ed Local, Global, and Routine Design
For Mumps Micro-Computer System

Frank M. Brown
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas

TR 146 May 1980

ICH

ES

[

MIC

5

Kvig

i

&

4
[
£
4
o W
s} o
ok J5s]
4 &
3
0 o
o &
L9
{3 6]
ot
e a
3 e
[Ld
[ol
£
L
o e
P
] o
et} =
g o
W £
W
) w
[}
@] ot
o (3]
W &
a B
O »
§]
A "
EW] ﬂu
i
oy ek
&8
£ b
ek o]
fet
13} o
[I
a oy
s
Kol
Fod Jod
& O D @ asm
AR o u O Wt L
[] @
(S R R
e D O W koo
w B ool B

Wil vd O B oW o P

[N,) bd Bt o]
Wik W 1 B 0 Qevrd @
§ OO el K
i [S B¢ B I B
] IS BT B ¥ B B o
o [T TS & B B R
SN R W o 0D e

imes.,

.
4

e slow floo

N
ii

2

imple

s

s Mumps

3

o i
S A

ef
3
QP
o e
[
i [
[
of
[O
bt B
W O o
b
[% B
@ G
oW
K IS
[™ B 1
Y o U
2o O
sped (e o
b
o

a

1

ab

4
s

Va

storage, routin

73]
o
Youd
i Rt e omed
o b ad
wd G0 O 2
44 e O
[SH I Y e VR
e
ed CTE et T
R e =t
wd af
IV
Sow wowm
e ed (0
[e
By B I
id el
e
Sl
ism
[
o]

i%)
o
e B
[]
4
oo
o
a0 W
ol
ot
o &
N
a3
oo
(]
[
d
R
(eI}
Yed (3
(&)
o o
oo
(G
n...ssﬁ w.)m

o]

]

o

e

BRI
[e}
4 I oot
iy T o o
Q) G e
3w m [OReS
rod 7S i Qo
a o0
o @ O
£ w0 ot
o [ﬂw [}
et
0
R
o O
A e
Wil g
peed (4}
[P R.
[
= i
-t O
o) o
&=] el
4 o a
ot
= I
- oo
] 5
U u oo
U 5 W oo
[o b O
e S S rd
Ko i &) 0 s
ek
e 4 P W @
o 3 e
= Lot) o
gt &} W 3
ot bl Hed [
] b LOT % B (SIS
dud] o
B 0N J] =t o} Yl Dy bl wo®
Qo S aped (o] O @ g2
el B (9] - W
” i o ol -t Q
RN £ U o Moo &
[G et b L o] W o EEI
o9 4 oW [w o oo @ o O
W g A4 &) a 0 dd g IS [0
ST = o] o Py [®] } JE- 3 v o
=R O 4] [s T < BN B o B WO W W
w d et G o b R R el ¢ VI o RV S
G W) & ord £ eedoow o (SR o =
O erd vt bt B ooyooved Wg 0w 4 oW o
[P e oL 9 QoW @ o W aped (el o JE o vt
[N o e [S RV A OOoQ om0 U U 4
[el el = Low [&] $eit)
s U ot B wl oy) < <G Ee QG O oW oo b
O Ww o] St Q)01 ad el oed
£ > £ o0 .0 O i 1
w0 o} L S TR S - B B S I TN S
sed €3 B B D oved v ol D G WU oW
et 2 o 4] (S T 1 T B I NC A+ B Y
ol H W] o (PR oy,
I [ZRe [A B
et W oee) eed - A B I I e o
O Ch W Mt BOBD &) LS SR S P CE R

S

b

tha

Then

i

to handle

now

ded on

4
A

Havi

g dec

11

et

loca

representing

of

roblem

T
i

id

et
o
;oo
Q
g

ered the
significant d

cons
£

sl
f

s

o~

rances in

ffe

i

re
if

o

had essent

a8

fact that glo

ereny

el

3

W

L

reasons

accesses globa
than giobals they w

b

echanism which

incti
On

¢

ist
stored

& d

H

are

inte memory buffers by

b

[

stinc

s

bal
1i

d

Furthermore €
treat local

1 to

ed

variables are
decid

gystem.

i1l he

creessed

a

fren

ore or

m
memory buffers most of the

&

nave

1

hey

are

hat t

v
i

iables

2
y

s except

ocal var
==

fw
]
3 L

tne

.
id

s
in

is

e which

to valu

set
not alwavs

i
=gt

be

o

be

should

ace

D

IS

3

when

4
i

T det

o

AN
Y

.
O
L

space

a byte count (B

aermines

f

o
e

ation coun

o
S

"
=

apd

5

G a reasor

-
[
b
[

§

2
[

i

-

thresho
ata movemen

the allo

5
9

o
1.

ithout

&

W

values

set Lo new

8 were

b
A

variab

4., Routines

Having decided how to re
variables we finally considere
n earlier multi-user—time sh
his local variables was restri
size in memory, usually &4
it was loaded from the disk dnto the partci stro
old routine. Thus 1f the new routine late cntrol to the
0ld routine it had to be reloaded from the di he partition.
This of course was very inefficlent if inside a iﬁsp a routine merely

called another routine, which later returned con g

T e

ve
d

ari
>

o

joe

H

yﬁ

trol to it, because
ach pass thru the loop would involve up to eight Kilobytes of data
éﬁin loaded from the disk which would take up to 4/5 of a cond in
datra rransfer time alone. Thus again, what is needed is large
number of memory buffers in which to store the most often used
routines, so that most calls to routines could avoild any disk accesses.

