of each of the
about five semantic functions. In particular in Section 3 we axiomarize
the concept of meaning, and in Secrion 4 we axiomatization of each of the
about five semantic functions. In parvicular in Section 3 we axiomatize
the concept of meaning, and in Secrion 4 we awiomatize rhe modal concept of
logical truth which is then used to define the remaining semantic functions:
non-entailment, assertion, and erasure. The theory consisting of these

axioms is consistent relative rto lst order number theory. We menrion this fact

M
=
”

2

because the axiomatization of semantic concepts has often Tallen into paradox

and contradiction,

2. A Logical Progrvamming Language

We describe the syntax of our logical programwing language in Sectinn 2.1

and then give a few examples of logic programs in Section 2.2,
2.1 Notation
We now explain our notation,
The symbols of classical logic are listed below with their English

Translations:

P . q p and ¢q

P g p or q

P> g p iff g

vop not p

] true

] false

VX ¢X for all cbijects X, ¢X haids

iX $X for some obijects X, ¢X holds

¥p ¢ for all propositions p. ¢p holds
ip ¢ for some propousitions p, tp holds

Capital letters such as X, ¥, 2, S, T, &, B ravge over objects whereas
small letters such as p, q, r range over propssitions.

The symbols of modal logic are:

Fp p is logically true
F pa p entails g

Op p is possible
(Woxrld p) P 1s a wWorld

The last three modal symbols are defincd in terms of the first one as
follows:

+ pa =df bk (p > q

v af v op

(World p) Af (QpIA vg (o)W (b plig))

[

i

Equality:
X =¥ X equals ¥
where X = Y > ($X ¢+ ¢¥) for all sentences ¢ wncluding sentences contain-
ing mcdal connectives such as f,
A data structure of lists formed from:
Nil
{Cons X Y)
where (Cons X Y) is an ordered pair and Nil is not 4n crdered pair:
{Cons X Y) = {(Cons U V) > X = U AY =V
~ (Cons X Y) = Nul
We make three abbreviations as follows:
First for any expression ulh..x :

9

[o .aan]=df (Cons(Cons o Nii)..)
N

1
and also:

1

[ul . azizdf {Cons ﬁ¥a.>

L] =df Nil

Thus [ulﬁw,un] may be thought of as brins a list whese ¢ lements are
al,o,.,én; {ul¢a2] may be thought of as being an o:zdered paiz; and []
may be thought of as being an empty list

Finally we include a method of tilking asbout exprezsions of this
logical language, within this language We do Fnis in our loglcal
language by representing an expression as a list 2f the names of its
symbols. Names of symbols are forwed by prefixing to that symbol an
accent sign: ‘. Thus

[{'Member *X "[1] ‘= 03]
is a name of the expression (Member X [} <+ 3 Ir 15 to be understood
that 'X is a ccnstant symbol of our logical language. The apparent
visual simllarity between a symbol such as: ¥ and i1ts name such as: ‘X
is merely a pneumonic for the rveaders convenience which will also allow
us to concisely state the criteria for = definition Of a meaning function.

2.2 Logic as a Programming Language

This simple language may be thoughr of as being a p
language. That 1s, we can implement 4 system whioh by m

inferences can effecrively compute varicus things

I~

For example 4 program in this tonguage whioh could be used to compute
whether something is a member of o list would be the thyoe sentences:
Ml: {(Member x{1Y - » 3
M2« (Member X (Covs X YY) -+ @&
M3z (A(X=2) > {((Member X {(Cons Z ¥V + - {Membeor X YY)
If our system were then defined so as to use these gentences to replace
the left hand side of an equivalence by the riybt hand s:de, checking
that any initial conditional sentences were ryue, then the sysrtem could
determine that B were a member of the List (A B Cl as follows:
(Member B [A B Cl} tM3
4,
(Member B [B Cly M7
i
&

As o more complex case coensider the ollowing prograem which computes
the value of an element V 1n a liot oF pares
[Iv, o .. lv o 1]
171 non
The value ©f V in such a list 18 detined 1o be the first . whose V

egquals V.

yi: (val v [DNil
y2: (val v {Iv.x]J.T1 =X
V3: (VU=V - (Val Vv Lo ¥l by {Vail vV L)Y
Thus for example the system couild dercrmine than the valuc of C in
[{a B8] [C.Dpl] is D as follows:
(val ¢ [la.B] fc.plDh (V3
¥
(val ¢ [lc.Dplh 1V
¥

D

tens on the use of logic 4% a programming

o+

More detailed exposi

language are given in [1,2,11,12,13,14,15].

