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1. Introduction

The analysis of large, complex images is a computationally
demanding task. The sheer bulk of data in even a monochromatic TV
frame {(more than 220 bits) results in even the simplest image
analysis operations (histogram construction, thresholding) requiring
several seconds of processor time for moderately large conventional
processors. For a variety of biomedical, industrial and military
applications, this results in a totally unacceptable throughput
rate.

One of the most promising approaches towards improving
this throughput rate is the design and development of novel
architectures possibly using multiple processors and memories,
which enable many parts of an image to be processed in parallel
or which operate at very high speeds.

There are at least three distinct types of such archi-
tectures which can profitably be distinguished; each is accompanied
by its own specific set of advantages, disadvantages and theoretical
and practical problems:

1) focal plane architectures, which are integrated into
sensors at the focal plane and which are capable of operating at
high-quality television data rates (7.5 MHz).

2) cellular arrays of simple, bit serial processing
elements (PE's) (a special class of fixed-interconnection single-

instruction stream-multiple data stream, SIMD, machines).



3) General single- or multiple-instruction stream-
multiple data stream machines (S/MIMD) with many general-purpose
processors, memories and a flexible interconnection network.

As one moves from architectures of type 1 through type 3
there is a significant decrease in speed. Focal plane architectures
can compute a relatively complex computation (e.g., a 5x5 convo-
lution) at the rate of 100 ns/pixel. A single logical operation
on a cellular computer can take between 2-10us, depending on the
technology used to construct the PE's. Even ignoring the time
required to load a subset of a 6-bit TV frame into a "large"
cellular array of 64x64 PE's, and assuming that at least 1000
logical operations are required to compute an arbitrary 5x5 con-
volution, the cellular machine would take approximately .4 seconds
to compute the convolution (5 us/operation x 1000 operations/
64x64 subimage x 64 subimages/frame). The time per pixel would

thus be 4 x 10-1 = 1.5us/pixel, which is 5 times slower

2.5 % 105 pixels
than the focal plane architecture. Finally, consider the more
general S/MIMD architecture (which would operate as an SIMD
machine to compute a convolution). If we ignore the time required
to load the image into memories and the time lost to memory con-
tention (which may be non-negligeable) and even assume that the pro-
cessors operate at their maximum data transfer rate (about 5 us
for a standard microprocessor), a collection of 256 microprocessors

organized as an S/MIMD machine would probably require at least 1-2



seconds to compute the convolution, a factor of 5 times slower
than the cellular machine.

Balancing this decrease in processing efficiency is an
increase in processing generality. Focal plane architecture is
functionally quite rigid. It cannot, e.g., be used to apply
iterative algorithms to an image (such as shrink/expand) unless
the number of iterations is known a priori. Even then, it requires
duplication of circuitry (e.g., the median of median operation

computed by a TI VLSI architecture [1]). The cellular arrays are

more general, since their PE's are ordinarily capable of computing
any Boolean function over a single bit plane of a point and a
simple function of its four or eight neighbors. However, for non-
logical operations, the PE's are very difficult to program due to
their "low-level" instruction set. S/MIMD machines composed of many
microprocessors are still more general, since not only are the
microprocessors' machine instructions ordinarily quite powerful,
but compilers are available for translating high-level languages
(such as PASCAL or FORTRAN) into the machine language of the
microprocessors.

The remainder of this paper explores these three classes
of architectures in more detail, and suggests the class of image

analysis operations for which each is most relevant.



2. Focal plane architectures.

Focal plane architectures integrate processors into
sensors at the focal plane and are capable of operating at high
quality television data rates (7.5 MHz.). There is no parallelism
but the image is processed as quickly as it is obtained. This is
especially relevant for applications which require analyzing
sequences of images in real time such as tracking objects from
frame to frame, or awaiting the onset of a critical event.

Hﬁghes Research Laboratory [2] has designed and constructed
charged-couple devices (CCD) and metal oxide semiconductor (MOS)
processing architectures that can be integrated into TV cameras.
For example, they have constructed a test chip which is capable
of computing several simple image analysis operations and is de-
signed to be integrated into the sensor at the focal plane. All
of the operations are defined over 3x3 neighborhoods of 4 bit
pixels and operate ét 2 MHz. The operations include a simple edge
detector, a low pass spatial filter and a Laplacian. The circuit
utilizes 2 CCD delay lines when operated from a camera in order
to store 3 lines of video (one can be received directly from the
camera) .

