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ABSTRACT

An important problem in image analysis is to identify
useful scene features, such as shadows and occlusions, at a
low level. This information is, hopefully, more directly useful
to higher level scene analysis programs than the intensity data
would be. This paper reviews some of this work, with special
emphasis on techniques which are based upon examination of
edges in the image, and contains an analysis of edges caused
by shadows in the scene. It was found that the intensity profiles
- predicted for the boundaries of shadowed regions are quite dis-
tinctive. We describe our efforts to use this work to identify

shadow edges in real images, which met with only limited success.






SECTION I

EDGES AND BOUNDARIES

Edges in digital 1images are 1local phenomena,
corresponding to discontinuities in some image
characteristic, usually observed intensity. They are
commonly detected by applying an edge detection operator
(generally a digital first derivative approximation) to
the image and then, perhaps, thresholding the result.
Each pixel classified as an edge point by this process
has two numbers associated with 1it, an angular
orientation and a strength. The process is quite noise
sensitive, and tends to give multiple parallel weak edge
responses for fuzzy or gradual edges. For these reasons,
noise-cleaning, boundary-thinning, and gap~-filling
operations are usually then applied to the set of edge
labelings. Relaxation techniques (Rosenfeld, et al [1]

can sometimes be used to eliminate spurious
labelings (due to noise) or mutually inconsistent
labelings. Ideally, every image point which lies on the
border between two regions of interest would then be
labeled as an edge point with orientation along the

border, and wevery interior point would be unlabeled.



Chains of adjacent edge points could then be grouped into
boundaries.

In practice, a consistent edge-labeling is
difficult to obtain by this method. Another approach to
boundary detection is to find the regions directly by
region-growing. Boundaries (edges) are then the borders
between adjacent regions., It is also possible to combine
the two techniques by using the edge-detecter responses
to guide the region-growing process, or by first running
a region-grower, and then using the edge detector
responses to adjust the placement of borders between
regions,

Whatever the technique used to detect them, it is
useful to be able to classify edges within an image
according to the physical phenomena which caused their
appearance. This classification (labeling) can be very
helpful in understanding the scene, since it conveys
information about the positions and orientations of
surfaces in the scene. Although this is difficult in the
general case, it is often possible to arrive at probable
labelings of some of the edges according to their causes,
or to rule out some causes for some of the boundaries.
Since the physics of the imaging system and the scene
relates the possible labelings of different edges to one

another, restricting the set of possible labels for one



edge implies constraints upon the plausible labelings of
other edges. Thus, edge-label <constraints can be
propagated through the boundary network to further reduce
the list of possible labelings for each boundary.

An observed boundary can be due to a
discontinuity in any of several characteristics of the
scene (e.g., reflectance, viewpoint/object distance,
orientation, etc.). The process of labeling boundaries
according to their types is equivalent to that of finding
the discontinuities* in these "intrinsic images" (Barrow
and Tenenbaum [2]). Unfortunately, if the sur face
characteristics of an object vary over the object (e.g.,
if the reflectance-intrinsic image can vary arbitrarily),
discontinuities may be detected which will not correspond
to actual boundaries in the scene. 1In an extreme case,
if the object being examined were a uniformly illuminated
photograph, it would be indistinguishable from the
illustrated scene. The boundaries between regions in
such a case could be considered to be correctly labeled
either as reflectance discontinuities (in the photograph)
or object boundaries, shadows, etc. (in the photographed
scene) . Fortunately, for most real applications, some
constraining assumptions can be made about the nature and

*The term "discontinuity” is used loosely (since digital
images are not continuous).



frequency of reflectance changes. For many applications,
in fact, the reflectance is a single function of viewer
and light source orientation over individual objects
(that 1is, objects are a single solid color). Some
researchers (Marr, [3]; Barrow and Tenenbaum {21) to
simplify analysis, make the assumption that object
surfaces have lambertian reflectance functions. For a
lambertian (matte) surface, the observed luminescence is
proportional to the sine of the angle between the surface
and incident 1light and independent of the view angle.
Horn [4] notes that for a few applications {(e.9.,
lunar landscapes), there is a single reflectance function
for the entire image. Where valid, such assumptions can
obviously be of great utility to a program which tries to
classify boundaries according to their appearances,