Ut
-

3. Meaning

One of the most impurtant features of any reasonably general pro-
gramming language is the abilily Lo execute a program which has been
constructed as a plece of dats by another Lrogram. or example, a
compiler essentially tranclalos one data structue rupresenting a
program into another data-structure representing a program which is
executable on some particular conputer . The key step here 1s: how doss

this second data-structure actuully

o be turned into a program
which can be exccuted?

In logic, it is easy to

both a Joglc program and a data
structure which is a name of that logic program along the lines described
in section 2. Furthermore this data sipuctoure can oazsily be manipulated
by other logic programs, and in particular could be the result of trans-—
lating a data-structure fepresenting 2 progran of some other language
key step of translating the data structare representing a loglc program
inte the logic program itself 1o what appuears to be difficult to do in
logic.

In the remainder of this section we will chow how

may be done
in logic, and in particular in seciion 2.} will we gLve a recursive

meaning function M which maps datz-siructures

ing logic programs
into the corresponding logie progs ams . This mearong function

the griteria thatl:

if ¢ is obtained from ¢ by

1. eliminating the first accent sign from each symbol bey

,-

-y
1

-
a

s
£
.
s
o)

with an azcent gign
2. replacing all occurrences of [by (.

3. replacing all occurrences of] by).

for any expressiop ¢ consisting solely of the symbois:
symbols beginning with an accent sign.

It is worthwhiie noting M in this criveria cannct o 1nwzrpreted as
being Tarski’s [6l predicate E for Empirical Tru+th The reason for this

is that whereas Tarski's superficially similary critevia for smpirical

G

truth inveolves bi-implication:

(B ¢)+ v

our criteria is much =
necessary bi-1mp:iTatil
Fomooy oo i
Thus 1if M 1n our Ir:it
criteria itself befome
letting 4 be the name
logically true: =uch
Finally in scctaio

function, and show why

ronge fact rather

ioplies

and

r in syn onomity ., T

3,1 Axiomatizatri-n of Meaning

A computaticn

criteria is given below. Since all other 1oyics:

in terms of A, ~, ¥, and {~ we have not bothered o

for any logical ather than these:

MO: fM 5 =

M1 Mls A TIa ‘m S A A

vml siay = 0 m § A

iml ' &

MZ:

M3: sian b=(m s B)

M4 : fmi’¢ s s 1ar = (¢(m 5, A)., . (n S A
. n n
for each non logical symbol ¢ except m
~ name of a name of m and so forth.
M5 ml 'Y v osia = ¥Xim s¢IV.X1.AD

Mb - m VA s AV

The variables S, T. S, . .8

. i
over variables. The -losure of a sentence 5 with
iz defined to be [V'X [rw'x st...1.

i B}

An exampie of the applicaticn

['e '2l'Y '‘movesto "211 13 as 7ol

(M{'VY "21'Y ‘movesto ‘'zl

(m {closurel'v '2l'Y 'movesto '2]11:[1 T
(m 'y "vl'¢ 'z20'yY ‘movesto *211117; M5

(vx (ml'y *zl'y

[
a—
¥

3

‘movesto ‘iltityox!

or

neaning fans

i

anv

A

an

e

s -

{

+
1

Y

€3

of

=

!

n:
erlia 1§ rioal trath, then the
s contradictoxry. We can ¢e¢ rhis tact by siaply
>f any sentence Y which 1is epplrically true but no
4e: "The Morning Star is the Evening 3rar "
n 3.2 we discuss scme varlixtloing of this meaning
16 18 not easily represented 10 Ciausal toym logics.
ally efficient meaning function M satisfying the above

T Or

any

¥V ranuges

(Y]
L 9

santence

We cannot immediately apply M5 aguin because X 15 a4 fiee variable in
the subexpression:

ml'y 'z20'Y 'movesto *Z)Ill'v.xi])
and hence would be capturoed by the cutlying quantifier: ¥x ccourring in 5.

