K. M. Chandy and J. Misra

TR-144 April 1980

Abstract

A symmetric communication protocol, as in communicating sequential
processes, may lead to deadlock where some processes are walting to send
and others are waiting to receive. Deadlock or tevmination detection in
such a system cannct be based directly on the Dijkstra-Scholten scheme
for termination detection. We propose a generalization of the Dijkstra-
Scholten scheme for communicating sequential processes. Our scheme is

shown to be efficient.

ok

1.

i

2
Introduction
In [2] Dijkstra and Scholten introduce the notion of diffusing compu-
rd .
tation in a distributed system of processes and suggest an elegant algorithm
. for detecting the termination of an arbitrary diffusing computation in an
arbitrary network. The generality of the solution makes it suitable for
. application in a number of problems arising in distributed processing.
Dijkstra [3] gives a solution to the problem of determining if a process
ig in a knot, using this algorithm
In this paper, we adapt their scheme to detect deadlock {(and/or proper
termination) in a system of communicating sequential processes [3,8].
Dijkstra and Scholten assume that a process P, can send a message to another
process PZ whenever it wishes to do so; thus a process is never permanently
blocked waiting to send We however assume the protocol proposed by Hoare
[5], i.e. a message can be sent from process ?E o process ?2 only 1% ?1
is waiting to send to Pz and P} is waiting to receive from iiq Thus a
process may have € ait indefinitely to cutput as well as to input.
This difference in protocol leads to significant changes in the solutilon.
Francez [4] has concidered the distributed termination problem with Hoare's
protocol. His approach is radically different from that of Dijkstra and
Scholten, and ours in that his soluti is predicated upon preanalysis of
the topology and construction of a spanning tree. One advantage of Francez's
appraoch is that it allows arbitrary pairs of processes to communicate
eocusly without any of them having received prior messaj

2. Problem Definition

We are given:
(1) a set 5 of communicating sequential processes and
(2) a process outside S, which we call the environment.
A computation is started when the envirvonment communicates with some
process I in 5; we call T the initiator. it is required to design a sig—
nalling scheme to be superimposed on message communication which will
guarantee that the initiator will send a single signal to the environment
when, and only when, computation in S has ceased. We also use "node' for a process.
Example 1
£ nuirenvient

e

~

J

B

I: Inditiator
S

¢ 5 PR
= 1;51?2532 , the set of processes

An arc from process i to process j denmotes that i can send messages to 3

3

and j can recelve messages from 1. An arc from 1 to 3 labeled W at i denotes

that 1 is waiting to send to j: similariy if the arc is labeled W at 3 ir

de

denotes i is waiting to receive from 1 N denotes not waiting.

In example 1, the set of processes S is deadlocked. (Note that process
3 has terminated and is not waiting to communicate.) 1f the initiator receilves
a message from the environment it may, for instance, start to wait to send
to 1 and the computation may restart.

Consider a possible scenario. I may begin waiting to send to 1. A
message is transmitted from I to 1. As a rvesult of this message 1 waits to

receive from 2 which results in a message being sent from 2 to 1. WNow 2

waits to receive from 3 and 1, while 1 waits to receive from Z

jexl
™
£
(%
[
[¢2]
n
o
}»W\\
IS
qu
s}
09

in another deadlock.

Note that 2 resumes computation as a result of sending a message.

in
f

In the Dijkstra-Scholten model the only way a process can resume computation

ot

is b

v receiving a message.
3. Solution
A communicating sequential process as in Hoare [§ |, is either executing,

waiting or terminated. An executing process is carrying out some computation.

5 1ot executin

pots

09
o
o
yd
w
£
o
b
e
e
5
o

£ it

e

A process 1is said to be waiting
communicate., A terminated process has completed computation. A waiting

process may become exc.utable as a conseguence of communicating a message.

A waiting process cannot change its status unti

A waiting process may be blocked or unblocked. A waiting process P

is said to be blocked if for every process {§ such that P is waiting to

v}

send to (receive from) ¢, ¢ is not walting to receive from {send to)

It is convenient to think of terminated processes as being blocked. A

o
ot
o]
(]
o
N
s
e
]
O
[
1
.
.
jav)
£
0]
o
of
beda
]
aQ
r
&)
)
o]
=
&
ot
jn]
peto
o
V)
[l
(4
%!
yd»
ot
oy
A
o
W
)
o]
=}
[
o
o
s}
o
et
O
o)
&
{4
jol]
pdo
=y
LD

A signalling scheme for informing a process whether it is blocked is
discussed in sectionm 5. This kind of signal will be called a B-signal
to distinguish it from another kind of signal, A-signal, defined in section
3.1, S8Signal will refer to both A and B- signals. We assume in the next
section that a process can determine its status: executing, blocked or

unblocked.