More recently [2] Hughes has been developing a more com-
plex chip whose capabilities include a 26x26 element convolution
process for computing the "Mexican hat" (Gaussian weighted
Laplacian) operator which plays a central role in David Marr's

theory of low-level vision (see, e.g., [3]). The Mexican hat



operator requires 8 bits of dynamic range, since the weights

in the convolution have a range of 150:1. Hughes will capitalize
on the circular symmetry of the Mexican hat to build only a 26x13
bi-polar convolution filter. The most ambitious design goal of
this chip, however, is the development of programmable processing
Kernals - i.e., a capability for dynamically changing the weights
defining the convolution. At the present time, no information is
available concerning the degree of success which Hughes has
experienced with this chip.

The circuits which Hughes has constructed to implement
convolutions involve charge-sensing and charge accumulation - i.e.
the convolution is computed based on an analog representation of
the image signal. Texas Instruments [1,4] has been investigating

an alternative approach based on VLSI technologies,

In general, the convolution of a sequence X = {Xi}§:0

with a sequence of weights W = {Wi}2=0 ig defined by

n
=D Wi (1)
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Now, if we express Xn as
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then (2) can be substituted into (1) to obtain
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Thus, C(i) can be computed using a total of about rn shifts and

adds. However, time can be saved by prestoring all values of

1 by B+ logz(r+l) bit memory where B, is

+

n
WX b in a 2%
j=0

the number of bits required to store the maximum Wj. Now, the

computation of C(i) takes r+l table look-ups in the memory, and
r+1 shifts and adds. This technique is called the ROM-accumulator
(RAC) technique.

Texas Instruments has constructed a breadboard version of
the above convolution algorithm for 9 point convolutions. The
breadboard consists of 9 input latches which buffer the input data
paths into the RAC circuitry, and also serve as an 8 bit wide shift
register for sliding window operations. Data in the input latches
are clocked in parallel into parallel-in-serial-out shift registers
which serve to form 8 sequential 9-bit addresses to the partial
product memory. The partial product memcry is composed of 12,

30 ns static 1K x 1 MOS RAMs. Finally, the 8 partial products are
combined to form the convolution by shift and accumulate circuitry.

TI estimates that for 3x3 sliding window convolutions, the maximum



input data rate will be 2.5 MHz. To achieve 7.5 MHz TV data rates,
3 boards must be operated in parallel. Each board would then com-
pute a non-sliding convolution.

The advantage of TI's VLSI design versus Hughes' CCD
design is that the dynamic range of the convolution weights can
be increased with only a small increase in the size of the partial
product memory, while there are practical limitations on the dynamic
range of the Hughes‘ architecture. On the other hand, the VLSI
approach is impractical for large convolutions such as the
"Mexican Hat". Even a small 10 x 10 convolution would require

a ROM which is‘2100 x (Bw + 2r+1) bits, which is clearly impossible.

If one adopted the blocking schemes suggested in [4] (essentially
break the large memory into several smaller memories and then com-
bine the results with additional circuitry), then the architecture

would become too slow.



3. Cellular architectures

Cellular logic arrays were the earliest special purpose
architecture proposed for image processing (Unger [ 5 ]). Duff
[6 ] outlines the defining features of such arrays:

1) The image is divided into a set of cells (pixels)
and a unigque processor 1is assigned to each cell.

2) Each processor cell has certain memory and logic
capabilities.

3) There is a fixed interconnection structure which
enables "adjacent" processors to communicate. "Adjacency” here
usually corresponds to picture adjacency - i.e., 4-neighbors or
8~-neighbors for a rectangular grid.

4) The logic function which each processor computes
is set simultaneously and identically using control lines which
run in parallel to each processor.