Hence one of these variabloes

52 4

(VY (VX

must

ml'y "20'Y '"wovesto 2 DyLyil

{tml 'Y "movesto z A Iy vy

Lir e renamed.

[
p= 4

: M5

M4
(VY (VX ((m*'Y[I'2.X]J0'v.v] 1) wmovests m'zl{'z. xii'v.vlliy;) M6
(VY (VX ((Val ‘vI['2.X10'v.¥1]) movesto (val etz i'Y.yI)y ival
(VY (¥X (Y movesto X))) :rename
(YY (VZ (Y movesto Z))) runiversal instantiaticn and generalization
(VZ (Y movesto 2}

We note that
through syntactic structure.

cursive definitions. 1t 1s 1in

o~

logically true meaning function.

A more detailed deseriprion

implications is given in [i77.

a proof of

the completeness of q
A more detailed des

.\
i

implications is given ir .
3.2 Variations

Since:

$Y 1s equivalent to YX (s -

and more generally since:

boVX (tX) is equivalont o
by using these equivalences VO
function M by implications to ob

MAQ:

this meaning function

Thus this meaning oo

cription of this meaning funsticn
L4]

consists only of sentences which recurse

wists entively of re-
this sense that we ~laim that it is a
ob thile meaning Tone . ity i

Its use by an automatic theorem prover to obrain

uantili -

i

cational logic is des

its

and

Y = Zj
Yo dYXzXE o« WY (Y- (v
an replace Lhe equations of the meaning
tain an egquivalent meaniny function MA:

(M 8Y=2 « ({mlclosure syllyveg
MAZL . (mls'A 1in (b /A o fm S A)Yip A lm T Ao oy
MAL : hnf*msj[;,Jup < m S A)-p
MAZ3: (ml’ b Sl=Fp < (ms Al=p
MAd: (w4 Sl.,.sniA)~<®x1 X i (m 5, BILX A Alm s A =x

(ml*Y Vv sIA)=YX(¢X) « . ¥¥(m SLIV.X].a Y=($X)

é

MAG

*s

{m V A)=2 « (Val V A)=2

Note that MA5 when put into skolem normal form becomes:

MAS': (ml'vv Sla)=vx(¢X) + (m S[IV.(Sk X V S A(¢X))].A)=(¢(Sk X V S A(9X)))
where Sk is a skolem function,

Many contemporary logical programming languages [1,3,6,7,8,11,13] are to a
large degree based on evaluating sentences of a certain form: TFirst they are
based on evaluating reverse implications « somewhat similar to the manner
in which the equivalences were evaluated as described in section 2.2.
Furthermore, such systems are often defined so as to only match entire
atomic propositions such as (Member A B) or (m S &)=Y rather than any
embedded terms such as (m § 4). And finally, such systems usually require
that all sentences be initially skolemized. It will be seen that MA sat-
isfies the first two criteria and if MAS is replaced by MA5' then all three
criteria are satisfied.

There is, however, a problem in that MAS {and MA5') involves second
order unification which usually is not available in such programming systems.
Possibly, for this reason, or because MAS is rather complicated, and there-
fore difficult to state, or even because of a preference for stating the
object language itself in skolem normal form, sentences such as MAS are not
currently used in such programming systems. Thus guantifiers and bound
variables are not allowed in the object languages.