Other boundary types are easier to discriminate
between. Specularities (glare spots) on gradually
varying glossy (non-lambertian) surfaces under highly
directional illumination (e.g., sunlight) can sometimes
be identified very simply because they are too bright to
be anything else. Note that since the presence of glare
at an image point implies that the incident angle of the
light source is egual to the wview angle, the
three-dimensional orientation of the surface is easily

determined if the light source direction is known. The



surface normal is simply the vector sum of the unit
source direction vector and the wunit vector from the
viewpoint toward the specularity. For outdoor images
where the sun is the light source, the source direction
vector can be measured to within 1/2 the angular size of
the source, approximately 1/2 degree. Hence, 1if the
viewpoint-to-specularity direction vector is known
precisely, the surface normal at the specularity can be
determined (in theory) to within aproximately 1/4 degree.

Thus, glare, which is commonly considered a nuisance, can

give useful information about the scene, and the
boundaries surrounding a glare spot can often be
immediately classified. Horn [4] examines the

phenomenon of specularities on non-lambertian surfaces in
detail and gives an approximating reflectance function
for some glossy white paints.

A graph of observed intensity versus displacement
across an edge is called an intensity profile.
Examination of the intensity profile can sometimes aid in
classifying the boundary. One type of boundary for which
this can be true occurs when a convex object with
distinct adjoining faces is viewed from a perspective
which allows both faces to be seen. If the corner
between the faces is very sharp (as opposed to rounded),

the intensity profile will be roughly step-shaped (a



"step-edge"). Horn [4] , however, observed that most
corners are, in reality, somewhat rounded. For this
reason, a narrow specularity is sometimes observed along
the boundary. This is, of course, only true for
non-lambertian surfaces wunder directional lighting, and
it implies that some 1linear combination of the two
surface normals bisects the angle between the vector to
the light source (from the surface) and the vector to the
viewpoint. This can cause a narrow peak to Dbe
superimposed upon the step-shaped intensity proﬁile.
Horn found that this effect 1is less common {although
possible) for coﬁcave object edges and object edges for
which only one of the two faces is visible {occluding
boundaries). Thus, he considers a step~edge with a
narrow peak superimposed to be evidence of a convex
object edge.

A concave boundary on a highly reflective {light
colored) object, according to Horn [4] , will sometimes
exhibit a wide peak or roof superimposed upon the step,
due to mutual illumination. He reports that this has
proved to be an unreliable cue in practice, though, since
his digitization system, an image dissector camera, can
apparently produce a very similar distortion.

Yet another type of boundary 1is observed where

one object partially occludes another in the image. A



step edge is likely to be observed in this case, although
a specularity may be present at the boundary. Thus, this
case can be difficult to discriminate from that of an
object edge viewed from a perspective which allows both
faces to be seen. Horn 1[4] notes that if the (hidden)
surface adjoining the occluding surface is less directly
illuminated or in shadow, a weak negative peak may be
superimposed upon the step (Figure 1). Observation of
such a peak is thus strongly indicative of an occluding
boundary. If it 1is known that surface characteristics
are constant over an object, and 1if <color or textural
information 1is available, then a boundary for which the
two regions have different hue or texture corresponds to
an occluding boundary. Some caution 1is necessary,
though, since the same texture can appear very different
for different orientations. In general, even if it!is
possible to «classify a boundary as caused by an
occlusion, it may be difficult to determine the sense of
the occlusion.

Examination of the boundary ends (where several
boundaries meet) can sometimes allow a classification to
be made in spite of these difficulties. Waltz [5] classified
trihedral boundary junctions into three types,
arrow-junctions, T-junctions, and Y-junctions (Figure 2).

Three common-sense notions allow the wuse of junction
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Figure 1) A situation giving rise to a negative peak in
the intensity profile for an occluding edge. A

portion of the shadowed surface is visible at
the boundary.