CLIP 3 [ 6] is an array of 16x12 processing elements
which are constructed using TTL MSI circuits. The architecture
of the cell is illustrated in Figure 1 (from Cordella, Duff and
Levialdi [ 71). Here fd and fn are circuits capable of computing
any Boolean function of their inputs. The circuit in G is capable
of counting how many neighbors, from a specified subset of neighbors

(the subset is controlled by the control lines Gl""’G8)' have

value 1 (CLIP is capable of operating on grey scale images, but

operates on a single bit at a time), and comparing that count
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Figure 1. The CLIP cell (from [71).
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against a threshold. So, for example, G can determine if at least

i n

2 out of 4 4-neighbors of a point have value 1. The values of "a
and "b" are extracted from the intersection of 2 bit planes with
the processing element. The bit planes are chosen under program
control. The outputs of the processing elements are n and 4.
The output n becomes an input to the G circuit of neighboring
cells. The output d is stored in one of the bit planes at the
processing element.

CLIP 4 is a larger cellular array (96x96) built using
N-MOS ILSI. Eight processors are incorporated in a 4x2 chip which
is mounted on a 40 pin dual-in-line package. It is more easily
programmed to perform arithmetic operations than CLIP 3 since it
contains an extra buffer for automatic carry. Although CLIP 4 is
5 times slower than CLIP 3, it can process 50 times as many pixels
per instruction as CLIP 3. Duff estimated that there would be
time for 100-200 operations between successive television frames.

One of the difficulties with the CLIP machine, as well
as other cellular processes, is that the very low level of the
individual instructions makes it very cumbersome to write non-
trivial image analysis programs. For example, the detailed
analysis of the computational requirements of a histogram-based
thresholding algorithm, described by Cordella, et al [ 71 show
that the programmer of the CLIP array must have intimate knowledge

of the logical organization of the PE's. It seems clear that if
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such cellular arrays are to have widespread applications in image
processing it will be necessary to construct a virtual machine
over the array which describes picture operations at a higher
level of abstraction, and provides a more powerful set of control
structures than the conditional branches in the "machine language"
of CLIP.

Several other cellular architectures have been designed
and/or constructed. For example, Reeves [8] discusses the design
of a Binary Array Processor (BAP) which is very similar to the
CLIP machines.

One other cellular array which should be mentioned is
GLOPR [9]. The GLOPR machine contains only a single PE and shift
registers for piping image windows through the PE, but the machine
is programmed as if it were truely a cellular array.

The GLOPR machine is based on a hexagonal interconnection
structure between pixels and operates only on binary images. There
are only 14 distinct immediate neighborhoods for a hexagonal array,
independent of rotations. Each GLOPR instruction specifies a sub-
set of these 14 patterns which are matched against the’neighborhood
of each pixel. Circular shift registers are employed to match
patterns independent of orientation. The new value computed at
each pixel is then a Boolean function of the original value and the
result of the neighborhood matching.

GLOPR was subsequently integrated by Perkin-Elmer into
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a commercial white blood cell analyzer called "diff3" (Preston,

et al [10]). Diff3 was capable of operating on 8 pixels simul-
taneously. The circular-shift registers and associated neighborhood
matching logic of the GLOPR design were replaced by a 64x14 ROM
which was addressed by the 6-bit neighborhood of a pixel.

Preston, et al [10] also contains an extensive discussion
of other cellular logic machines, as well as a discussion of the
theory of cellular automata and a review of applications of
cellular machines to image processing problems in biomedicine.

During the past few years a large number of image analysis

algorithms have been developed which operate on a pyramid image

representation [11,12]. The pyramid is a "stack" of images, where

the image at level i is obtained (ordinarily) by averaging and

sampling the image at level i-1. For our purposes, we will assume
that the bottom or 0th level of the pryamid is a 2™ x 2" image and
that the iT® level is a 2771 y o071 image obtained by averaging

non-overlapping 2x2 windows of the image at level i-1. A pixel in
the level i image is defined to be adjacent to:

1) 1Its 4 or 8 neighbors at level i,

2) The 4 pixels at level i-1 which were averaged to
form this pixel, and

3) The pixel at level i+l which this pixel (along with
three others) contributes to forming.

