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Abstract

A simple dynamic scaling technique is shown that avoids both the over-
flow and underflow problems that are often encountered in the evaluation
of normalization constants of closed product-form queueing networks.
Additional time and space overheads needed by the technique are found
to be minimal. With dynamic scaling, normalization constants for very
large routing chain population sizes can be evaluated within the bounds
of a relatively small range of numbers. Product-form queueing networks
with external arrivals, departures and population size constraints are
also considered. It is shown that the network population vector is
characterized by a continuous-time Markov chain. The equilibrium pro-
babilities of feasible population vectors are related to normalization

constants of equivalent closed networks.






1. INTRODUCTION

Queueing networks have been used extensively and successfully in
the modeling of computer systems and communication networks. Jackson [1]
first showed that the equilibrium probability distribution P(S) of the
state S of a network of first-come-first-served queues is in the form of
a product of terms that correspond to the state probabilities of the
individual queues considered in isclation. Presently, most known networks
with an exact solution for P(S) belong to the class of BCMP networks
discovered and characterized by Baskett, Chandy, Muntz and Palacios [2,3,4].
Four types of service centers as well as open and closed routing chains
are allowed.

BCMP networks have a product-form solution for P(S). This product-
from solution was later shown to be also applicable to an extended class
of BCMP networks with arbitrary constraints on chain population sizes [5].

The product-form solution needs to be divided by a normalization con-
stant to form a proper probability distribution for P(S). The normaliza~
tion constant is simply the sum of the product-form solution over all
feagible network states. Since the number of feasible network states
is typically very large, the summation 1s a nontrivial process.

Several computational algorithms are available for the class of BCMP
networks [6,7,8,9]. The convolution algorithm was first discovered by
Buzen [6] for single-chain networks and extended by Reiser and Kobayashi [7]
to multi-chain networks. The LBANC and CCNC algorithms were recently pro-
posed by Chandy and Sauer [9]. These algorithms all attempt to first

evaluate the normalization constnats of networks of closed chains.



Network performance measures are then computed from the normalization
constants. A major difficulty often encountered in the evaluation of

the normalization constant G(N) of a network with population vector N

using any of these algorithms is that as the chain population sizes in

N become large, G(N) may become too large (causing a floating point
overflow) or too small (causing a floating point underflow) [9,10].

A scaling technique was described by Reiser [10] that can avoid the overflow
problem. However, the bound used is not very tight and no solution is pro-
vided for the underflow problem.

The mean value analysis (MVA) algorithm proposed by Reiser and Laven-
burg [8] bypasses the evaluation of G(N) and computes various network
performance measures directly. However, Chandy and Sauer [9] found that
the MVA algorithm may encounter some other difficulties and may have
unstable numerical characteristics under certain conditions.

Summary of our results

The overflow and underflow problems encountered in the evaluation
of G(N) using current algorithm implementations are due to the use of

a fixed set of "

scaling factors" for the entire range of values of N

of interest. We found that the scaling factors can be factored out of the
expression for G(N) so that one can just as easily use different sets of
scaling factors for different values of N with just small amounts of

space and computation overheads. As a result, the scaling factors can

be changed to smaller values when G(@) is about to encounter an overflow,

and changed to larger values when G{(N) is about to encounter an underflow.

Since changes in the values of scaling factors can be made repeatedly



. dgring the execution of a computational algorithm, it is now possible

to evaluate G(N) for a wide range of values of N using computers with a
small floating point range or even computers without floating point num-
bers! The scaling technique and related results are covered in Section III
below.

External Poisson arrivals at rates that may depend upon routing chain
population sizes are allowed in BCMP networks [3] and the extended class
of BCMP networks with population size constraints [5]. In these networks,
the population vector N can have more than one set of values.

We found that the population vector N can be characterized as a contin-
uous—time Markov chain. The normalization constant of such a network is
obtainable from the normalization constants of equivalent closed networks
over the space of feasible population vectors. These results are covered

in Section IV below.