3.1 A- Signalling Scheme

The history of message communication and A- signalling is captured

by an activity graph, where the nodes are the processes and arcs (called
v s

activity arcs) summarize the history of communication and A- signalling.

scussed in section 4. All

£
e

The implementation of the activity graph is
communication dealing exclusively with maintaining the activity graph will
be called signals to distinguish this form of overhead communication
from message communication inherent to the computations of processes.

Activity arcs are created in the following way: 1if processes 1 and

j communicate and if there are no activity arcs currently between 1 and j

-
t

{(in either direction), a pair of activity arcs is created - one from i

e

to j and the other from j to i. There are no signals involved in arc
creation.

Activity arcs are destroved in the following way: an arc from 1 to

3 is destroyed by j sending an A-signal to i. Note that 1 cannot destroy

an arc from i to j ~- only j can. Furthermore, note that communications of

¥
messages result in {(possible) creation of activity arcs and communications
of A- signals rvesult in (definite) deletion of activity arcs. In order for
the scheme to work, a blocked process must be able to send and recelve

s

signals; hence the term blocked only refers to messages in the underlying

[

computation and not to signals.

We adopt the convention that the environment remains passive waiting
for an A~ signal from I during the computation of §. The environment carries
out no computation at all. We assume that the environment becomes blocked
immediately after communicating with the initiator, and remains blocked
indefinitely thereafter. Hence after the first message communication with
I, two activity arcs (enviromment, I} and (I, environment) are created and

1

y the environment.

o

(I, environment) is subsequently deleted
A process is said to be engaged if and only if it has some activity
arc incident on it. Following the first communication with the environment,

the initiator is engaged. A process that is not engaged is disengaged.

When a disengaged process i communicates with a process j, a pair of

activity arcs (i,3) and (j,1) is created, thus engaging process i; the

activity arc (j,1) is defined to be a tree arc. Thus a tree arc (x,y)

is created when a disengaged node y becomes engaged, as a result of com-

munication with x. Acitvity arcs, other than tree arcs, are non-tree arcs.
All message transmissions carried out by a process must be done

sequentially as in Hoare [5]. Hence status changes in a process {such

as from blocked to unblocked, or disengaged to engaged) which are implemented

by transmissions of signals must alsc be carried out sequentially.

oy

Every process implements the following rules for deletion of arcs.

PI1) A process that is blocked waits to delete all incoming, non-tree
arcs {(by sending A- signals).

PIZ) A blocked process with only one incident arc (which will be shown to
be an incoming tree arc) waits to delete that arc.

ro receive A- signals

PI3) Every process having outgoing arcs wails

. : - . -
{(which result in the deletiom of outgoing arcs).

Example 2
Consider examplie 1. The following set of activity arcs are created

by the communication described in example.

COMMUNICATION AND SIGNALLING ACTIVITY CF

APH

el

Envivonment send message to I (tree arcs are solid edges)

ENVIRONMENT
<
z

I sends message to 1. ENVIRCNMENT
Tree arvc (I,1) created;

Non-~tree arc (1,1} created; o
The environment gets blocked and {
hence deletes (I,environment) .
2 sends message to 1

Tree arc (1,2) created;
Non~tree arc {(2,1) create

o

1 is blocked; hence it deletes {2,1), ENVIRONMENT
an incoming non-tree arc.
I is blocked: it deletes (1,I), an %é
. . 1
incoming non-tree arc. <§
2

2 is blocked; it deletes the incoming tree
arc (1,2) because it is blocked and
has no other incident arcs

1 is blocked: it deletes the inco
tree arc (I,1) because it is bhlocked
and has no other incident arcs

From the above it is daducible that:
PD1) FHvery engaged process has exactly one incident incoming tree arc.
PD2) A process must be blocked at the instant following its disengagement.
PD3) Assume that the underlying communications scheduler is fair. Then
from PI1 and PI2, everv indefinitely blocked process will delete
all incoming non-tree avcs in a finite time.

3.2 Properties of the Activity Graph

Lemma 1: If there is a communication between processes 1 and j then at
least one of i and j must be engaged immediately prior to the communication.
Proof: Assume that thevre is a communication between i and j where both 1
and j are disengaged. We show that this assumption leads to a contra-
diction.