One of the principle advantages of the pyramid is that

an image can first be analyzed at a coarse resolution, and the
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results of that analysis can be used to selectively guide the
application of subsequent operations to finer resolution versions
of the image. For example, Kelley [13] detected the boundary of
human faces 1n a coarse resolution image, and used the results
of that computation to compute a finer description of the boundary
at the shape which was finally used to predict the locations of
facial features which would otherwise have been difficult to
find. Tanimoto and Pavlidis [14] describe an edge detection
algorithm which uses many levels of the pyramid rather than only
two. Other image analysis operations for which pyramid-based
algorithms have been proposed include image segmentation by
functional approximation (Pavlidis [12], Blumenthal, Davis and
Rosenfeld [15]), by texture analysis (Chen and Pavlidis [16]1) and
by thresholding both monochromatic images {(Shneier [171) and
multispectral images (Ohlander, Price and Reddy [18] which is
a generalization of Ohlander's [19] recursive segmentation pro-
cedure to pyramids).‘ In addition, a large number of algorithms
for operating on a pyramid-like representation of binary images,
called a quad tree, have been developed (e.g., Samet [20], Dyer,
et al [21], Davis and Roussopoulos [22]).

Although it is straightforward to define a theoretical
generalization of cellular arrays to pyramids (see Dyer [23]),
constructing an actual pyramid in which all nodes of all levels
can be simultaneously active is not straightforward. In what

follows we
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briefly present a simple extension of cellular architectures
which allow them to operate as pyramids; however, only one level
of the pyramid is active during any instruction cycle. We should
mention that it might be preferable to implement a pyramid using
one of the more general architectures described in Section 4.

Consider an ordinarily cellular array i composed of n2
PE's. Any PE is addressed by its location (i,j) in the array
0<i, j<n-1, n-1 = 2™,

Such a cellular array can be modified to act as a pyramid
in the following way: To perform an operation at the rth level of
the pyramid, the only PE's which are active are those located at

positions whose addresses represented as binary numbers are

(Xm—rOr,Ym—rOr) where X° and Y® are strings of O's and 1's of length s,

and 0O is a string of O's of length r. So, for example, if the

base of the pyramid is 23 X 23 (i.e., m=3), then all PE's are

active at level 0, all PE's with even~numbered addresses are
active at level 1, only PE's at locations (0,0), (0,4) (4,0)

and (4,4) are active at level 2, and only PE (0,0) is active at
level 3 (see Figure 2). The local memory requirements of a PE
are linearly proportional to the number of levels in the pyramid
to which it belongs. When operating the pyramid at level r, the
machine would be r times slower than it would at level 0, since
the "neighbors" of a level r PE are all located r+1 direct con-

nections away.
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Figure 2 - PE (i,]Jj) is active for the level numbers

shown in position (i,3).
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Furthermore, the instruction set at the array would have
to be enhanced to include at least two new instructions:

1) A reduction instruction which loads the pyramid at
level r based on the image data in the pyramid at level r-1, and

2) A projection instruction, which enables a node at

level r to communicate data to its adjacent nodes at level r-1.
These instructions essentially specify protocals for
passing data through some path of direct connections in the under-
lying cellular array. The array is thus being used to simulate
other interconnection networks (see Siegl [24] for a relatively

complete comparison of various interconnection networks).
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4. General S/MIMD Architectures

The last class of architectures considered are S/MIMD
architectures. These are designed based on a large set of
relatively powerful microprocessors, a large set of memory modules
and some flexible method for establishing processor-processor and
processor-memory communication.

The utilization of microprocessors rather than simple
processing elements such as those incorporated in CLIP facilitates
writing programs which implement complex image analysis operations.
However, these more general machines have a much more complex over-
all organization than a cellular array.

Siegl et al [25] have been designing a partitionable
S/MIMD system, called PASM, at Purdue University for image pro-
cessing and pattern recognition. Figure 3 (from [25]) contains
a block diagram of the system. The heart of the system is the
Parallel Computation Unit (PCU), which contains a set of N micro-
processors, N memories and an interconnection network which pro-
vides for communications between processors and memories.