II DEFINITIONS AND NOTATIONS

Service centers in a network are indexed by m = 1,2,...,M. Customers
belong to different chains with different routing behaviors and service
requirements. Chains are indexed by k = 1,2,...,K. Let there be C
classes in the network. At any time each customer must be in one of
the C classes but may make a transition to another class some time later.
Classes are used to model a customer's routing behavior and service re-
quirements with finite memory.

The set of classes {1,2,...,C} 1is partitioned in two different
ways. First, they are partitioned over the set of M service centers.

We let SC{(m) denote the partition of classes belonging to service center m.



Thus the class of a customer, say c in SC(m), uniquely identifies the
service center he is in. A customer makes a transition from class c
to class d with probability P.g° The transition from class ¢ to class
d may correspond to a transition of the customer from one service
center to another if ¢ and d belong to different service centers or it
may correspond to a transition of the customer from one class to
another within the same center.

The set of classes {1,2,...,C} 1is also partitioned over the set
of K chains. We let RC(k) denote the partition of classes belonging to
routing chain k. Customers cannot make transitions between classes
belonging to two different chains. (Otherwise, the two different chains
"communicate" and should be treated as just one chain.) 1In other words,
Pog ™ 0 if and only if c and d are in different chains. Moreover, each
chain is irreducible i.e., the transition probabilities {pcd; c,d in
RC(k)} are such that every class can reach every other class in the
same chain in a finite number of transitions with nonzero probability.

For each chain k = 1,2,...,K, the relative arrival rates of
customers to the different classes can be determined (to within a multi-

plicative constant) by solving the set of equations

v, o= Z v P d in RC(k) (1)
¢ in RC(k) c “ed

Summing over the different classes in a service center, the relative
arrival rate of chain k customers to center m is
A= ) v (2)

mk ¢ in SC(m) ©
and RC(k)



Suppose that the multiplicative constant in (1) is chosen such that

For o = 1, ka is equal to the mean number of visits to center m by

a chain k customer between successive visits to center 1. uk is called

the scaling factor of chain k. (Note that since the labeling of the

service centers is arbitrarily done, the choice of center 1 is arbitrary.)
Let T, denote the mean service time of a customer in class ¢ (assuming
that he is served at the rate of 1 second of work required per second).

The mean service time of chain k customers at center m 1is

v

c
T = z T (3)
mk ¢ in SC(m) kmk ¢

and RC{m)

The traffic intensity of chain k customers through center m is defined to be

o= A x = Ty e (%)
¢ in SC{m)
and RC(m)

We define the nominal traffic intensity to be

WS Amk Tk for 4 = 1 (5)

Thus, we have

W (6)

The service rate of a service center may depend upon the number

of customes currently in the center. Let 1y (i) denote the service rate
i

of center m containing 1 customers. A service center is said to be fixed-

rate if u (i) = 1.
e m



For the moment, we consider only networks with closed chains.
(Networks that permit departures and external arrivals are introduced
later in Section IV.) We let Nk be the number of customers in chain k.

The network population vector is

N o= (N,Ny, e e N)

The normalization constant for a closed network with population vector
N is denoted G(N).
Let nmk denote the number of chain k customers in center m. Define

the network state

0= (0y,n,,. ..y

where

Em = (nmlsnm2:='~yan) m = 1,25. .o, M

{We note that n is non-Markovian and corresponds to an aggregation of
detailed network states that are Markovian.) The product-form solution

for a BCMP closed network with population vector N is  [3]

M
mgl pm<§m>
P(n) =
c(Y)
where . Hmk
m 1 K Qm!,
p(n)={01 ——=}n! I ————
nom R S R
where
n =n + n -+ + 1n

(7

(8)



The form of (8) is the same for all 4 types of service centers considered
in [3]; they are: first-come-first-served (FCFS), processor—sharing (PS)

last-come-first~served preemptive resume (LCFSPR) and infinite servers

(IS). However, in an FCFS center, it is necessary for the mean service
time to be independent of class membership i.e., TC =T for any c
in SC(m). Also, an IS center, say m, assumes that um(i) = i for all

feasible 1.