Y-junctions

T~

T-junctions

T-junctions

Figure 2) Trihedral junctions in a simple scene.



types to «classify boundaries. The first is that
boundaries, even curved boundaries, tend to be locally
straight because surfaces tend to be locally flat except
at well-defined surface boundaries. The second is that
singular views (coincidences) are uncommon. Singular
views are views for which a minute change in view
position could result in a change in the topology of the
image. The last notion 1is that object boundaries are
most frequently convex.

If we make these assumptions, we can infer the
following: i) that T-junctions are generally caused by
an object occluding another boundary; ii) that
arrow-junctions are wusually due to an object vertex for
which one of the three faces is turned away from the
viewpoint so that a background object is visible; and
iii) that VY-junctions are generally due to object
vertices for which all three surfaces are visible. Thus,
if a boundary terminates in a Y-junction or the "shaft"
of an arrow-junction, the boundary is probably due to an
object edge (surface Jjunction) with both surfaces
visible. If the boundary ends at one side of an arrow
head, the boundary is probably due to an occlusion with
the arrow pointing to the occluded surface. Similarly,
if the boundary ends at the top of a T-junction, it is

likely that it was caused by an occlusion with the



occluding object at the top of the T. If the base of the
T 1is caused by a shadow, however, the sense of the
occlusion cannot be directly determined.

The last two types of boundaries commonly £found
in an image are both caused by shadows. When one object
casts a shadow upon another, a boundary will be seen.
There are several cues which can sometimes be used to
discriminate shadow boundaries from other types. If the
boundary is fuzzy, it is likely to be due to a shadow,
although blurring in the imaging process can have a
similar effect. Also, 1if the lighting conditions are
known, inferences can be made about the ratio of the
distances from the surface to the viewpoint and from the
surface to the object <casting the shadow. If the
distance from the shadowed surface to the object is not
constént, but varies along its extent, then the width of
the observed boundary at the shadow edge will vary as
well. 1If this is observed, the boundary can immediately
be classified with high probability as a shadow. For
most real surfaces, the color is the same regardless of
the direction from which it is illuminated or viewed.
Thus, if color information is available and there is some
secondary 1lighting so that the shadowed regions do not
appear black, the observed hue will be approximately the

same on both sides of the boundary for a shadow.



Examination of the boundary ends can

identification of

does not contain transparent

object vertices of degree

degree-4 junctions observed
falling across another type
two distinguishable classes,
is cast across

the shadow

cast-shadow boundaries.

also allow

If the scene

objects, coincidences, or

greater than three, then any

must be due to a shadow

of boundary. They fall into
illustrated in figure 3. 1If

a reflectance discontinuity,

the Jjunction will appear X-shaped, i.e., as the

intersection of two (locally) straight lines. If the

shadow 1is cast across an orientation discontinuity

(object edge, where two adjoining visible surfaces meet),

one of the two lines will be bent at the junction.* The
bent boundary is the shadow edge.
The other type of shadow boundary is illustrated

in Figure 4. It 1is due to self-shadowing in a convex

object surface. This type of edge can be due either to a

sharp  object edge or the gradual curvature of the object

surface. The apparent width of the boundary will be

proportional to the radius of curvature of the object

surface as well as to the angular size of the directional

light source. As with a cast shadow, the hue of the two
surfaces will be the same unless the boundary also
*It will be bent unless the viewpoint is in the plane

determined by the edge casting the shadow and the line
from the source to the junction, a coincidence.
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Figure 4) Self-shadowing on a curved surface. 4b  shows
what the source would look like if viewed from
the point marked 'a' in 4c.



corresponds to a reflectance discontinuity, as when
different object faces are different colors. Unlike a
cast shadow edge, however, this type of boundary will not
end in a quadrahedral junction (barring a coincidence).