The interconnection network is a multi-stage implementation
of the PM2I [26] network. At stage j of the network, processor 1

can be directly connected to any subset of prcocessors i, i+23,

i-27 (arithmetic modulo N}. If N = 2n, then the network is a
n-stage network. The delay incurred in communications between

pProcessors jl and j2 is linearly proportional to the number of
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ones in the binary representation of ]jl—jzl. This makes it
especially well suited for image processing. For example, if

the 20 processors are logically organized as a 2n/2 X 2n/2 array,
then the 4 neighbors of a processor (i,j) are (i,3-1), (i,j+1),

(i-1,3) and (i+1l,3j). 1In the linear ordering of processors, (i,7j)

is the (i2n/2 + j)th processor. Its horizontally adjacent

n/2 n/2 st

neighbors are the (12 + j—l)St and the (i2 + J+1) pro-

n/2

cessor, which can arc directly linked to (i2 +3j). 1Its

th

n/2 5yt ang

vertically adjacent neighbors are the ((i-1)2

((i+l)2n’/2 + j)th processors, which are also directly linked to

(iZn/2 + j) in the PM2I network. The diagonal neighbors of (i,7)
are distance 2 away in the interconnection network (1 horizontal
followed by 1 vertical movement). Siegl [25] describes applications
of PASM to image analysis operations such as smoothing, histogram
construction, and FFT computation.

It should be pointed out that PASM, with its PM2I inter-
connection network, could easily support the pyramid representation

discussed in Section 3. Again, suppose that the 2h processors are

h

2n/2 array. At the lt level of

logically organized as a 2n/2 X
the pyramid, the horizontal neighbors of a point (i,j) are at

location (i,j—2r), (i,j+2r) which are directly connected by the
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rth stage of the network. The vertical neighbors are at

(i—2r,j) and (i+2r,j). These correspond to addresses
nd:(i-zr)zn/2 + 5, nuz(i+2r)2n/2 + §. Since the address of
(i,9) is a = i27/2 4 j, we see that, e.g. |n.-a| =

d

iZn/2 - 2r+n/2 + 3 - i2n/2 -3 = 2r+n/2. So, vertical

neighbors at the rth level of the pyramid are directly connected

at the (r+n/2)nd stage of the PM2I network.

Finally, the MASK instruction of PASM which selectively
enables/disables a subset of the processors can be used to signal
which level of the pyramid is currently active. The complexity
of many pyramid-based image analysis algorithms (such‘as [14-191)
suggest that PASM would be a more appropriate architecture than
a cellular array of simple PE's.

Rieger [27] discusses the design of a ring network
architecture for image processing and distributed problem-solving
research called ZMOB. ZMOB is a collection of 256 identical Z80A
microprocessors which communicate using a high-speed, synchronous
"conveyor belt".

Each microprocessor is a mail stop on the conveyor belt,
which can be designed to make one complete "revolution" every 5.25y
seconds; since this is the maximum data transfer rate of the Z80A,
the conveyor belt can logically support n/2 non-blocking, direct
processor-processor communications for a mob of n processors.

The messages on the conveyor belt are formatted to include sender

-]



address, recipient address, one byte of message and various
control bits. Each processor has its own place on the conveyor
belt in which it places its messages, although it can accept a
message from any bin on the conveyor belt.

The image analysis algorithms which motivated the design
of ZMOB were relaxation processes [28,29]. A cellular architecture
based on simple PE's cannot support such computations since each
iteration of a relaxation process might require up to 1000 multi-
plies/pixel. One complete iteration of such an algorithm on a
512x%512 image would therefore require about 250,000,000 multiplies,
and a comparable number of adds. Rieger [27] reports that, based
on hand-simulated timing results, ZMOB would require about 100

seconds/iteration.
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5. Conclusions

We have distinguished three types of architecture for
image processing: focal plane architectures, cellular arrays of
simple processing elements and more general networks of micro-
processors configured as S/MIMD machines. Focal plane archi-
tectures are well suited for position-invariant local operations,
cellular arrays for iterative local operations on binary and grey
scale images and S/MIMD machines for more complex image analysis
operations such as relaxation. We have also briefly discussed
how pyramid machines may be constructed as either cellular arrays
or more flexibly connected networks. The wide-spread application
of pyramid-based algorithms to image analysis problems indicates
that interest should increase in the design and construction of

pyramid machines.
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