Initial free universal object language variables could however be
allowed by the simple expedient of replacing MAC by MAO':

MAO': (M 8)=2 « {VXl...VXn(m S al))=2
where ‘a' here is an association list:

ivl.xlz‘.,{vn.xnl
such that V ,..Vn are all the unbound object language variables in &, and

1

xl"°xn are distinct free universal variables. MAQ' has essentially the

same effect as MA® since the closure of S is ['vvl...i‘vvn §]...] which by
MAS becomes: {Vxl...VXn(m S aj)).
Note also that MO has a similar version MO

MO®: (MS) = (vxle.‘vxn(m S ajl)

We see then that MAO', MAl, MA2, MA3, MA4, MAG constitute a proper
meaning function for a quantifier free object language. It should be
noted, however, that the replacement of MAO' by MAO" does not constitute a

proper meaning function:

R ——

MAQ™: MS) =2+« (ms a7
The reason for this is that MAO" -~an, in fact, be false when MAQ' is true.
To see this first note that MaQ" 18 equivalent to
MO" : M8 = (m S a
We consider now the sentence: ['p'%] in @ universe of two things:
By MAO' we get:
ML ¢ 'X] = VX (ml ¢ xIII'%.x)1)
MI['¢'X]
ML ¢'x]

i

VK$X
BN b,
whereas by LAO" we get:

]

v (Mo X]

i

ml'¢'xill'x x11)
$X)
MO'$*x] = b, AMITEX] = ¢,

But clearly MAO" leads to a contradiction; for example 1n the case where

vX(M['¢'X]

i

¢l is true and ¢2 is false 1t rmplies that true equals false.

Note however, that gz sentence similar to MAO" with the (m 8§)=X replaced
by a relation could, however, be consistent if this relation were intended
to capture some concept of partial meaning. For example:

(i S A X) means that: X is the meaning in A of scme instance of §.

(P 8 A X) means that: X is implied by the meaning of S in A,

We see that both

(I S X)+ (i 8 ax)
and (P S X) + (P S ax)
are probably true.

Note that although I and P are transitive and perhaps reflexive
relations, neither is a symmetric relation. Generally they are related
to M as follows:

(M X)=o + (T g XA (I s X - (P s X1

A meaning-of-some-instance relation (1} has been implemented in a
logical programming system by D. Warren [97. The sentences of this relastion
may be obtained from MAO"™, MALl, MA2, MA3, MA4, MA6 by teplacing (m a)=8 by
(I a B) and (m A a)=8 by (i o a 3.

4. Modality

Another important feature of any reasonably general programming
language is the ability to execute a Program within a particular context.,
For example, one might wish to evaluate a particular expression using

certain function definitions which are quite different from the function

10.

definitions which are active at the top level context In a logical
languate the analogy cf this would be 1o evaiuate some expression using
a certain database of axiocme which couid be quite.different from the data
base of axioms being assumed at the top level

At first glance, it wculd appear that it 1s 1mpossible to define
such a construct in logic becauée even though ore could use the b » p
concept to create a new context containing additiconal axicms b which can
be used when evaluating p, there does not secm to be any way to stop the
use of any axioms & of the top level context such as in a » (b p;.

However, modal logic offers a way to sclve this problem. If we let
}v be the modal ‘symbol which captures the notion of logica. truth, fhen it
is easy to see that 3~(b v P means that p is tc be eva.uvated using only
the axioms b. Thus, for exampie, 1f the top level centext is a,
a> k(b > p) st1ll only allsws p to be evaluated using the axioms b.

The problem 1s to find a correct axicmstization for the modal concept
of logical truth: }= , for it a1s certainly clear that there must be special

axioms of modality in additica to the normal axioms of classical

o

ogic.
For example the sentence:

o> (PAQ < (b spa kb
is intuitively valid althcocugh it 1s not derivable solely from the normal
axioms of classical logic.

In section 4 | we give a correct axiomatization of the modal concept
of logical truth. Then in section 4.2 we use this concept Lo define the
semantic functions of non-entallment, asserticn, and erasure.