Barrow and Tenenbaum [2] have taken a different
approach to the identification of shadow boundaries.
They studied a restricted set of images for which flat
surfaces and sharp object edges were forbidden. They
assumed that all reflectances were lambertian and did not
vary over the extent of an object. They modeled the
lighting conditions by a point source plus a uniform
secondary illumination, corresponding to the sun and the
light sky, respectively. Mutual illumination and partial
shadowing of the surfaces from the secondary light sonrce
were not accounted for. Because of the ©point source
assumption, shadow boundaries were perfectly sharp, so
edge width could not be used to identify them. Instead,
they identified shadows directly. Since the observed
grey-levels within a region depended only upon surface
orientation relative to the point light source, shadowed
regions always had constant grey-level and 1illuminated
regions never did. Unfortunately, this is not always
true for real images.

Marr [6] attempts to classify boundaries in

real images according to their widths, using the symbolic



fuzziness <classifications sharp, slightly fuzzy, and
fuzzy. His method for measuring the widths is
interesting. When doing the initial edge detection, he
convolves* step edge masks at several orientations with
the 1image (Figure 5). This process is similar to
applying a digital first derivative operator to the
image. It 1is equivalent to computing the local
correlation between a perfect step edge and the image at
every point. He was also able to detect edges using a
second derivative approximation achieved by convolving
the image with a bar mask.

Marr observed that wide (fuzzy) edges give weak
responses for narrow edge masks, but that sharp
boundaries give equally strong responses for narrow and
wide masks. Therefore, he assesses the spread of the
boundary by comparing the relative sizes of response
peaks for several mask widths. Some care is necessary to

avoid the effects of cross-talk between adjacent

boundaries,

A more recent theory of edge detection and
analysis based on the =zero-crossings 1in a Laplacian
filtered image is given in Marr and Hildreth [71

-

*He suggests that, to save computation, this could be
done by multiplying in the Fourier domain.
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SECTION II

THE SHAPES OF SHADOWS

If shadow boundaries are to be discriminated
according to their intensity profiles, it must be
assertained what those profiles should be for the two
different types of shadows described 1in the previous

chapter. This is clearly impossible if the 1lighting
distribution is arbitrary and unknown. It is
straightforward, however, if some reasonable simplifying
assumptions are made.

We will model the illumination by the combination
of a single small circular source of uniform brightness
and known angular size plus a locally constant secondary
illumination. This 1is a reasonable approximation for
most outdoor scenes on sunny days, and some indoor
scenes. Note that this does not require that there be
only one directional light source, merely that those
light sources not causing the shadow contribute

approximately uniform illumination in the vicinity of a



shadow edge, and that the light source causing the shadow
be small and round.

The case of a shadow cast from one object onto a
locally flat surface is shown in Figure 6. For outdoor
scenes, S 1is the angle subtended by the sun,
approximately 1/2 of one degree (the contribution of the
corona to the total illumination is negligible
(Teschan [8])). D is the average distance from the
obstruction to the viewed surface. Vv is the average
angle of incidence of the sunlight wupon the viewed
surface., If V is much larger than S, the sine of the
angle of incidence will be nearly constant across the
shadow boundary. Since the amount of light incident upon
a unit surface area is proportional to the sine of the
angle of incidence*, it is useful to make the simplifying
assumption thét this angle is constant across the width
of the boundary and equal to V (it actually varies
slightly across the width of the boundary, from (V - 8/2)
to (V + S§/2)). The defraction effects are negligible for
any reasonable size of source (Teschan [8]).The observed
width of the shadow boundary, W, is then approximately

S D/ sin V or Dsin S / sin V (since 8 is small)}.
*Note that this is true regardless of the surface
characteristics. If the observed intensity from a

specific viewpoint is to be predicted, however, some
knowledge of the surface characteristics is needed.
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Figure 6) A cast-shadow Dboundary. 6b shows what the
source would loock 1like if it were viewed from
the point marked ‘a' (right) or 'b' (left) in
6c. 'r' in 6b is arccos(l - 2X'/sSD).