Finally, the normalization constant is by definition

M
G = ) Toop, ()
n such that m=1 mo-m 9
M
z n =N
m=1 o

IIT. CLOSED NETWORKS
Examining Equations (8) and (9), we note that G(g) is a function of
N, M, the service rate functions {pm(i)} and the traffic intensities

{p . }. Recall that

P is the product of the scaling factor a,  and

nk Kk

the nominal traffic intensity w K Let
m

o = (al,az,...,aK)

Tn what follows, we shall often use the notation G(gg§) or G(g,Mag) instead
of G(N) to explicitly indicate the parameters o and M assumed in the
normalization constant. Our scaling technique to be described later makes
use of the following lemma.

Lemma 1

G(g,M,ﬁ) =, a, sl G(},M,§) (10)

where 1 is a K-vector of ones denoting that the scaling factor is equal

to unity for each chain.



A useful corollary of the above lemma is

G(8,M,N) = r(8,0,N) G(a,M,N) (an
where
K Ny,
r(Bo,N) = T (B /a)
k=1

The above lemma is obvious from a careful inspection of the defini-

tion of G(N) in (9) and noting that the summation is over those values of

M
n such that I n = g

It is imstructional, however, to demonstrate the above lemma by
a different approach. It is well-known that the throughput rate of chain
k customers at center m for a network with population vector N is given
by [6,7,9]

G(g - %1(>

K om (12)

ka(§) = km for any m and N > }k

where lk, is a K-vector with the kth element equal to one and all others

equal to zero. The relation > between two vectors is satisfied if it is
satisfied for each pair of corresponding components in the vectors. (12)

can be rewritten as
Amk
ka(N)

G(N) = G(N - 1

~1<> for any m and N i~£k

A consequence of (12) is that the ratio Amk/ka(§) is constant over m.

Let us consider m = 1. Recall that Alk is equal to the scaling factor

& by definition. To simplify our notation, we shall write Tk(§) for



le(g). The above equation can now be rewritten as

o

- K

¢y - 1,) (13)

o

k

Traditionally, we first compute G(N) and then derive Tk(g) from G(N)

and G(ﬁ - 113 . Now since we are interested in the behavior of G(N),

we consider the reverse process. Note that Tk(g) can be obtained from

the MVA algorithm directly and is independent of the scaling factor ak [81.
We need some additional notation at this point. Consider, in the

K-dimensional space of population vectors, a path leading from the vector

0 of all zeroes to N. The path has

=N, + N, + ...
N =N +N, + N

steps. Step i in the path corresponds to the addition of a class ki
(i-1)

customer to the current population vector N . The increasing sequence

of population vectors along the path is

v =0
A (0)
} =N + 1
- — ___kl
(2) 1 .
N = N + 1
2 = _.kz
g oD = N
= 2 —‘kN =

Given any such path, a solution for G(N) using the recursive relation in

(13) is :
NN N¢
OL}_ C(,? CiK
GN) = N : (14)
1o ooty
, k, -
i=1 i
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where G(0) = 1 by definition. We have thus provided an alternate proof
of Lemma 1.
Note that there are many different paths leading from 0 to N. Since

G(g) is a constant, the next lemma is immediately obvious.

Lemma 2 For any path from O to N consisting of an increasing sequence

of population vectors g(l), g(Z)’ . ﬁ(le), §(N)
N (1)
I Tk (N ) = constant (15)
i=1 i~

Let us set aside the above result until Section IV. We shall now
consider the special case of K = 1 i.e.,, networks with a single chain,
and introduce a dynamic scaling technique for avoiding the overflow/underflow
problems. The scaling technique for networks with multiple chains is
similar and will be considered afterwards.

