A Deductive System for Real Algebra

Frank M. Brown

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas

TR 141 March 1980






A Deductive System for Real Algebra

Abstract

We describe an automatic theorem prover for real algebra which is based
on Symmetric Logic. Symmetric Logic unlike Sequent Logic, Natural Deduction
and Resolution, is based on treating the universal and existential quantifiers
analogously, and on treating conjunctions and disjunctions analogously. Proofs
of various theorems of real algebra involving mathematical induction have been

obtained.
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Introduction

Tn the past two decades three basic types of logical inference systems
have been proposed:

(1) Resolution systems such as Robinson [1]

(2) Natural Deduction systems such as Bledsoe [2,3]}, and Pastre [4,5]
and (3) Sequent Calculus Systems such as Brown [6,7,8,9,10,11,12,13],

and Bibel [14].

However, these three basic types of systems are similar in that they are
all based on representing logical sentences in some specific Skolem Prenix
Normal Form [9] and performing deduction by use of a unification algorithm
[1,9]. For example Sequent Logics and Natural deduction systems put theorems
into Skolem Prenix Conjunctive Normal Form, and resolution: (via duality)
can be said to put theorems to prove into Skolem Prenix Disjunctive Normal
Form.

Qur experience with such systems [6,7,8,9,10,11,12,13] has convinced
us that any system such as these which are based on the Skolem Prenix Normal
Form and unification possess a number of inherent defects.

1.1. The Equality interface defect

One problem is that usch systems do not interface existential
quantifiers in a goal to equality in the same efficient manner in
which universal quantifiers are interfaced to equality. For example
our sequent logic based number theory theorme prover [6,7] treats a
universally quantified goal expression like -(¥x¢x Yx) as follows.
First, the all sign is eliminated by the > vV rule creating a Skolem
constant "a".
~+pa Ya

 Next the implication sign is eliminated with the - rule making ¢a
an hypothesis: ¢a ~» VYa

Next the system tries to rewrite ¢a as an equation of the form a=t



where "a" does not occur in "t": a=t - VYa

Finally, a=t is eliminated by the => rule replacing all occurances

of a by t. The result of all this is to simplify the original goal

without any search by decreasing its quantificational complexity in
a manner which leaves a new subgoal ¢t to prove which is equivalent
to and simpler than the original subgoal. For this reason the interaction
of the » ¥ and =+ rules contribute significantly to the theorem provers
ability to prove theorems containing universal gquantifiers.

Consider now how existential quantifiers in a goal are treated
by this number theory theorem prover: - dx{¢x a¥x)
Tirst the >~ § rule creates a copy of that goal containing a new unification
variable:
»g x(dx a¥x),d, a¥,
The copy is then split by the - a rule resulting in two sequents:
+ gx(éx a¥x), o, +q x(¢xa¥x), ¥,
resulting in essentially another copy of the original goal. An
additional indeterminite number of further copies may be added by
repeated applications of the - g and -a rules.

Let us suppose now that ¢x can be manipulated into the form *=t
where ¥ does not occur in it.
> g x(ox a¥x), =t » gx(éx a¥x), Y,
Our Number Theory Theorem Prover would then try to unify these sequents
by findding substitution instances for the unification variables which
would make these sequents tantologous. For example if t were substituted
for ¢ the first sequent would be tantologons 1eavigg only the second
sequent - gxoéx a ¥x, Yt

Although this looks rather efficient it isn't in a complex theorem

in which many sequents and unification variables are produced, became in



this case the substitution L for ., 05 only onc off many ponsih e

substitutions which might solve a given sequent, and the system has
no way of choosing the right one. ©Note also that this substitution

does not make the second sequent tantologons and so might not even

be among the possible substitutions. Thus we see that existential
guantifiers are not interfaced to equality in an efficient manner.

The Conditional item interface defect

A second problem is that existential quantifiers are not interfaced
to conditional items in a reasonable manner as are universal quantifiers.
Consider for example a conditional item relating to a sort C:
Cx » tx=sx
which indicates that we want to replace tx by sx whenever x is of
the right sort.
In the case of a universal quantifier our goal might be:
> ¥ x(Cxo¢(tx)):
which by - V and then -2 becomes,
> Cam¢(ta)
Ca > ¢(ta)
The item is now easily preformed by searching the hypotheses in that
sequent for a sentence; namely Caj; which matches the Cx sentence of
the conditional items. However, this check is not easily performed in
the case of éi existential quantifier in a goal:
+ix Cx Adtx
Using the - i and then the » A rulcs once we get:
+( 9 xCx Adtx),C* o ot¥
and then:

+( @ xCx adtx),C¥ (T xCx adtx),ot¥



1.3.

Now, however it is practically impossible to retrieve the fact that
% in ¢ty is in fact of sort C, and thus we cannot apply the conditional
Ptem Lo T
Summary
We have shown that logical deduction sgystems based on the Skolenm
Prenix Conjunctive normal form have some inherent defects. Our
experience with automatic theorem proving convinces us that for equational
theories or theories with many sorts, that these defects will be crucial.
For this reason, we have begun to experiment with a new kind
of logical system called Symmetric Logic which treats Universal and
Existential quantifiers in strictly analogous ways. This new logic
is described in section 2 of this paper, and is applied to proving
theorems in the eguation based theory of Real Algebra. Some example

proofs obtained by this theorem prover are given in Section 3.



Description of the Theorem Prover

Our theorem prover consists of an interpreter for mathematical expressions
and many items of mathematical knowledge. This interpreter is a fairly
complex mechanism, but it may be viewed as applying active items of mathematical
knowledge of the form: ¢ <> ¢ or ¢ = § to the theorem being proven, in
the following manner. The interpreter evaluates the theorem recursively
in a call-by-need manner. That is, if ( al...an) is a sub-expression being :
evaluated, then the interpreter tries to apply its currently active items
of knowledge to that sub-expression before evaluating the arguments al...an.
For each sub~expression that the interpreter evaluates, in turn in tries
to match the ¢ expression of an item tc that sub-expression. 1If, however,
during the application process an argument a, does not match the corresponding
argument of the ¢ expression, then a, is evaluated, and the system then
tries to match the result of that evaluation. If ever the interpreter
finds a sub-expression ¢6 which is an instance of ¢ of some active item,
then it replaces that expression by the corresponding instance Y6 or V.

At this point all memory of the sub-expression ¢8 is immediately lost and

the interpreter now evaluates y8. If no active items can be applied to

a sub-expression then the sub-expression is not evaluated again but is simply
returned.

For example, if
X+ 2z =y +z<>x=y
x < I

are the only items, and if they are listed to be used in that order, then

i

and x

evaluating the theorem

ytz=y+z2

will initially cause it to be replaced by:
y=v

A1l memory of the subexpressions y + z =y + 2z is immediately lost upon



its replacement by y = y and thus the interpreter does not attempt to
apply the second item to y + z = y + zZ.

This interpreter has been used to prove theorems in several mathematical
domains including number theory [6,7], set theory [8,9,10], meta mathematics
[11,12], and Intensional Logic [13]. The items used by the interpreter in
a particular domain are intendea to be theorems of that domain. Thus for
example, if {j is a conjunction of axioms for a particular domain, and if
$ <> ¢ is an item used in that domain, then | -(¢ <> ¢) should be logically
valid.