If we superimpose an X axis upon the surface and
perpendicular to the boundary (fig 6a), we can consider
the intensity of the incident light at a ©point on the
boundary as a function of X. This quantity is di, the
integrated incident light flux on a differential surface
area, dA. di/dA could be called the incident intensity.
I1If we 1ignore other 1light sources, which will only
contribute a constant additive illumination across the
entire edge, and if the light source has intensity I,
then the incident intensity when the entire light source

is visible, i.e., with X=W, will be approximately

%é = (7:82/4) I sin Vv
and di = (mS2/4) I sin V dA

where (7782/4) is the area of the 1light source, and
sin V dA is the’ area of the projection of the surface
element upon the plane perpendicular to the direction of
illumination. If we consider the projection of the X
axis upon this plane to be a new axis, X', where
X' = X sin V, subsequent analysis will be simplified.
For a point X'=a, 0 < a < 8D = W sin V, the incident
intensity will be approximately

di 1 @ . . )
= S sin r dX' I sin V, where
da D 0

¥
r = arccos{(l - é% } and the area of



the light source to which a is exposed

. 1 (@
1s D J S sin r d4dx?
0

Letting X' = S D(l - cos r), then
dX' = - §§2 d cos r, and
2
ar;cos(l— g%)
di _ . ST .
T4g5 = —sin A" 3 sin r d cos r

0

2a
82 arccgs(l~ gﬁ)
=5 sin V sin® r dr
0

2
= % sin Vv {%sin (2 arccos (1 - %%))

- % arccos (1 - é%)]

2
% [2 arccos(l - é%)

- sin (2 arccos(l - %%})} sin V

This function is plotted in figure 7 verses a/SD.

To analyze the case of the boundary observed on a
self-shadowing object, we make the assumption that the
cross section of the object perpendicular to the shadow
edge and the object surface is locally circular (near the
shadow edge), and has radius of curvature R. If the
shadow boundary is due to a sharp object edge between two

faces of the object, R will be small and the intensity
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Figure 7) The intensity profile for a theoretical cast
shadow boundary.



profile will be perceived as a step. Otherwise, the
shadow boundary will have a "width"™ of SR, as shown in
Figure 4c, although the gradation in illumination extends
beyond the shadow edge, as will be shown.

Analysis of this case is more complicated because
the angle of incidence of the light upon the surface is
small compared to S. Thus, the sine of that angle cannot
be approximated by the constant term, sin V. Also, note
that since the surface 1is not flat, the displacement
across the edge (in the X direction), a, will be measured

as R multiplied by an angle (i.e., the X axis is slightly

curved) :

di I 2 . a-x .

a5 = '’ JO(51n ~x—) S sin r dx, where
r = arccos(l - éé), as before;
except that the edge width is SR instead
of SD, and (sin 3%5 is analagous to
sin V. Then,

di _ s a | a-x . 2%
TdA ° R JO(Sln 7)) sin agccos(l - =) dx,
0 < a<w

Letting y = % (see Figure 4b), we have:

dlA = g fosin (; - y) sin arccos (1 - ESX) dy,
0 < a<w



a/R
=5 Xosin (g - Y Vi - (1 ~-2—Sl)2 dy

14

0 < a < W
a/R a
=2Jsin(§~y)md}'r
0
0 < a < W

This function, integrated numerically¥*, is tabulated in
table 1la and plotted in figure 8 verses a/SR with 5=0.54
degrees (the angle subtended by the sun).

Because the surface is not flat, the effective
illumination is not constant for X greater than W, but
rather increases due to the sin ((a=-X)/R) term. The

form is nearly the same:

IdéA = 5 Xosin (% - y) sin arccos (1 - Zgi) dy,
w < a < {That point where the
radius of curvature begins to
differ significantly from R}
S
= 2 gosin G-y ¥ B-v gy
This function, integrated numerically*
is tabulated 1in Table 1b and
plotted in the right part of Figure 8. Note that it is

*For a << R, sin (a/R - y) can be approximated by (a/R
- y), thus rendering the function integrable (make the
substitution z = y -~ §/2).