A blocked node does not change the set of lines it 1s waiting on.
A disengaged node is blocked at the point of disengagement (by PD2). Since
i,3 communicate they must both be unblocked just prior to communication.
Hence one of them (say j) must have begun to start waiting for the other
following its last disengagement. This can only happen if j has had a
communication following its last disengagement because j was waiting at
the point of disengagement and hence must continue waiting for communication

with the same set of processes until a communication occurs. This communi-

[

cation will cause i to be engaged, contradicting the assumpiion that j
J : J

was disengaged at the time of communication with i.

Theorem 1: The set of engaged nodes and the set of tree arcs form a
rooted directed tree where the initiator is the root {(and the paths are

directed away from the root). This tree is called the engagement tree.

Proof: By induction on the number of message communications.

The lemms holds initially since the initiator is the only engaged
process following the first communication. Assume that the lemma holds
after n message communications. The next message communication must be
between (1) two engaged processes or (2) an engaged process and a disengaged
process by lemma 1.

Tn the former case no tree arc is created (because a tree arc is
created only when a disengaged node becomes engaged). In the latter case
a tree arc is created from the engaged process to the disengaged process,
thus adding the newly engaged node to the tree. Hence the lemma holds
after the n + 1 th communication.

Lemma 2: If all processes are indefinitely blocked then after a finite
time all processes will become disengaged.

Proof: After all processes become blocked no new arcs are created because
arcs are created only when messages are communicated and blocked processes
cannot communicate. After a finite time pericdkail non~tree arcs must be
deiete& by PD3. We show that the number of engaged processes will decrease
in finite time after all non-tree arcs are deleted. By lemma 2, all
engaged processes are on the engagement tree. Consider a process which
ig a leaf in the engagement tree. This process has no outgoing arcs
because (by assumption) all outgoing non-tree arcs have been deleted and
the process has no outgoing tree arcs because it is a leaf. By PIZ

PI3 and the assumption of fair scheduling, this process must delete the

single incoming tree arc and thus disengage itself in finite time.

10

Theorem 2: The A~ signal is sent to the environment by the initiator

a finite time after the computation ceases.

Proof: It follows from lemma 2 that the initiator sends a signal to the
environment a finite time after the computation ceases. Furthermore,
after the initiator sends the signal, all nodes must be disengaged (from
theorem 1). By lemma 1, no communication can take place among disengaged
nodes. Therefore, the computation mugt have ceased when the initiator
sends the signal.

4, Implementation of the Activity Graph

For any engaged process x define the following:
father(x) 1s a singleton set consisting of the process from which the

single incoming tree arc of x emanates.

Note that father{initiator = enviromment.

pred{x} is a set of processes such that j € pred(x) if and only if there

e
[€2]
&3]

non~tree arc {j,x) in the activity graph.
suce {(x) is a set of processes such that j & succ(x) if and only
if there is an arc (x,j) in the activity graph.
Every arc (i,j) in the activity graph is thus represented at both
processes 1 and j: j € succ(i) and i € pred(j) U father(j).

4,1 A~ Signalling Logic of the ith Process

{a) Following every message communication with process j:
Operation
Tf father{(i) = ¢

then (* establish a tree arc from j and a non-tree arc to j *)

11

E&EE {(* tree arc to i already exists *)
if j ¢ father(i) u pred(i) v succ{i)
£E§§ (* no arc exists between i and j *)
pred := pred U {j}
succe := succ U {j}
{(* established non-tree arcs (i,3) and (§,i) *)
end-if
s
end-if
fhutshallilioy
(b) Upon receipt of an A- signal from j where j ¢ succ(i):
Note 1: succ(i) # 8.
Note Z2: Immediately after transmitting this signal j will remove
i from father{j) v pred(j) and it is i's responsibility
to remove j from succ{i) thus deleting arc {(i,3).
Operation succ{i) := succ{i) - {j}
(¢} when i is blocked and pred(i) # @:
Operation {(* delete incoming non-tree arc *
send A~ signal to some j £ pred(i);
pred(i) = pred(i) - {j}
(d) when i is blocked and pred{(i) = ¥ and succ(i) = §:
Operation (* delete single incoming tree arc thus disengaging i *)
send A- signal to the j e father{(i):
father := ¢
In Hoare's [5] notation the conditions {(a), (b), {(c) and {(d) will
be guards in a single repetitive command, and the corresponding operations

are the command lists associated with corresponding guards. PI1, PI2,

PI3 are implemented by condition (¢}, {(d), and (b) respectively.

12

4.2 Overhead Estimation

Define an active period of a process as the continuous time span

during which it remains unblocked. Define an idle period as the time
during which it is continuously blocked. The number of incoming arcs
that can be set up during an active period of a process is the number of
different processes that it communicates with during that period. Thus
the number of incoming arcs to any process during an active period is
bounded by n, the total number of processes. The total number of A-
signals sent by a process during its idle periods {(no A~ signal is sent
during an active period) is bounded by the number of incoming arcs. Hence
total number of A~ signals sent by a process 1s bounded by the number of
its active periods times n. It is obvious that the total number of A-
signals cannot exceed the number of messages transmitted in a system.