Sometimes it will be the case that our interpreter will need to use
items which are valid only in certain sub-domains of a given domain. For
example, in real algebra, if we wish to prove theorems involving natural
numbers (note that a natural number is a type of real number) it would be
guite useful to_have available items which are valid only in the domain of
natural numbers, or more precisgely when certain free varlables occuring in
the item are reétricted to being natural numbers. The representation of
the item would be:

(Nat n)>(¢n <> yYn)
More generally then, if we wish to use an item @x <> Px (or éx = Yx) where
x is restricted to the subdomain Iix, then we represent it by a conditional
item:
Ix » (¢x <> Yx)

or TIix » (¢x = yYx)
Note that (|'ATx) + (¢x +> Px)

or (ATIx) > (¢x = Yx)
should then be logically wvalid.

The interpreter handles conditional items in the same way in which it
handles non-conditional items until it has found a ¢8 which matches the

sub-expression being evaluated. At this point on a conditional item, the



interpreter tries to match each element in the conjunction Ilx with some
expression which it believes to be true. If such matches are found with
substitution 8¢ then Y60 is returned. Otherwise the interpreter tries to
apply another item as previously described.

The use of conditional items thus provides a general method of
restricting the free variables of an item to a particular sub-domain. »
Its only disadvantage is that the amount of extra matching it forces the
interpreter to perform. In order to minimize the amount of matching on
the most common sub-domains we allow those sub-domains to be indicated by
a particular style of variables.

At any given time an item may either be active or inactive. When an
item is active it is at that time available for use in the evaluation process,
but when it is inactive the interpreter simply ignores it. Items can be
caused to be activated or deactivated by the interpreters use or even
attempted use of other items. This in effect items cause the activation
or deactivation, as the implementor specifies, of other items.

The purpose of allowing items to activate or deactivate other items
is to allow a group of items to work toward achlieving a common goal. Tor
example in order to minimize the scope of quantifiers the subformula of a
universal gquantifier should be put into conjunctive normal form, whereas
the sub-formula of an existential quantifier should be put in disjunctive
normal form. To achieve this the evaluation of a universal quantifier
activates the distributive law

((paq)vs) < ((pvs) (qvs))
and deactivates other distributive law:
((pva)as) < [(pas)v(qgas)]
whereas the evaluation of the existential quantifier does Jjust the reverse.
Tables of rewrite rules, rather simple items represented in ones

mathematical language and other items were used in many of Bledsoe's theorem
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provers [2,3]. Boyer and Moore [15] used a symbolic LISP interpreter to
order the application of various recursive definitions, rewrite ruies, and
induction rules.

'This Theorem prover uses both logical and Real Algebraic Knowledge.
We first describe the items of logical knowledge in section 2.1 and the

items for real algebra in section 2.2.

2.1. Symmetric Logic

Symmetric Logic is based on the idea that universal and existential
quantifiers should be treated analogously, and that conjunction and disjunction
should be treated analogously. Thus, instead of trying to manipulate goals
in gskolem prenix conjunctive normal form (The conjunction of sequents with
each sequent being a disjunction) it manipulates quantifiers into miniscope
form without any skolemization. The sentence argument of & universal
quantifier is put into conjunctivenormal form, and the sentence
of an existential quantifier is put into disjuctive normal form so as to
allow the quantifiers to pass thru that conjunction or disjunction using
the Laws:

VX  ¢x a Px <> VX A VXYX

Ax  ¢ox v Px > dxdx v dxyYx
Since quantifiers are pushed to as low a scope as possible it follows that
they will appear in front of either a disjunction or conjunction of either
a literal or a anntified sentence:

¥x Hx v Yx
qx ¢x A Px
Thus if for example ¢x is an equation x = t

yxwx =t v Px

i

X X t A YPx

we can now use the laws:



t oo yx) >yt

i

(V¥ xvx

il

(@x x = t ayx) <~ Pt
to reduce the quantificational complexity of those goals. This solves the
equality interface p;oblem.

Suppose now that ¢x is a sort predicate Cx for some conditional item

Cx - tx =sx

then when we see tx all we need do is search the disjunction ~véxvyx if
x 1s universally quantified, or search the conjunction ¢xayx if x is
exisistentially quantified. Thus, Symmetric logic also solves the conditional
item interface problem. ’

The syntax of symmetric logic consists of ten logical symbols which

are listed below with their English translations:

A and

v  or

~ not

B true

t: false
- implies
<> 1iff

7 there exists
v for all
% entails

The items for Symmetric Logic are listed below.



2.2.1.

Conjunction Laws:

PCAL:
PCAZ:
PCA3:
PCAL:
PCAS:
PCAG:
PCAT:
PCA8:
PCA9:
PCA1O:

PCAI1L:

";;)}ApHp
Oarp 0
(pvag)as <> (pvs)algvs)

(p o q) as <> palqgas)

salpvag) < (svop)alsva)
PA «oe ADACee > ous AD AL

NP Acese AD Awo. > !

P A AND A >

{ x =1t a APX A... <> x =t a
‘:;

[ Pxa aAx =t a <+ Pt a..

w

10

Identity of conjunction
Zero of conjunction
Distribution of conjunction
over disjunction
Assositivity of conjunction
Zero of conjunction
Identity of conjunction
Distribution of conjunction
over disjunction
Tdempotency of conjunction

Inverse of conjunction

Inverse of conjunction

conjunctive equality



2.1.2.

Disjunction Laws

PCO1: Gvp<— B

PCOZ: Ovp<rp

PCO3: (pag)vs <> (pvs) a(qvs)

pcok:  (pvqg) v s <> pv(gvs)

PCO5: pvé<— B

Pco6: pv i <0

PCOT: sv (pag) <> (s vop)alsva)

PCOB: PV vee VP Vees <> ...V D Vaun

PCO9: PV ... vupv... <> @

PCO10: Apv...vpv... <> @

PCO11: ‘%(mx = t)v...vPx <« ((x=1) Ptv
2 Px v ... v(wx = t)v <« (Pt)v...v( x =

%

11

Zero of disjunction
Identity of disjunction
distribution of disjunction
over conjunction
asgocitivity of disjunction

Zero of disjunction

Identity of disjunction

digtribution of disjunction

idempotency of disjunction
inverse of disjunction

inverse of disjunction

disjunctive equality



2.1.3.

Negation Laws

PCN1:
- PCN2:
PCN3:
PCNL:
PCN5:
PCN6:

PCNT:

A RS

v (pag) > wpvng
v (p v q) <3 VP ang
N YxPx < gxVvPx

v IxPx <> ¥xWPx

VU p > p

:DeMorgans Law

12

Truth teble

:Truth table

:DeMorgans Law
:Generalized DeMorgans Law -
:Generalized DeMorgans Law

:Double negation



2.1.k.

Universal Quantification Laws
PCALD: ¥xPx A Qx <> ¥xPx A VxQx
PCAL?: VYXp <> D

PCAL3: vyx(...vgv...) <> qwx(...v...)

PCALL:  vx(Pxvx#tvQx) < (Ptvt#tvQt) : Universal equality

PCAL1, PCAL2, PCAL3, PCALL all:
1. activate PCO3, PCOL, PCO10, (Basevar X)
5. deactivate PCA3, PCAT, PCA9, PCl0, (Basevar x)

Whenever symeval quits trying to apply a PCAL law these PCO and PCA

13

laws are restored to their previous activation states automatically.



2.1.5.