4.1 MAxiomatization of Logical Truth

The logical axiows of the mcdal logic which captures the notion of
logical truth [18] includes any complete and reasonablce axiomatizarion of
classical quantificaticnal logic, with propositional guintifiers plus the
following inference rule and sxicms about modality:

RO: from P 1infer pp

Al: Fp - p

A2: Foe o - (Fp - ba

A3 kpvk o ko

Ad: (Vr((World r, ~f=r p - fp
RO, Al, A2, and A3 are essentially the inference rule and axicms ofS5 modal
legic. Axiom A4 which we call Leibniz's postulsate expresses his 1ntuition

that something 1s logically true 1f 1t 1S true 1in

sible worlds.

An efficient sequent calculus proct procedure based on theorems
derived from these modal axioms i¢ described in [18,191.
The consistency problem of modal i0glc 1s that from the logical
axioms of modal logic we cannct prove certaln elementary facts about *he
possibility of conjunctions of distinct possible negated atomic expressicns
consisting of non-logical symbols. For example, if we have a theory form-
ulated in our modal logic which zontains the non-logical atomic express:on
(ON A B) then since ~“{ON & B! 15 not logically true, it follows that 7ON A B
must be possible. Yet (ON A B) 1s not a theorem of our modal logic
Thus, for any theory expressed in modal logic, a certain number -~¢ non-
logical axioms dealing with possibility should also be added. FOoxr examp.e,
in the case of the propositicnai logic, or in the case of the quantificaticnal
logic over a finite domain since it reduces to propositional logic, c-e
sufficient but inefficient axiomatizaltion would be to assert the poesibiilty
of all consistent disjuﬁctions of conjunctions of literals as additicnsl non-
logical axioms:
{ (VUA Literals))
A more computationally efficient Xlomatization which is obtained by noting
that the possibility of a disjunction of sentences is implied by the E
possibility of any one of those sentences: é
U > LY
is to assert only the possibility of all consistent conjunctions of iiterais: :
U A literals)

Using our meaning function [4] trhis may be done in a finite manner by

P —

adding the single axiom:

AN SO

(Conj §) A (Consist s} - {r(m s)

where Conj and Consist are recursive functions defined as follows:

PRS-

{Conj 8) = &f (Lit $) v 47 1r (s=IT'A RI A (Lit T) #A(Conj Ry
(Lit §) = af (3T s=0'"T] A (Atcmicsent T)) ¥ (Atomicsent §)
(Consist [1) = gf B

H

{(Consist [S,1]) = df (Consict? g L) A (Consist L)

(Consist2 S [1) = af ®&

(Consist? siT.Ll) = &gf “iOpp S T) A (Consist2 § 1)

(Opp 8 T = df (IR s=["'RIA T=R) ¥ (3R T={""R] A 5=R)

4.2 Non-entailment, Assertion, and Erasure

Having now axiomatized the cencept of logilcal truth, it is easy to

define non-entailment and assertiocn:

Di: (Not~Entaxrl a p, > di - Frap
D2: (Assert a3 p) ¢«» df aAp
That 1s p 1is not entailed by a, i1ff « implies p 13 1o logitally nrus.
And the assertion of p tc database
f

a
The definiticon of erasure 1s, however, alighty more CLmplex. and in

0

general there will be more than one roasonable resuiting datzbase which
is obtained by erasing a prcopositien p from 3 given databaze Ta
D3: (Exase a p b +» PFa b /\<}"h SR & p>
Ava Fooa Absba g g e
That is b 1s obtained by erasing p trim a 11f a entai.e b : :
only if p 1s logically true, =nd n2 proprs.it.in strcoger than b ocan be
obtained from a by delerting p.
We can see that D3 1s indecd & ccusz.nsbls definition of erasure by
noting the following thecrem:
T1: nFap » ((Ercse a p by < f= s - b
That is, 1f p is not entatled by & ther =2rasing p frcm o mere.y regults in
a itself.
This definiticn of erazure 1¢ oy soly rorsred o Stulnaker's Theory

of Conditiocnals [20] and to Schwind'e The ovy of Actvion [217.

5. Conclusion

We have axiomatized a number i basi: semantic CIrCepts for e logical
programming language. ABn efficient astomstic thezren prover bssed oo a

sequent calculus [18,19] derived from these axioms 1s currently running at
Edinburgh, and 1is being used t: prove rather dofficuic theorens in meta
mathematics.