For a network with a single closed chgip oOur previous notation will

be simplified as follows:

G(N) normalization constant for N customers in the chain
o scaling factor (relative arrival rate at center 1)
T throughput rate at center 1 for N customers in the chain

We now have

a
TN

G(N) = G(N-1) N> 1

and with G(0) = 1 by definition, we have

o) = o

(16)

— 2

1 T(i)

il

i

To characterize the behavior of T{(i) we shall assume for the moment

that service rate functions are limited to the following
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um(i) = (17

for any m, and state the following result.
Proposition T{N) is monotonically nondecreasing in N.

The above proposition was proved by Chang and Lavenberg [11] for a
network of FCFS centers. Their proof is also valid for IS centers since
jm can be greater than N. Moreover, we note that any BCMP single-chain
network with the same set of service center traffic intensities {pm} has
the same marginal probability distributions Pm(nm), m= 1,2,...M, which
together with um(i) determine the service center throughput rates.
Consequently the above proposition applies to any product—form network with
a single chain and the service rate functions of (17).

We can also calculate the limiting value of T{(N) as N - = ., Recall
that v denotes the nominal traffic intensity of center m. The relative

utilization of center m is defined to be

Wi
u =

o :

I
5 . 2 2 7‘< .
where i, 1is the maximum service rate of center m. Let m denote the service

center with the largest relative utilization, i.e.

As N + « | center m becomes the bottleneck in the network with an infinite
queue and an actual utilization of unity [12]. The limiting throughput of

center m is thus

Lots

u
. _ _m ™
1lim Tm(N) —

1
N Jm*

]



(logarithmic scale)
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Fig. 1. Throughput rate versus population size
in a single~chain network.

G(N)
i a > T
R max
a =T
-~ max
100 N -
] a < T
., max

Fig. 2. Behavior of G(N) in a single-chain network.



in customers served per second. Specifically we have for center 1

T(N) < - =y (18)

The typical behavior of T{N) as a function of N is plotted in Figure 1.
Referring back to (16), we can now show that the behavior of the normali-

zation constant G(N) depends upon the relative magnitudes of the scaling

factor o and Tmax' The 3 general cases of behavior are illustrated in

Figure 2. We see that if o > Tmax‘we can potentially have an overflow

problem due to G(N) getting very large. If a < Tm _ and as N increases

we can potentially first encounter an overflow as G(N) increases and then

an underflow problem as G(N) subsequently decreases.

Examples illustrating dynamic scaling

In current computational algorithm implementations the same scaling
factor o is used to compute G(N) for the full range of N values of interest.
Lemma 1 and (11) show that the scaling factor can be easily changed at
any time during the computational process. We only need to remember what
values of o were used for specific values of N. To illustrate such a
dynamic scaling technique, we use an example considered by Chandy and Sauer
in [9] and is illustrated in Figure 3. Center 4 is an IS center that models
a population of terminals. Centers 1, 2 and 3 are all fixed-rate centers.
The relative arrival rates ) (at o = 1) and mean service times T are

m m

as follows

]

1 1 06.020
2 0.044
3 0.4 0.008
4
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Fig. 3. Single-chain network example.
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Fig. 4. Dynamic scaling for single-chain network example.
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In Figure 4, G(N) is shown as a function of N for different values of «a.
Suppose we need to compute G(100) on a computer that can only represent
floating numbers between 10_.:LQ to 1010. A dynamic scaling approach then
is to start with an arbitrary scaling factor, say o = 50 as shown in Figure
4., When a floating point overflow is about to occur, o is changed to a
smaller value using (11). When a floating underflow is about to occur,
o 1is changed to a larger value. As shown in Figure 4, after several
changes in o , we finally found G(100) = 0.1430 for o = 12.5
without exceeding the 10—10 to lOlO floating point range. It is not
unlikely that we ended up with a scaling factor that we used earlier.
But the scaling technique enabled us to bypass the interval of N values
within which we cannot represent G(N) using that scaling factor.