14

Existential Quantification

CPCEX1: HExPxvQx <= #ExPxvidxQx

PCEX2: {Hxp <> p
PCEX3: Hx(...aqh...) <> gadx(...a...)
PCEXL: dx(Pxax=taQx) <= (Ptat=taQt) : Existential equality
PCEX1, PCEX2, PCEX3, PCEXL all:
1. activate PCA3, PCAT, PCA9, PCA10, (Basevar x)
2. deactivate PCO3, PCOT, PCO9, PCO10, (Basevar x)
Whenever symeval quits trying to apply a PCEX law these PCA and PCO

laws are restored to their previous activation states automatically.



2.1.6.

2.1.7.

Implication Laws

PCIF1:

(p=q) <> (vpvq)

Bi Implication Laws

PCIFFl:
PCIFF2:
PCIFF3:
PCIFFh:
PCIFF5:

PCIFF6:

(M p) <
(O p) < p
(p<>@) <0
(p <= [J) ~p
(p<>rp) W

(p <+ a) <> ((vpva) a (navp))

definition

truth table
truth table
truth table
truth table
equivalence

definition



2.1.8.
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Metalogic Laws
Three laws of our metalogic [11,12] are used.
V1: ,(»-AR &~ n

V2. %‘R tj*ﬁ- [] assumes that the axioms of real algebra are consistent
OR. (i.e. ~FAR)

The symbol %“ is interpreted as the modal concept of logical truth. R is
the conjunction of all items in our theorem prover. Thus %'Rp is interpreted
as meaning that p follows from these items by the laws of iogic. A more

detailed description of this metalogic is given in [11,12,13,16].



2

2.
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Real Algebra

Qur Real Algebra consists of the following algebraic symbols which are

listed below with their English translations:

+ Plus
Times
- Unary minus

- Binary Subtraction

/. division
4 exponentiation
= equality

The algebraic laws used by SYMEVAL are given in the succeeding subsections.
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Plus Laws
RP1: 0 + x =%
RP2: X+ 0 = x

RP3: (x+y) +z=x+ (y + z)

*RPL : r§(§¢—1)°x S m,'(§}~l)'x n - J Ym-K K- j#—l . X

RPh includes all lemma schemas obtained from the sdove by omitting
sub~-pieces of it.

For example: DX+ ..odm " x=nt+tm  x

is inherent in RPL,

¥note--a double bar is written over any expression which evaluates to

a numeral.
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Times Laws
RM1: O - x =20
RM2: X * 0 =0
RM3: 1+ x =X

RML: x

—
i
»

RM5: (x ' y) -z =x"* (y " z)

RM6: n m=n *m
RM7: n - (m+x) =10 -m-*x
RM8: x ° no=n - x (if x is not a numeral)

EMG: x ° (E:- y) = no o (x - v) ( if x is not a numeral)

¥RM10: Vfg-'...'vf; = ...'vm-+n
(if v is a variable, sign [m] = sign n])
note: V'..G'V¢;:.. = ...'v%gj:fif,..
v+;:...'v = Vfgéfif

V e Ve = ... VE2
are all inherent in RMI1O.
RM11: (-x * y) = -(x " ¥)
rRM12:  (x-y) = ~-(x-y)
7z ig of the form ;:or gk—l or

b variable v is in x + y and the
RMLL: z+(x +y) =2z * x+ 2z * y ! (BASEVAR v) strategy is active

RM13: (x + y)-z

it

>
-
+
e

.

¥RM15: 1 - ... * (mt-1) = n/GCD[om] ... (m/GCD[nm] -1)

RM16: nt-1 « mi-1 = n-mi-1

RMLT: nt-1 * (mi-1 *x) =n - mt=1 * X
x is not of the form n or n -1

RM20: v * X =X * V
:> v ig not in x and {(Basevar v) is active
RM21: v ° (x - y)=x"° (v y)



2.2.3. Minus Laws
RMINl: —(-x) = x
RMINZ2: -(x + y) = (=x) + (-y)
RMIN3: =-n = -n
RMINL: -(n + %) = (-n - x)

2.2.4. Subtraction Laws

RSUBl: x-y = x + (-v)

2.2.5. Division Laws

RQUOLl: x/y = x' (y4-1)



2.2.6.

Exponentiation Laws

REXP1:
REXP2:
REXP3:
REXPL :
REXP5S :
REXP6:

REXPT:

REXP8:
REXP9:

REXP10:

 REXP11:

xto =1
xt1l = x
1tx =1
Otn =0  if (nZ0)
(x+§d+§i= xAn-m if (n,m are > o)
(xey)4n = (xtn)-(y+n)
_ n |[u
(x + y)tn =3 k) ° (xtn) - (y+{n-k))
k=0
(Binomial Theorem) if (n>o)
ntm = n°(n4(m-1)) (if n#0, m>0)
ntm = (nt-m)4-1 (if n#0,m<-1)
nt-1 = (=(-n+-1)) (if n<0)

nt{x + v) = (ntx) - (nty) (if n#0)

21
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2.2.7. Equality Laws

REQl: x = x <>
REQ2: no=m > (if n # m)
REQ3: (n'x)=y < =((nt-1)-y)
REQL : ng((+...('...x4\-—}1:...)...) =y > (x=0v xtn o = xtn  B)
R "“\V/ - 4 }
o g\ Alx =0+ o= B)

Loy (et

. oy o)) = R
REQS: zif( nlxl)...( n, x ,)’ ‘F+( m, yl)...(mJ + yJ?Z
e it N i
o B

<> GCD[mn]t-1 + o = GOD{mm]4-1 - B

(if Geplmn] # 1)

{(note: if n, or nj is omitted its treated as '1')
KREQE:  (+...xe. )=y <o (4. ) = (=x) +y

(it (Basevar v) is active and véx)

(Thus REQH is a Demon)
REQT: v = (#...x...) > (~x) + 3y = (+... ...)

(if (Basevar v) is active and vex)
REQ8: ~v = x<4+v = -Xx (v ig a variable)

REQ9: -1 * v = x<>v = -x (v is a variable)

2.2.8. Miscellaneous Algebraic Laws

RALL: Vx(+...(c.f )...(c -f )...) = (+...(a

1T, ot l-fx)...(dm'fx)...)

<> + ..t = + ..+ AF(Fo.. v o) = (4,
Cl’, . dl dm e ( ) (

(if all the bases are independent and c c, %d;..,dm are all

R

the coeficients with an fX base)

~—t



Vx:

Vx:

Hx:

: RCO: [x

Rallinduct: Vnén <> (do a Vn(¢n - ¢nt+l))
This law activates fertilization.

Fertilize: ‘(x+y = z » xtu = v) <> z-vhu = v

Where P is the symbol being recursed upon in the induction step.

deactivates itself.

Rallinit: mno item

%

23

Tertilize

This law activates REQ3 , REQ6 » REQ7 , and (Basevar x) in order to try

to solve for x.

Rexinit: mno item

This law activates REQ3 , REQ6 » REQ7 » and (Basevar x) in order to try

to solve for x.
, n n-1
Sigma:' i <mn > I, f = ( E.f‘) £
< k—*l
(i>n> 3 £,=0
k=1

x!

{y} y! (x=y)!
RFACYI: (n + 1)t = (n + 1) - n!