DELTA= 9,4248E-06
X/SA VALUE
5.0000E-02  2.4632E-10
.1000 1.3801E-09
.1500 3.7613E-09
.2000 7.6323E-09
. 2500 1.3174E-08
.3000 2.0526E-08
. 3500 2.9794E-08
.4000 4.1056E-08
.4500 5.4367E-08
.5000 6.9758E-08
.5500 8.7241E~-08
.6000 1.0680E~-07
.6500 1.2842E-07
.7000 1.5202E-07
. 7500 1.7755E-07
.8000 2.0488E-07
.8500 2.3388E-07
.9000 2.6437E-07
.9500 2.9611E-07
1.000 3.2874E-07
1.200 4.6024E-07
1.400 5.9173E-07
1.600 7.2322E-07
1.800 8.5471E~07
2.000 9.8620E~07
2.500 1.3149E-06
3.000 1.6436E-06
4,000 2.3009E-06
6.000 3.6147E~-06
8.000 4.9272E-06
10.00 6.2380E-06
15.00 9.5042E-06
20.00 1.2749E-05
30.00 1.9148E-05
40.00 2.5376E-05
60.00 3.7103E-05
80.00 4.7516E~05
100.0 5.6246E-05
125.0 6.4327E-05
150.0 6.8853E~05

S

9.4248E-03

+/-
7.1430E-12
2.0040E-11
3.6508E~11
5.5733E-11
7.7230E-11
1.0066E-10
1.2577E-10
1.5235E-10
1.8024E-10
2.0929E-10
2.3940E-10
2.7044E-10
3.0234E-10
3.3502E-10
3.6839E-10
4.0240E-10
4.3699E-10
4.7211E-10
5.0771E-10

Table la

5.4375E-10
6.9163E-10
8.4410E-10
9.9987E-10
1.1580E-09
1.3180E-09
1.7231E-09
2.1327E-09
2.9587E-10
4.6212E-10
6.2874E-10
7.9534E-10
1.2108E-09
1.6238E-09
2.4383E-09
3.2312E-09
4.7243E-09
6.0501E~09
7.1616E-09
8.1904E-09
8.7666E-09

Table 1b

NORMALIZED
7.4929E-04
4,1981E-03
1.1442E-02
2.3217E-02
4.0075E-02
6.2438E-02
9.0629E-02
.1249
.1654
.2122
. 2654
.3249
. 3906
.4624
.5401
.6232
. 7114
.8042
.9007

1.000
1.400
1.800
2.200
2.600
3.000
4.000
5.000
6.999
11.00
14.99
18.97
28.91
38.78
58.24
77.19
112.9
144.5
171.1
195.7
209.4

+/-
2.1728E-05
6.0958E-05
1.1105E-04
1.6953E-04
2.3492E-04
3.0620E-04
3.8257E-04
4.6342E-04
5.4826E-04
6.3664E-04
7.2822E-04
8.2266E-04
9.1970E-04
1.0191E-03
1.1206E~03
1.2241E-03
1.3293E-03
1.4361E-03
1.5444E-03

1.6540E-03
2.1039E-03
2.5677E-03
3.0415E-03
3.5226E~-03
4.0092E-03
5.2414E-03
6.4874E-03
8.9998E-04
1.4057E-03
1.9125E-03
2.4193E-03
3.6831E-03
4.9394E-03
7.4168E-03
9.8286E-03
1.4370E-02
1.8403E-02
2.1784E~02
2.4914E-02
2.6666E~-02
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a self-shadowing object.



very different from the intensity profile predicted for
cast-shadow edges. For cast-shadows, the incident
intensity is approximately constant for points exposed to
the entire source (i.e., for a > W). For shadows due to
self-shadowing on a curved surface, however, the incident
intensity increases with the sine of the angle of
incidence, which 1is approximately linear near the
boundary. Thus, in theory, at least, it is possible to
identify the two types of shadow boundaries by examining

the intensity profiles of their cross-sections.