Our semantic thecry also forms the busis of Brown and Schwind'z

[22,23,24] theory of natural language understonding which s curcer

developed.

References

1.

2.

10.

11.

14.

15.

Kowalski, R. "Predicate Logic as programming langnage.' Proceedings
IFIP, 1974.

¥y
Bibel, W. "Predicative Programming," Tnstitutsbericht, TU Munchen
Abteilung Mathematik, 1974.

Hewitt, C. '"Description and Theoretical Analysis of PLANNER:" A Language
for Proving Theorems and Manipulating Models in a Robot AI~TR-258 1972,

Boyer, R. 8. and Moore J. "The Sharing of Structure in Theorem Proving
Programs, Machine Intelligence’ ed meltzes and Michie, 1972.

Moore, J. "A Programming Language for Structure Sharing" Chapter 6 of
"Computational Logic: Structure Sharing and Proof of Program Properties
Part 1 DCL Memo No. 67, 1973.

Battani, G. and Meloni H. "Interpreteur dur language de programation
PROLOG" Groupe de 1'Intelligence Artificiells U.E.R. de Luming,
Marseille 1973,

Roassel P. "PROLOG: WManuel de Reference et d'utilisation’ Groupe
d'Intelligence Artificielle, U.E.R. de Luming, Marseille, 1975,

THrnlund, S. A. "An Interpreter for the Programming Language Predicate
Logic, Proc. of TIJCAIS. Tibihsi 1975

Warren, D. "Implementing Prolog-Compiling Predicate Logic Programs'
DAL report 39 University of Edinburgh 1977.

Perevia L. M., Pervevia F. C. N. apnd Warren D. H. P.
Users Guide to Dec System-10 PROLOG DAI report.
University of Edinburgh 1978

Futo, I., Darvas, ¥., Szeredi., P. "The Application of Prolog to the
Development of QA and DBM systems' Logic and Databases
ed Ga-~laire, H and Minker J.

Gallaire, H. and Minker J. Logic and Databases. Plenum Press
New York 1978,

Tarnlund, Sten dke 'Logic Informarion Processing' rech report., Department

of Information Processing and Computer Science. The Royal Institure of
Technology and the University of Srockholm. 1975.

Clark K. and Tranlund S. A. "A First Order Theory of Data and Programs
IFIPP77 Toronto 1977.

Hansson A. and Tarnlund S-A "A Natural Programming Calculus” TUCAI6
Tokyo 1979,

16.

17.

18.

15,

20.

21.

22.

23.

24,

Tarski, A. "The Concept of Trurh in Formalized Languages.," (1931),
Logic Semantics, Metamathematics, trans. by J. H. Woodger, Oxford,
Clarendon Press., 19536.

1o 5
1

Brown, F. M. he Theory of Meaning." DAT Reseavch Report 35, 1977.
Brown, F. M. "A Theorem Prover for Metatheory"
Proceedings of the Fourth Workshop on Automated Deduction.”

Austin, Texas 1979.

Brown, F. M. "A Sequent Calculus for Modal Quantificational Logic,"
3rd AISB/GL Conference Proceedings, Hamburgh, July, 1978.

Stalnaker, R. C. "A Theory of Conditionals," Causation and Conditrionals,
ed. E. Sora, Oxford University Press, 1975.

Schwind, C. "Representing Actions by a Modal Tense Logic,” 3rd AISB/GI
Conference Proceedings, Hamburgh, 1978.

Brown, F. M. and Schwiad, C. "Analyzing and Representing Natural
Language in Logic," 3rd ATISB/GI Confereunce Proceedings, Hamburgh, 1978,

-

Brown, F. M. and Schwind, €. "Towards an Integrated Theory of Natural
Language Understanding." to appear in Computational Linguistics
Conference Proceedings, Bergen, 1978.

Brown, F. M. and Schwind, C. "Ourline of an Integrated Theory of
Natural Language Undervstanding” ro appear as DAT Research Report 50.