RFAC2: 0@ =1
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3. Examples

This theorem prover has proved a number of interesting theorems in
Real Algebra. In this section we presenit two such theorems:
The first is R23 which states that for all natural numbers -s the sum as

k goes from zero to n of three to the Kth power equals ((n+13)~1)/2:

ot g g k_ 3
R23: | {vn ) 3 = (n+1)7-1}
R k§o 2

The second theorem is

RIS which states that there exist terms %, y, z. u. v, and w such that the
following is true in real algebra: for all natural numbers n the sum as

k goes from (@ to n of k to the fourth power equals the polynominal:

5 b 3

x*n” 4+ y-n + z-'n~ + u~n2 + ven oy
n
_ L L 2
RIS:  Ex{Eydz dudviw FR( n) ok ZX“HB tyron z‘n3 Tun Tyt
) k=1
It should be realized that RI5 implies but is not obviously implied by:
L 5, . b 3 2 :
FR{HXHYHZBUEVHW yh ? k Txn tyvn *tznl tumn tug T
k=1

because the theory of real algebra is not a complete theory.

The difference between these two sentences is somewhat like the
difference in the sentences: There is someone whom I know to be a SpV:
gxkk(Spy x) I know that there is a spy: | kdx(Spy x). If there is someone
whom you know to be a spy then clearly you know that there is a spy but the
converse is rarely true.

3.1 The Proof of RZ3

The proof of R23 is presented in full detail as a linear list of
input and output formulas labeled ag In: or On: respectively. The
natural number n in each label refers to the recursion level within the
theorem prover. Thus each In: label is followed by an On: label
which contains on its line a formula which is equjvalént to the formula on
the line containirg that input label. The theorem prover produces the
output line by applying one or more items to the formula on the input line

and possibly evaluating subformulas of the formulae recursively.



coefl

. 25
TYPE R23

I:1 (ALL N (EQUAL (SIGMA K <3 (0) N (EXF (3) K))3 {QU0 (SUE CEXP (3 (FLUS N8 1)
)y (1)) (23

122 (EQUAL (SIGMA K (= (0) N (EXP (3) K))) (QUO (SHE (EXF 3> (FLUS N iy 1
(2) 0N

153 (SIGMA K (3 (0) N (EXF (3) KD

03 (SIGMA K (3 (0) N (EXF (3) K22

1:3 (QUO (SUR (EXP (3) (FLUS N (1))) (1)) 20

D3 (TIMES (SUB (EXF (3) (PLUS N (1)) (1)) (EXF (2) (~13)) <

(TIMES (3) (EXF (3) N))

(TIMES (3) (EXF (3) N))

(EXF (3) N)

(EXF (3) M)

(TIHES (3) (EXF (3) N))

(MINUS (1))

(~1)

(FLUS (TIMES (3) (EXF (3) N)) (-1))
(FLUS (TIMES (3) (EXF ¢3) N)) (-1))
(TIMES (3) (EXF {3) N))

(EXF (3) M)

(EXF (3) N)

(TIMES (3) (EXF (3) M)

(FLUS (TIMES (3) (EXF (3} N)) (-1))
(EXF (2) (=1))

(EXF (2) (=1))

(TIMES (EXP (2) (=1)) (FLUS (TIMES (3) (EXF (3) M)} (=1

s ®® 8B %0 e

183 (TIMES (SUB (EXF (3) (FLUS N (1))) (1)) (EXP (2) (-1)))
134 (SUB (EXF (3) (FLUS N (1)) (1))

034 (PLUS (EXF (3) (FLUS N (1)) (HINUS (1027
124 (FLUS (EXP (3) (FLUS N (1)) (MINUS (1) 2
185 (EXP (3) (FLUS N (1))

116 (PLUS N (1)) '

0sé (PLUS N (1)

0:5 (TIMES (EXP (I) N) (EXP (3) (1))

155 (TIMES (EXP (3) N) (EXP (3 (1))

186 (EXP (3) M)

026 (EXF (3) W)

186 (EXP (Z) (1))

0:6 (3B

0:9

1:5

124

Dsé

05

1:5

OO OO b b O
[ +:] aE %3 w8 “u &8 [T} (13 1] na s
Ot & & b LA OO LA b b R

(TIHES (EXP (2) (1)) (TIMES (3) (EXF (3) M)}
(EXF (2) (1))

(EXP (2) (-1))

(TIHES (3) (EXF (3) N))

(EXP (3) M)

(EXP (3) N)

(TIMES (3) (EXF (1) N))

(TIMES (3) (TIMES (EXF (2) (=13) (EXF (3) )}
(TIMES (3) (TIMES (EXP (2) (-1 (EXF (3} )b

133 (TIMES (EXF (23 (~1)) (PLUS (TIMES (3) (EXF (3) N (=1)))

I:4 (EXF (2) (-1))

D:4 (EXP (2) (-1))

14 (FLUS (TIMES (3) (EXF (2) N)) (-1))

135 (TIMES (3) (EXF (3) N))

136 (EXP (3) N)

016 (EXF (3) N)

025 (TIMES (3) {EXP (3) N))

034 (FLUS (TIMES (3) (EXF (3) N)) (-1))

0:2 (PLUS (TIMES (EXP (2) (-1)) (TIMES (3) (EXF t3) N))) (TIHES (EXF (2) (-1)) ¢
-1))) :

133 (PLUS (TIMES (EXF (2) (~1)) (TIMES (3) (EXF (3} N})) (TIMES (EXF (D) (~1)) ¢
-1

B B A0 NN b~ Lod O B IO O LD D B
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- 00Ot bt (D 00 OO bt (D bt bt bt B et 4 (T (O 0 bt bt O et b 00O 0 O

15 (TIMES (EXP (2) (-1)) (EXF (3) N))

26 (EXP (2) (~1))

16 (EXF (2) (~1))

16 (EXF (3) N)

16 (EXF (3) N)

15 (TIMES (EXP (2) (~=1)) (EXP (3) N))

14 (TIMES (3) (TIMES (EXP (2) (-1)) (EXF
14 (TIMES (EXF (2) (-1)) (~1))

$5 (EXP (2) (~1)) ‘

$5 (EXP (2) (-1))

$4 (TIMES (-1) (EXP (2) (=1)))

t4 (TIMES (-1) (EXF (2) (-1)))

1S (EXP (2) (=1))

1S (EXP (2) (~1))

14 (TIMES (-1) (EXF (2) (-1)))

:3 (PLUS (TIMES (3) (TIMES (EXF (2) (-1))
1))

23 (PLUS (TIMES (3) (TIMES (EXF (2) (-1))
1))

24 (TIMES (3) (TIMES (EXF (2) (~1)) (EXP
15 (TIMES (EXP (2) (-1)) (EXP (3) M)

26 (EXF (2) (~1))

16 (EXF (2) (1))

14 (EXF (3) N)

16 (EXF (3) M)

$5 (TIMES (EXP (2) (-1)) (EXF (3) N))

24 (TIMES (3) (TIMES (EXF (2) (-1)) (EXF
24 (TIMES (~1) (EXF (2) (~1)))

15 (EXP (2) (-1))

15 (EXP (2) (-1))

14 (TIMES (-1) (EXF (2) (~1)))

$3 (FLUS (TIMES (3) (TIMES (EXP (2) (~1))
1))

£2 (EQUAL (SIGHA K (2 (0) N (EXP (3) K)))

y (EXF (3) NY)) (TIMES
(2) (=11

I:2 (EQUAL (SIGMA K (2 (0) N (EXF
) (EXP (3) N))) (TIMES (-1) (EXP"Z
(2) =1

133 (SIGMA K (= (0) N (EXF (3) K)))

013 (SIGMA K €z (0) N (EXF (3) K)))