5. Implementation of Blocking Signals in CSP

We assumed earlier that a process knows whether it is blocked or un-
bloked. Whether a process is blocked or unblocked depends on the waiting
status of its neighbouring processes. Hence it is necessary to have
B- signals which inform neighbouring processes of the waiting status
one process. It is, however, impossible for a process to deduce the instant
at which it changes from blocked to unblocked or vice versa, if a signalling
scheme is used. Define a local variable in process i called think-blocked(i)
which 1 sets to true if i thinks it is blocked and false otherwise. Note
that think-~blocked(i) may be true when 1 is actually unblocked and vice

versa. The program for process i, in particular conditions (a), (b), (c)

(d) must be based upon think-blocked rather than whether the process is

truly blocked, so as to be implementable in Hoare's notation. We will

13

show that our algorithm is correct even though think-blocked(i) may not
be consistent with i's true blocking situation.

With a send/receive pair of communicating processes (i,j) we
associate v(i,j) and s{i,j) which denote whether j is waiting to receive
a message from i, and i is waiting to send a message to j. r(i,j) can only
be affected by a change in the waiting status of j. Similarly s(i,j)
can only be affected by i. We implement r and s as follows. 7r(i,j) is
a local boolean variable in process i. Process 1 is always waiting to
receive a B~ signal from process j updating r{(i,j). Process j waits to
send a B- signal to process i updating r{i,j) when v(i,3j) is inconsistent
with process j's waiting status. Fairness in the underlying scheduler
will ensure that v{i,3j) cannot be inconsistent for an indefinite period.
The operations to maintain s(k,1) are similar.

Think~blocked(i) is set to true if for every process j that i is
waiting to send a message to, r(i,j) = false and for every process k that
i is waiting to receive a message from s{(k,i) = false.

There are two possible inconsistencies in the value of think-blocked(i),
since following the l:zst transmission of a B- signal, a process may have
changed its waiting status.

(i) process i may have think-blocked(i) = true even though i is actually
unblocked.

(ii) Process i may have think-blocked{i) = false even though 1 is actually
blocked.

The only requirements for the correct operation of the signalling
scheme are PI1, PI2 and PI3. PI3 is maintained true by all processes

whether they are blocked or unblocked. TFrom PI1 and PI2, it is sufficient

for correctness that a process that remains indefinitely blocked must
have think-blocked = true within a finite time of the instant that it
actually becomes blocked. This requirement is met since, as we have

remarked earlier, r(i,3) and s(k,i) cannot remain inconsistent for an
indefinite period, assuming that the underlying scheduler is fair.

Note that inconsistency (i) is irrelevant to the correctness of the
signalling scheme! Correctness merely requires that inconsistency (ii)
cannot exist for an indefinite period.

6. Discussion

It 1is sometimes convenient to runm a network of processes until deadlock;
deadlock is then broken by the environment and the processes are allowed
to run until the next deadlock. This repetition of deadlock and breaking

< . s . 1 ‘2
deadlock is more efficient in some cases { 1 | than avoiding deadlock

altogether. Levin [6] gives an elegant algorithm which is guaranteed to

compute the correct results when the netowrk is deadlocked.

i5

References

1.

K. M. Chandy, and J. Misra, '"Diffusing Simulation: Parallel simulation
via Diffusion Computation,' University of Texas, Computer Sciences
Department, Austin, TX 78712 (1980).

E. W. Dijkstra, C. S. Scholten, "Termination Detection for Diffusing
Computation,” EWD 687a, Plataanstraat 5, 5671 Al Neunen, The
Netherlands.

E. W. Dijkstra, "In Reaction to Ernest Chang's 'Deadlock Detection',”
EWD 702, Plataanstraat 5, 5671 Al Neunen, The Netherlands.

N. Francez, "Distributed Termination,'" ACM Transsctions on Programming
Languages and Systems, Vol. 2, No. 1, Jan. 1980.

C. A. R. Hoare, "Communicating Sequential Processes,"” Commun. of ACM,
Vol. 21, No. 8, August 1978.

G. Levin, Doctoral Dissertation, Computer Science Department, Cornell
University, Ithaca, NY (1980).

R. B. Kieburtz and A. Silberschatz, "Comments on ""Communicating
Sequential Processes,” " ACM TOPLAS, Vol. 1, No. 2, October 1979.