SECTION IIT

APPLICATION

To be of much value, an analysis 1like that of
Section II should enable us to identify features in real
images. We sought to apply our observations about shadow
boundaries by writing programs which could identify
shadows by examining the intensity profiles across their
edges. These routines were then to have Dbeen
incorporated into a general purpose region-growing system
which would be able to identify and merge shadowed and
unshadowed regions of the same object.

We wrote a system of interactive programs for use
on UT's Control Data time sharing system. They allow the
display of small grey scale images on the screen of a
Tektronix 4012 or 4010 graphics terminal. A user can
identify boundaries by marking endpoints with the
terminal's crosshairs. Graphs of the intensity profiles

of the perpendicular cross-sections of the boundaries are



then displayed on the screen of the 4012, The
cross—-correlations (convolutions) of these profiles with

arbitrary prototypical edges can also be graphed.

Some of our images were obtained by digitizing
35mm slides using a flying spot scanner (Underwood et al [9])
controlled by a PDP-11/34, the rest were digitized wusing
a high resolution television camera and the same
computer. The images were typically 128x160 pixels,
either monochromatic or with three color bands of six

significant bits each.

Although the programs can work with any or all of
the three color bands, or with "normalized colors" (e.g.,
R/ (R+G+B)), we have generally used the sum of the three
colors (the intensity) when examining edge intensity
profiles. Linear interpolation was used where it was
necessary to obtain intensity measurements for arbitrary
picture coordinates.

Most of our attention was devoted to examination

of cast-shadow edges and object edges in a scene



containing blocks and other small objects (Figures 9
through 11). We also examined an aerial photograph of an
airplane tail on a runway and se?eral other outdoor
scenes containing shadows, as well as a number of
close-ups of the two types of shadow boundaries. We used
the convolution technigue of Marr [6] to compute
first and second derivative approximations of the
intensity profiles. The results for a falrly typical
edge are shown in Figures 12 through 14. A wide step,
for the first derivative, or bar convolution profile, for
the second derivative, was used to improve noise immunity
by including more points in the computation.
We were readily able to find the approximate midpoints of
the shadow boundaries in both cases; they correspond to
peaks in the first derivative and zero-crossings in the
second derivative. Measurement of the widths by
measuring the distance between second derivative peaks in
the natural scenes, though, proved unreliable. The
difficulty was apparently due to the presence of noise
and the limited resolution of our images; a mask width of
at least 20 pixels was required to make the peaks clear,
and this is as wide as most of the shadow edges.

In hopes of obtaining improved edge width
measurements for degraded pictures, and of discriminating

between the twc types of fuzzy shadow edges, we attempted



Figure 9)The (negative) blocks scene with chree shadow
edges identified. Two blocks and a hammer
handle are wvisible. The hammer handle has
apparently shrunk in the shadowed region (due
to blurring). This image was digitized with
our flying spot scanner system [see Underwood].



edges

the blocks scene.

in

»

Figure 10) A (negative) closeup of the three shadow
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Figure 12

) The intensity profiles for the cast-shadow

cross-sections in figure 11. The left column
shows the actual intensities; the data 1in the
right column has been smoothed by averaging
over groups of four points. The cross sections
in figure 11 are profiled in the bottom three
pairs of graphs; the top two draphs are
averages over the three cross-sections graphed
beneath them. Thus, the top right graph is the
result of averaging in two directions. The
bottom intensity profiles correspond to the
left-hand cross—section in figure 11. The X
axis is 50 points long.
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Figure 13 )} This 1is the result of cross-correlating

step-edge masks of width 8 {(left) and 20 pixels
(right) with the intensity profiles in the left
column of figure 12.
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Figure 14) This is the result of cross-correlating a

bar-mask of width 30 with each of the profiles
in the left column of figure 12. This process
is a kind of second-derivative (Laplacian)
operator. The distance Dbetween the positive
and negative peaks is a metric of the edge
width. The "width" of the bottom graph (which
corresponds to the sharpest part of the edge)
is not appreciably less than that of the other
two. A gradation in width would be evidence of
a shadow edge.



to directly match theoretical shadow edge profiles to the
observed profiles. A high resolution cast-shadow profile
was synthesized according to our model and stored in an
array for Ehis purpose. Scaling and position parameters
were adjusted to best fit the theoretical profile to the
observed profile. The summed squared error was used as
the measurement of the quality of £fit. A steepest
descent ("hill climbing™) non-linear optimization
algorithm wusing finite difference approximations to the
first derivatives (and modified to prevent jamming)

(Luenberger [10]) was used to adjust the parameters.