153 (FLUS (TIMES (2) (TIMES (EXF (2) (-1))

(=1) (EXF~Z

(3) K23

26

133 N
(EXF (3) N)») (TIMES (-1} (EXP () (-
(EXF (2) MY (TIHES (-1) (EXP (2} (-
P33y NI
3 MY
(EXF (3) M) (TIMES (-1) (EXF (2) (-

(FLUS (TIMES (33 (TIMES (EXF (2) (-1)

(FLUS (TIMES (3) (TIMES (EXP (2) (-

1)

(EXFP (3) NYY) (TIMES (-1} (EXP (2) (-

1)
It4 (TIMES (3) (TIMES (EXF (2) (=1)) (EXF (3) N)))
I35 (TIMES (EXP (2) (~1)) (EXP (3) M))
136 (EXP (2) (~1))
0:6 C(EXP (2) (-1))
I:6 (EXP (2) N)
016 CEXF (3) N)
05 (TIMES (EXP (2) (-1)) (EXF (3) N))
0:4 C(TIMES (3) (TIMES (EXP (2) (-1)) (EXP (3) N)))
Is4 (TIMES (-1) (EXF (2) (-1)))
155 (EXP (2) (-1))
0:S (EXP (2) (-1))
0:4 (TIMES (-1) (EXP (2) (~1)))
0:3 (PLUS (TIMES (3) (TIMES (EXP (2) (~1)) (EXP (3) M))) (TIMES (~1) (EXF (2) (-
1))
022 (EQUAL (SIGMA K (2 (0) N (EXP (3) K))) (PLUS (TIMES (2) (TIMES (EXP (D) (-1)
) (EXP (3) NI)) (TIMES (-1) (EXF™7
(2) (=11
O:1 (AND (EQUAL (SIBMA K (3 (0) (0) (EXP (3) K))) (FLUS (TIMES (X) (TIMES (EXP ¢
2) (=1)) (EXF (3) (0)))) (TIMES ~Z



27

(=1) (EXP (2) (=1)3))) (ALL N (IF (EQUAL (SIGMA X 3 (02 M (EXF ¢3) K¥)) (PLUS ¢
TIMES (3) (TIMES (EXF (2) (-1)) ~Z
(EXP (3) N))) (TIMES (-1) (EXP (2) (-1))))) (EQUAL :SIOMA K (% (0) (FLUS N (1))
(EXP (3) K))) (PLUS (TIMES (3) (~Z
TIMES (EXF (2) (~1)) (EXF (3) (FLUS N (1))))) (TIMES (-1 (EXP 12y (~1)))))))
I:1 (AND (EQUAL (SIGMA K (2 (0) (0) (EXF (3) K))) (FPLUS (TIMES (3) (TIMES (EXF (
2) (1)) (EXF (3) (0)))) (TIMES ~Z
(1) (EXF (2) (-1))))) (ALL N (IF (EQUAL (SIGMA N (3 0} N (EXF (3) K))) (PLUS ¢
TIMES (3) (TIMES (EXF (2) (~1)) ~Z '
(EXF (3) N))) (TIMES (~1) (EXF (2) (~1))))) (EQUAL (SIGMA K ¢ (0) (FLUS N 1))
(EXP (3) K))) (PLUS (TIMES (3) (~Z .
TIMES (EXP (2) (=1)) (EXF (3) (FLUS N (1))))) (TIMES (=1} (EXF (2) (-13))))3))
122 (EQUAL (SIGMA K (& (0) (0) (EXF (3} K)J)) (FLUE (TIMES (3) (TIMES (EXF (2) (-
1)) (EXF (3) (0)))) (TIMES i~1) ~Z
(EXF (2) (=1)))))
(SIGHMA K (2 (0) (0) (EXF (3) K)))
(SUE (0) (1))
(PLUS (0) (MINUS (1))
(PLUS (0) (MINUS (1))
(MINUS (1))
(MINUS (1))
(-1)
(PLUS (SIGHA K (3 (0) (~1) (EXP (3) R)¥) (EXP 22) 202
(FLUS (BIGMA K (5 (0) (~1) (EXF (3) K))) (EXF (32 0030
(SIGMA K (2 (0) (=1) (EXF (3) KO}
(0
CEXF (3) (0))
(EXF (3) (0))
1)
(PLUS (TIMES (3) (TIMES (EXF (2) (1)) (EXF (3} (0013 (TIHEG (~1) (EXP (7)
»»
(TIMES (3) (TIMES (EXF (2) (-1)) (EXF (3} (0))))
(TIMES (EXF (2) (-13) (EXF (3) (0))
(EXP (2) (~1))
CEXP (2) (=10
(EXP (3) (0))
(1)
JCEXE (2 (=1))
(EXP (2) (-1))
EXP (2) (=10
ST EE(TIMES (3) (EXF (2) (=1)))
o184 ATIHES (3) (EXF (2) (=1)))
TESHEXP (2) (-1))
03B AEXP (2) (-1))
O3&(TIKES (3) (EXF (2) (~-1)))
124 (TIMES (-1) (EXF (2) (~11))
CULeSHEXP (2) (-1))
D25 {EXP (2) (-1))
‘D24 CTIMES (-1) (EXF (2) (-1)))
L '0s3(PLUS (TIMES (4) (TIMES (EXP (4) (~1)) (1)) (0))
- [e3(PLUS (TIMES (4) (TIMES (EXF ¢4) (~1)) (133> 03
033 (TIMES (4) (TIMES (EXF {(4) (~1)) (1))
CTE3 (TIMES (4) (TIMES (EXP (4) (=1)) (1))»)
- 184 (TIMES (EXP (4) (=113 (1))
Ups4 (EXP (4) (-1))
It4 (EXP (4) (=-1))
(EXP (4) (-1))
(TIMES (1) (EXF (1) (-1)))
(TIMES (1) (EXF (1) (~1)))
(EXP (1) (-1))
(EXF (1) (~1))
(1)

™
®i
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@"\051 (ALL N (IF (EQUAL (SIGMA K (5 (0) N (EXF 133 K)3) (PLUS (TIMED (3) (TIMES (E