¥

F.

1]
&

&M

In order to maximize the use of memory buffers, we decided to

U rhe same buffering system for both variables and routines as
this would allow whatever was most often accessed, be it a variable,
or a routine to be in the memory buffers. For example, routines will

wow be brought into a memory buffer when they are accessed and deleted
only when that memory buffer is needed to load some other routine or
ne

variable. Thus in effect we have designed a vivtual memory system for

Mumps routines and variables.

o]

The fact that we have a virrual memory system {or mumps routines
instead of a small set partition size leads to one further problem:
Hamely, that there is no longer any reason for routines to be of any
particular size. Thus for example if the routines are large they
may contain many line labels, and in executing a GUTC instruction the
mumps interpreter is faced with the problem of preparing an inefficient

T
<
iinear search thru all line labels in order to find the correct one.
Note that even in MTIY where the address of the next line label is
stored with the previous line label, a linear search is involved.

On the other hand if routines are sme

routines and then the Mumps interpreter 1
inefficlent linear search over ryoutine na
is a more efficient representation

o
search techniques, such as the efficiq
with %&mys variables which involve

\a-

we th i?k of a better representation?
splution is simply to represent Mumps
That is, a line of Mumps code is rep:
whos e 1

iose name 1s the Routine name followed
followed by a number representing a

Lo

3

<
label,

in order
the following program fragment of
numbers 1 to 100
SET I=1
START 1IF I=101;
DO FOO
SET I=I+1
GOTO START
END KILL
QuIT
FGO WRITE 1
QUIT

and whose data cons
are executed by jumping to the
until control is trans?

ists of the rest of that line.

erved to another line.

<

GOTO END

is represented as global variables as follows:

&ppchriate label and executi

vy oy

LEE, ..&..i.’si,
For example,
routine R which prints the

Programs

o

5

R(VENDY,1 = TRILLY

R{?!JEE;DW’Zt) . ”Q‘i}"@"ﬁ“”

R{"END", 3) = "kGOTO FOO,1"

R(”‘FOG” gl e Nv ,}1{&?3" z?ﬁ

R("FOO",2) = "QUIT"

ROTFOOM, 3) = VYERROR-NO SUCH LINEY

R(Srzﬁ;g?ﬁyl) - ”SET E:}”

R(VIATYM,2) = "%GOTO START,1"

R{TSTARTY, 1) = YIF I=101:; GOTO ENDY

R{VSTARTY,2) = DO FoO"

R("START",3) = YSET I=I+1"

R{"START", 4y = UGOTO START, LV

R{"START",5) = U#*GOTO END,1"

To execute this program an access to the first line of the entry
point is made which returns "SET I=1". This line is executed and the
next line from the entry point is executed which 1s a jump: #GOTO
START,1. Thus the line START,1 is accessed. This line is an IF test
which is false for I=1 so the next line 1s accessed which is a "DO FooY
statement. This line stacks the next line START,3 for later use and
F0OO,1 is accessed. The WRITE statement in FOO,1 is executed and the
next FOO line is accessed resulting in a "QUIT". The QUIT causes
the last stacked key, namely START,3, to be accessed. Thus, I is
incremented to Z, and START,4 is then accessed. Since START,4 is a

TO START,1, START,1

is again accessed with I=2,

The svstem

ontinues around this loop in this manner until I=101, at which ?1m€i
ihe IF statement in line START,1 will eval to true causing the

§ :

GOTO END statement on that line to be executed.

5.

Conclusion

micro computer. This system is based on a unified representati
for global variables, local variables, and Routines, namely that

§WA

We have designed virtuasl memory system for Mumps on a sma
kel
e

o1

i

everything is represented as a global variable in an m-way branching
B-tree, The advantages of this representation are numerous and
inciude the facts that

=2

£
TUuY
if

1. The Mumps svstem has a virtual wmemory allowing programs of
up to 190 Kilobytes.

2. Whatever is most often accessed be it a global variable, a
local variable or a line of Mumps code will be in the memory
buffers thus minimizing the number of physical access to
disk blocks.

3. Ho special code is needed to handle lecal variables thus
allowing this memory to be used for buffers.

&, No special code 1s needed to move routines into memory as
they are needed thus allowing the memory space saved to be
used for buffers.

5. Ho specisal cods is needed to write primitives for a Mumps
Program editor because the necessary primitives for manipu-
lating a program are already available azs the normal global
variable B~iree operations.

6, GOTO instructions in Programs with many large routines can
be executed efficilently by logarithmic sesarch instead of
linear search as in previocus Mumps sysiems.

Besides 81l the concrete advantages, we believe there is one
ther more abstract advantage of this Mumps design: namely that
Mumps programmers make full use of its facilities they will be

fsrgeé £0 write more esthetically pleasing structured programs
congisting of many small functions Iimplemented by DO jumps rather tha
useing one large linear routine with many GOTO jumps as this will
a¢30@ the little DO subroutines to be loaded and deleted by the

ering svstem,

References
Kuuth, Donald E. The Art of Computer Programming Volume 31
Sorting and Searching, pages 473~478, Addison~-Wesley
Company 1973,