Unfortunately, although the algorithm converged to a
solution after an acceptable amount of computation, the
parameters found were frequently unreascnable. As with
the second derivative approximation measurements, the
problem was apparently caused by image degradation.

Since the profile shape and, hence, the degree of
fit to an ideal shadow cross-section will be affected by
image degradation, it is appropriate at this point to
consider the effects which wvarious types of image
degredation can be expected to have on altempts to
discriminate and parameterize shadow bou .cries by this
technique. Clearly, a combination of noise and low

resolution can be fatal to the success of the method.



Blurring, however, need not be. Obviously, blurring the
image will alter the observed intensity profiles along
both shadow and object boundaries. It is well known
(Rosenfeld and Kak [11]) however, that some types of blurring
(due to camera movement or defocussing, for instance) are
readily reversible. The techniques used to deblur whole
pictures, though, can be complex and time consuming.
Fortunately, they are not needed for this method. It is
much simpler to deblur the one-dimensional intensity
profile perpendicular to the edge than to deblur the
entire image. To deblur the profile, we need a model of
the blurring process. For most types of blurring, a
reasonable model is that each blurred picture point is a
weighted average of nearby points in the unblurred image.
If we examine only cross-sections where the boundary 1is

locally straight, the blurred picture point 1is the

we ighted average of unblurred points along the
cross—-section. For example, if B is the grey-level of
the blurry cross—-section at pixel n and Un is the

corresponding grey-level for the unblurred cross-section,
a width 5 model for the blurring operation might be:

B, = .1U _,+.20 _ +.4U +.2U

n n-2 n+l+°lun+2

Determination of the actual coefficients requires
either prior knowledge of the nature of the blurring

operation or examination of a blurred boundary for which



the deblurred profile is known. This would normally be
an object boundary (which should appear as a
step-profile). Usually, it may be assumed that the
sharpest edge in the picture is on such a boundary. If
it is known that the entire picture has been subjected to
the same blurring, the coefficients are easily
determined. If, however, the blurring is due to camera
motion, the sharp object boundary chosen should be
approximately parallel to the boundary to be deblurred,
or, 1if the directiocn of motion is known, the
cross-sectional profile can be scaled appropriately.

Once the coefficients are known, reversing the
process (and thus deblurring the blurry cross-section) is
done by solving a large system of simultaneous linear
equations. This is weasily done (without a matrix
inversion) if either end of the cross-section extends
into an area of constant grey-level, so that the first
K-1 deblurred grey-levels are known (and equal to the
blurred wvalues), where K is the width of the blurring
operation model. For our width 5 example, we start with
ﬂl through Ug known. Then,

U5 = (83—.lUl—,Zuz—.4U3~.2U4)/.1

and, Un = (Bn__z-’.lun_4‘.2Un__3—,4Un__2"‘eZUn_l)/-l

In practice, this solution technique would be
very sensitive to noise, and so would have to be modified

somewhat for robustness.



SECTION IV

CONCLUSION

We concluded that, for most applications, edge
classification on the basis of cross-sectional profiles
does not work very well. The limited resolution generally
available for real applications implies that the width of
a typical fuzzy edge is only a few pixels, and noise dis-
torts the profile beyond recognition, making reliable
width measurements impossible. Where greater resolution
and improved signal to noise ratios are available, the
techniques described here may be useful for discriminating
shadows. Also, in such cases, it may be pcssible to eli-
minate the effects of blurring in the imaging process quite
easily. In any case, the method shows promise mostly as a
component in a comprehensive image processing system,
providing one of many types of clues to aid in under-

standing the image.
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