®

XP (2) (-1)) (EXF (3) N))) (TIME"Z
S (=1) (EXF (2) (~1))))) (EQUAL (SIGMA K ¢3 100 (PLUS M 1)y (EXF (3 K1)y (FLUS
(TIMES (3) (TIMES (EXF (2) (~13"Z
Y (EXP (3) (FLUS N (1))))) (TIMES (-1) (EXF (22 (-1)3)3))))
131 (ALL N (IF (EQUAL (SIGMA K (& (0) N (EXF <2) K)J)y (FLUS (TIMEZ ¢3) (TIMES (F
XP (2) (~1)) (EXF (3) M)y (TIME"Z
S (~1) (EXP (2) (=1))))) (EQUAL (SIGMA K 3 (O} (FLUS N (1)) (EXF (2) K))) (FLUS
(TIMES (3) (TIMES (EXF (2) (~1)"Z
) CEXP (3) (PLUS N (1))))) (TIMES (~1) (EXF (2) (-=1))))3)))
152 (IF (EQUAL (SIGMA K (3 (0) N (EXF (3) KJ)) (FLUS (TIMES (3) (TIMES (EXF M)
(-1)) (EXP (3) N))) (TIMES (-1) "Z '
(EXP (2) (-1))))) (EQUAL (SIGMA K (& 102 (FLUS N (1)) (EXF (3) K))) (FLUS (TIMES
(3) (TIMES (EXP (2) (-1)) (EXF "Z
(3) (FLUS N (1))))) (TIMES (-1) (EXF (2) (=1))i)))
0:2 (OR (NOT (EQUAL (SIGMA K (% (0} N EXF (3) K))) (FLUS (TIMES (2) (TIMES (EYF
(2) (~1)) (EXP (3) N))) (TIMES "Z
t-1) (EXP (2). (=1)))))) (EQUAL (SIGMA K (3 (0) (FLUS N (1)) (EXF (I} K))) (PLUS
(TIMES (3) (TIMES (EXF (2) (-11)"Z
(EXF (3) (FLUS N (1))))) (TIMES (-1 (EXF (2) (-1
132 (OR (NOT (EQUAL (SIGMA K (2 (0) N (EXF (3) K))) (PLUS (TIMES {3) (TIMES (gYm
(2) (=1)) (EXP (Z) N))) (TIMES 2
(=1) (EXF (2) (~1))2))) (EQUAL (SIGMA K 12 (0) (FLUS N (1)) (EXP 13) K))) (FLUS
(TIMES (3) (TIMES (EXP (2) (-1))"Z
CEXF (3) (FLUS N (1))))) (TIMES (~1) (EXF (2) (=123))))
I1:3 (NOT (EQUAL (SIGMA K (f (0) N (EXF (3) K))) (FLUS (TIHES (3} (TIMES (EXP ()
(=13} (EXF (3) N))) (TIMES (~1)"Z
(EXP (2) (1))
I:4 C(EQUAL (SIGMA K (2 (0) N (EXF (3) K))) (PLUS (TIMES (3) (TIMEE <EXP (2) (-1}
Y OLEXF (3) MDY (TIMES (~1) (EXP~Z
(23 (=121 ‘
1:5 (SIGHMA K (2 (0) N (EXF (3) K)))
:S (SIGMA K (2 (0) N (EXF (3) K)))
126 (PLUS (TIMES (3} (TIMES (EXP (2) (~1)) (EXF (3) N)}) (TIMES (~1) (EXF (2) (-
19N
156 (TIMES (3) (TIMES (EXF (2) (-1)) (EXF (3) M)
137 (TIMES (EXP (2) (~1)) (EXP (2) N))
1310 (EXF <2) (-1 )
0210 (EXF-{2) (=1))
1010 (EXF (3) )
0:10 (EXF (3) N)
(TIMES (EXF (2) (-1)) (EXF (3} a))
(TIMES (3) (TIMES (EXFP (2) (-1)) (EXF (2) M)
(TIMES (~1) (EXF (2) (~1)))
(EXF (2) (=1))
CEXF (2) (~-1))
(TIMES (=1) (EXF (2) (~1)))
(FLUS (TIMES (3Z) (TIMES (EXF ¢2) (=13 (EXF 132) N))) (TIMES (-1} (EXP (2) (-
) .
(EQUAL (PLUS (MINUS (TIMES (3) (TIMES (EXF (2) (=1)) (EXP (3) #)))) (SIGHMA K
(0) N (EXF (3) K))»)) (TIMES ~Z
(~1) (EXF (2) (-1
I:4 (EQUAL (PLUS (MINUS (TIMES (3) (TIMES (EXF (2) (~1)) (EXP (I} H)))) (SIgMas K
(2 (0) N (EXP (3) K)))) (TIMES ~Z
(-1) (EXF (2) (~1)1))
I:S (PLUS (MINUS (TIMES (2) (TIMES (EXF (2) (~1)) (EXF (3) sy (SIGMA K (1 «Q)
N (EXF (3 K)3)) - :
136 (MINUS (TIMES (3) (TIMES (EXF (2) (=1)) (EXF (3) N))))
026 (TIMES (-3) (TIMES (EXF (2) (-1)) (EXF (3) N2}
156 (TIMES (~3) (TIMES (EXF (2) (=1)) (EXF (3) N))
157 (TIMES (EXP (2) (=1)) (EXF (3) N))

55 B s (1 O N N O O N



1310 (EXP (2) (-1)) 29
0210 (EXP (2) (~1))

1:10 (EXP (3) N)

110 (EXF (3) N)

17 (TIMES (EXP (2) (-1)) (EXP (3) N))

16 (TIMES (-3) (TIMES (EXF (2) (-1)) (EXF (5 NI

16 (SIGMA K (32 (O) N (EXP (2) K)))

t6 (SIGMA K (2 (O) N (EXF (3) X))

1§ (PLUS (TIMES (-2) (TIMES (EXP (2) (~1)) (EXP (2} nN))) (SIBMA K (2 (00 N CEXF

(3) K))))

115 (PLUS (TIMES (=3) (TIMES (EXP (2) (~1)) (EXP (3) N))) (SIGMA K (: (0) N (EXF
(3) KM

126 (TIMES (~3) (TIMES (EXP (2) (-1)) (EXFP (3) M2

I1:7 (TIMES (EXF (2) (-1)) (EXP (3) M))

1210 (EXP ¢2) (-1))

0310 (EXF (2) (-1))

1:10 (EXF (3) M)

0210 (EXF (3) N

017 (TIMES (EXF (2) (~1)) (EXF (3) N))

0:é (TIMES (~3) (TIMES (EXF (2) (~1)) (EXF (3) N)))

116 (SIGMA K (2 £0) N (EXF (3) K)))

06 (SIGMA K (& (0) N (EXF (3) K)))

035 (PLUS (TIMES (-2) (TIMES (EXF (2) (=111 (EXP (3 fh)) (SIGHMA K (3 (0 N (EXF
(3) KM

:5 (TIMES (=13 (EXP (2) (=1)))

0
0
0
1
0
0

1:5

126 (EXF (2) (~1))

D& (EXP (2) (~1))

055 (TIMES (<1) {(EXP (2) (-1)))

N34 (AND (OR (EQUAL (2) (0)) (EQUAL (TIMES «EXF 2} 1)) (FLUS (TIMEE (=31 (TIME

S (EXF (2) (=1)) (EXF (3) W) (2

SIGMA K €2 (0) M (EXE (3) K))y3) (TIMES (EXF 2 li: (TIMED (-1) (EXF (2 -1
MY (IF (EQUAL (2) (0)) (EQUAL ~Z

(FLUS (TIMES (-3) (TIMEE (EXF (Z2) (-1)) CEYR (30 Myry (SIOMA K f3 0} M O(EXR 03
K))»)) (TIMES (-1) (EXP (2) (-1}7Z

3

T14 (AND (DR (EQUAL <2) (0)) (EQUAL (TIMES (ExP (2 13 (FLUS (TIHED {~%y (TIME
3 (EXP (2) (=1)) (EXP «3) t))) (2

SIGMA K (& (0) N (EXP (3) K)»))) (TIMES (EXp (2} o1 TTINEZ 1-1) (EXF €2y -1
1)) (IF (EQUAL (2) (0)) (EQUAL ~Z

(FLUS (TIMES (-3) (TIMES (EXF (2) (=1)) (EXp (33 Myxo (SICHA & o 103 M fEXR 0T
KY¥)) (TIMES (~1) (EXF () (~-1)7Z

331

115 (OR (EQUAL (2 (0)) (EQUaL (TIWES (ExF (Ir 1) (FLUS (TIMEE (-3) (TIMED (EX

B2y (~1)) (EXF (3) N))) (SIGhA™Z

K (2 (0) N (EXF (2) K))))) (TIMES (ExF (23 1)y «TIMES (-1} (EXp (2) (-12202%
I:6 (EQUAL (2) (O))
Osd (F)

0:5 (EQUAL (TIMES (EXF 12) (1) (FLUS (TIMES (-3 (TIMED VEXP Dy e~12) (EXF €23
NYYY (SIGHA K (% (O) N (EXFP (3272

K3313)) (TIMES (EXF (2) (1)) (TIMES «-1) (ERF 2} (-113320

715 (EQUAL (TIMES (EXF ¢2) (1)) (FLUS (TIMES -33 (TIMED (EXP 2y (-1} (EXF 02}
NYYY (SIGHA K (2 Q) N (EXP (3372

K33y (TIMES (EXP (2) (1)) (TIMES i-11 ENP o) vl Yy

Tig (TIMES (EXF (2) (1)) (FPLUS (TIMES (~3) (TIMES ([MD o2) (-1 (EXp (3) #23)
SIGMA K (3 (0) M (EXP (2Y K)iry)

In7 (EXF 2 (1))
Q7 N
I:7 (PLUS (TIMES (~3) (TIMES (EXF (Z) (-1)i CEXPT 0Ty oy fTInMy K ofr 0y M OEXR
() Koy o
1210 (TIMES (33 (TIRES (ExXP (2 (~13) (E®P (32 o3
211 (TIMES (EXP (23 (-1 (EXF 3) N2
1212 (EXP (2} i-102



20212 (EXF (2) (1))
1:12 (EXF (3) N
012 (EXF (3) W)
0:11 (TIMES (EXF (2) (~1)) (EXP (Z) N))
0810 (TIMES (=3) (TIMES (EXF (2) (1)) (EXP 30 a0
1210 (SIGMA K (% (0) N (EXF (3) K))»)
0:10 (SIGMA K (% (O) N (EXP (3) K)))
0:7 (FLUS (TIMES (=3) (TIMES (EXF (2) t-1)) (EXp @1

(3) K

0:6 (PLUS (TIMES (2) (TIMES (-3) (TIMES (EXF (Z) (-1):

(SIGMA K (1 (0) N (EXF (3) K)))~Z
3

I:4 (PLUS (TIMES (2) (TIMEE (-32) (TIMES (EXF «2) (-11)

(SIGMA K (2 (0) N (EXF (3) K)))~zZ
)

Is10-(TIMES (-3) (TIMES (EXF (2) (1)) (EXF (2) N
I:11 (TIMES (EXP (2) (~1)) (EXF (I A))

1212 (EXF (29 (~1))

0212 (EXP (2) (~-1))

1#:12 (EXF (3) N)

0212 (EXF (3) N

011 (TIMES (EXP (2) (=10 (EXP (Z) N

0310 (TIMES (~3) (TIMES (EXF (2) (-1)y (EXF (3 sy
027 (TIMES (-8) (TIMES (EXF (2) (-1)) (EXF (31 s
I:7 (TIMES (-6) (TIMES (EXF (2) (~1)) (EXP v3) NiJi
1210 (TIMES (EXP (2y (-1') (EXP (3) N

111 (EXF (23 (=1))

g1l (EXF (2} (-1

Y21l (EXP (3 M)

0211 (EXP (32 W)

0110 (TIMES (EXP (2) (~1)) (EXF (3} N))

07 (TIMEE (~3) (TIMES (EXF (1) (~1)) (EXF (I3 H))»
I:7 (TIMES (-3} (TIMES SEXP (13 (=1)) {EXF (3) M)
1210 (TIMES (EXF (1) ¢-13) (EXP (3> N))

Irll (EXP (1) (-1

011 )

0810 (EXP (3} A

I310 (EXP (Z) N

0:10 (EXP (3) A

0:7 (TIMES (-3) (EXP (31 M)

I:7 (TIMES (=3) (EXF 3: M)

I210 (EXF (3) W)

0510 (EXP (3) N

0?7 (TIMES (=3) (EXP (I3 s

I:7 (TIMES (2) (8IGMa K 12 (D) N EXF (3
I210 (SIOMA K (5 (0Q) N (EXFP 13 K

0210 (SIGMA K (= (0)Y M (EXPF 3y K)o

027 (TIMES (2) (SIBMA ® % 0y N (EXP (3) 8y
D26 (FLUS .(TIMES «-2) (EXF ¢3) N))Y «TIMES 20
Isa (FPLUS (TIMES (~32) (EXF (3) M)) (TIMES 23
I27 (TIMES (-3) (EXP (3} N2

1210 (EXF (3) M)

0:10 (EXF (3) Ny

087 (TIMES (33 (EXF (3} N

I7 (TIMES (2) (SIGMA K (2 (9) N (EXF (3) K)o
I:10 (SIGHA K (3 (0) N (EXF (2) m)))

0:10 (SIGMA K (2 (0) N {EXF (3) K)))

027 (TIMES (2) (BIGMA K (2 (0 N (EXP 13) K)o

086 (FLUS (TIMES (-3) (EXF (2) M)) (TIMES (2) (3i0Ma B
T:6 (TIMES (EXF (2) (1)) (TIMES (-1) (EXF (2) (-1:°1%)
I:7

(EXP (23 (1))

30

(GIGMA ¥ (3 (0) N (EXP

Uy MMYY) (TIMES (2)
FIN NI (TIMES /)

137 (TIMES (2) (TIMES (-3 (TIMES (EXF (2 (=1); (EXF 13)y NY)))

MOGEXE (3) KYid))
MOCEXR 13y k)



31

0:7 (2)

1:7 (TIMES (=~1) (EXF (2) (-1)))
1310 (EXF €2) (~1))

0210 (EXP (2) (-1))

027 (TIMES (-1) (EXF (2) (-1)))
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0:10 (EXF (3) N}

p:7 (TIMES (-3) (EXF (I) N)»
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g3y K)y) )y (TIMEE (-1 (EXP (2) (~13

e

m

(NOT (EQUAL (2) (O»)
(EQUAL (2) (D))

(F)

(T

(T3

(EGUAL (PLUS (TIMES (~2) (EXP (3) s} (VIMES I (ZIGMA 0 (3 (0) M (EXF 3D
}3)) (~1))
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(EXP (3) KY)) (013D
S (TIMES (-2 (TIMEZ (LXF (2) (~1))y (EXF (3 My»)
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33D
It4 (OR (EQUAL (2) (0)) (EQUAL (TIMES (EXP (2) (1} (FLUZ (TIMED ¢.3) (TIMEZ (EY
P2y (~1)) (EXP (3) N))) (SIGMA™Z
K (2 (0) N (EXP (2) K))))) (TIMES (EXF (2) i1): fTIMES -1 (EXp (2) ¢-13)3ym)
1S (EQUAL (2) (0))
H] '

4 (EQUAL (TIMES (EXF 12) (1)) (PLUS (TIMES (-3) (TIRES (EXP (2) (~13) (EXF /D)

NYY) (SIGMA K (2 (0) N (EXF (3)~Z

K¥D))) (TIMES (EXF (2) 1)) (TIMES (=13 (EXF «2) c-02323)

I:4 (EQUAL (TIMES (EXP (2) (1)) (FLUS (TIMES (-3 (TIMEZ (EXF (2) (-1)) (EXF (D}
NYY)Y (SIGMA K (2 (0) N (EXP (3)~Z

K¥)))) (TIMES (EXF (2 (1)) (TIMES (-1 (Exp (25 (-1

1:5 (TIMES (EXF (2) (1)) (PLUS (TIMES (=33 (TIMED EXF o) =13y (EXP (33 sy o

SIGMA K (2 (0) N (EXF (Z) K)o

I:6 (EXP (2) (1))

0rs ()
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Fo(Z) K)))Y) (TIMES (=13 (EXF ¢2) i=133)3)

I1:S (NOT (EQUAL ¢2) (022

I1:6 (EQUAL (2) (0))

D6 (FY

05 (T)

g4 (T .

0:3 (EQUAL (PLUS (TIMES (-3) (EXF ¢3) M) (TIMED 10
KXy (=10

123 (EQUAL (FLUS (TIMEE (-3 (EXF (3} n) (TIMEZ «°
K)))) (=1

It4 (PLUS (TIMES (-3) (EXF (3) N)) (TIMES (2 (316
I1:5 (TIMES (-3) (EXF (Z) M)}

136 (EXF (3) N)

036 (EXF (3) N)

0:5 (TIMES (=3) (EXF (3) N))

1:5 (TIMES (2) (SIGMa K (% (0) N (EXF (3) K)ryi)

I:6 (SIGMA K (2 (0) N (EXF (3) K)))

016 (SIGMA K (3 (O) N (EXF (2) K)))

0:5 (TIMES (2) (SIGMA K (3 (0) N (EXF ©3) K))))

04 (PLUS (TIMES (-3) (EXF (3) N)) (TIMES ()

0:3 (EQUAL (FLUS (TIMES (~2) (EXF (3) M)Y) (TIMES 2
K)¥>»)) (-1))

0:2 (T

01 (T

CREME

TTIMED

CTTHES o

CETEMA R

CEIOHMA W

W
Y

A
L0

1SI0MA K

TDY 1ty (EXR

TEXP (D) et

vy N

10y N OTEXE

HOEXF (33 k3

3 0y M SEXR
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time = 3 seconds

Garbaée collections = O

Core Memory = 35K

Machine = Compiled Stanford LISPon a DeclO

3.2 The Proof of RIS

In this séction we sketch the proof of the theorem RIS obtained by
our theorem prover. This sketch is essentially faithful to the manner
in which the theorem prover proved this theorem. 1t differs in that many
different inference steps are combined into one so as to compact the
proof to a reasonable length for publication, and in that the inference
steps are in a minor way permuted so as to structure the proof in a
cleafer manner.

It should be realized that the actual proofs obtained by this theorem
prover are extremely long. For example, the actual proof of RIS by our
automatic theorem prover produces a trace on standard line printer paper
over two inches thick!

2 © ] - -
AxHydz HuHvEw Lth Y ku = x‘n) + y«n4 + z.n5 + U.N 4+ VD 4+ W

k=1
induction

>

1
L ) g
Ty Uy Hz Hu dv i Ekz k™ = X-l5 + }7-11L + Z-lj + ul” 4+ vl Hw
=1

n
l s
A Vn zkh=x-n5+y-nL+z‘n3+u-na+v=n+w
k=1
n+1
) klL = x.(n+1)5 + y-(n+1)h + 2-(n+1)3 + n~(n+l)2 + ve(n+l) + w
k=1

recursion

Xy 2 Budviy I-R{:Lh = X4 Y+ 24 Ut Vi W

71 -
15 = x.ﬁ5.+ y‘&*.; z-n3 + w + VD4 W
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n
) k4 +(n+l)4=X'(n+l)5 +y+ (n+l) &+z-(n+l) 3+u' {n+1) 2+v‘(n+l)+w)}

k=1
fertilize
Hx Hy Hz Hudvdw hﬂ=xﬂﬁﬂww A Vn
x-n5+y-n4+2'n3+u-n2+V'n+w+(n+l)4
_ 5 4 3. 2 V
=x* (n+1) “+y- (n+1) +z* (n+1) “+u’ (n+l) “+ve (nbl) +w )

recursion

HxdydzJudviw FR 1 = xtyt+ztutviw A ¥n

5
X*n +Y‘n4+z'n3+u'n2+v*n+2

4
+n +4n3+6n2+4n+l

=x’n5+5xn4+10xn3+10xn2+5xn+x
+yn4+4yn3+6yﬁ2+4yn+y
+zn3+32n2+32n+z
+un2+2un+u
+vntv
+w
cancellation
AXT dz UAVHW FR 1 = xty+ztudviw A Vn
(n4+4n3+6n2+4n+1) = (5xn4+10xn3+10Xn2+5xn+x)
+(4yn3+6yn2+4yn+y)+(3zn2+32n+z)+(2un+u)+v
prepare for elimination
dxl yH zHud VA w hil = xty+ztutviw A Vn (5x—1)'n4¥(10x+4y—4)'n3

+(le+6y+3z—6)-n2+(5x+4y+32+2u—4)'n+(x+y+z+u+v~l)

elimination

i

AXA va zd ud VI 7 HRl xt+yt+ztutviw A Sx~1=0 A  10x+by-4 = Q

ft

A 10x+6y+3z-6 = 0 A Sxtby+3z+2u-4 = 0 Ao xtytzdutv-1 = 0

dxdyl zAudvdw h{l = xtytztutviw A x = 1/5 A y = é:%gx
z = LA o= dmxctydz 1-x-y-z-u

3 A 2

equality subst: x
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- 1/57
o= _.__.,.,_,.2 g(*/é_)

v = 1-1/5-y—z-u

ix dy dz Julv 3w FR w = 1-1/5-y-z-u-v s x = 1/5 &

, = 6~10§1/5)~6y A u = 4~5(l/;}*4y~32

A

AAYAZWVEY oW = 4/5-y-z-u=v A x=1/5 & y=1/2 & 7 = 46y 4

3
u = é:%l:éﬁ, Ay = 4/5-y-z~u

equality subst: vy

AX T Az HU AV dw FR w=4/5-1/2~z-u~-v A x=1/5 A y=1/2 A z = é:ééiig) A
u = _3_-4._%‘./_2_-..9.2.. A V::[,_/S_.]_/Z_z_u
AxAyd zH Ul vAw LRw=3/10—z—u—v A x=1/5 A y=1/2 A 2z=1/3 A

u=l§§5 A v=3/10-z-u
equality subst

dxdydzAudviy hi w=3/10-1/3-u-v A x=1/5 & y=1/2 A& z=1/3 & u=0 & v=3/10-z-u
AxHydzHuldviw }—R w-1/30-v a x=1/5 & y=1/2 a 2z=1/3 & u=0 & v=-1/30

AxHy dz JuAvIw hi w=0 a x=1/5 a4 y=1/2 Ao 2z=1/3 Ao u=0 & v-1/30
metalogic laws
Hx h{le/s A dy H{yzl/z A Ty h{z=l/3 A dy h{u=0 A H%E{V=ml/30 A Ewﬁ{w:O

time = 144,355 ms = 51.43710ms = 51 sgec.

8
Garbage collections = 10
machine = compiled stanford LISP on a DEC10.

Core Memory = 35K words



4. Conclusion

We have described a sophisticated automatic theorem prover for real
algebra which is based on Symmetric Logic. We have exemplified the power
of Symmetric Logic by using it to prove some long non-trivial theorems of
real algebra. This provides some evidence that Symmetric Logic is of

some utility in handling equation based theories.
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