We next consider networks with more than one routing chain. 1In
this case, the above proposition no longer applies and in general T(N + 11{)
is not nécessarily larger than T(N). We note, however, that the monotone
property in the proposition is not necessary for doing dynamic scaling.

Consider the following example of a network of 3 fixed-rate centers

with 2 routing chains. The nominal traffic intensities W (for dl = dz = 1)
are
center 1 center 2 center 3
chain 1 2 4 2
chain 2 2 4 1

Let us employ the convolution algorithm for fixed-rate servers from [7].

Let G{g,m,ﬁ) denote the normalization constant for the first m centers

with scaling factors @& and population vector N. We have
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K
G(a,m,N) = G(a,m~1,N) + % G(a,m,N - 1.) p form > 2
- - =7 - = - =k mk —
k=1
and My
Kopix
G(a,1,N) = nl! n o
k=1 1kt
The above recursive equation can be rewritten as
K
Glo,m,N) = r(a,B8,N) G(g,m-1,N) + kilr(g,x,lj- 1, 6GmN=-1, Jo, w

where r(a,B,N) was defined earlier. Suppose in the 2-chain network example

we want the normalization constant for N = (2,2). However, the largest

value of the normalization constant that we can store is 100. By dynami-

cally changing the scaling factors and employing (19) we arrived at the results

tabulated in Table 1 below.
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Computation of performance measures

As illustrated in the above example, when the normalization constants
of more than one population vector are used in the same formula, they need
to have the same scaling factors.

The computation of service center throughput rates can be done using

the formula

T  (N) = A (20)
k- k
" " 1(a, 8,0 C(B, M, N)
where it is assumed that A = o, . The computation of mean queue size

1k k

qwk(ﬁ) for a fixed-rate service center can be performed using the formula

(0, M,N - 1)

Gm+ - =k
K (e, 8,0 C(8,M,N)

4 (W = a, W (21 )
where Gm%— is the output of the convolution algorithm over centers 1 - M
but with center m convolved twice [7]. 1In both cases, since the normali-
zation constants needed range over population vectors that differ by
one customer, finding a set of scaling factors to fit the normalization
constants within a given floating point range should not pose much of a
problem.

A difficulty may arise in the calculation of the mean queue length
for a service center with um(i) not being a constant. TIn this case, the
marginal queue length distribution may need to be first computed as follows

P, G (aMN-n )

P o) =
r{a,B,N) G(B,M,N)
where pw(nﬂl)*was defined earlier Gm is the output of the convolution
i —
algorithm over centers 1 - M but skipping over center m. Since n may
i - m

range from 0 to N, it will then be likely that we cannot fit the normalization
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constants of N - n_ and N within a given floating point range using the
same scaling factors. However, we observe that if the floating point range
is of reasonable size, then the mean queue length can still be computed
accurately by simply discarding those marginal queue length probabilities

Pm(gnl) that are too small and will cause underflows!

Time and space overheads

The additional time overhead of dynamic scaling is rvrather insignificant.
Each time the scaling factors are changed, (11) needs to be computed.
Assuming that the available floating point range is not too small and
G(N) does not fluctuate greatly as a function of N (due to fluctuations
in um(i)), the frequency of encountering overflow or underflow conditions
requiring a change in scaling factors, should be very low.

The additional space overhead of dynamic scaling depends upon the
computational algorithm and irs implementation. In a convolution algorithm,
the recursion is done over the service centers. Consequently, an entire
array of nmormalization constants for all population vectors between
0 and N is needed. A straight-forward way to provide a mapping between
population vectors and their corresponding scaling factors is to provide
an entire array of a values. However, an inspection of the example in Table
suggests that since changes occur infrequently the mapping between popula-
tion vectors and scaling factors can be easily accomplished with some appro-
priate data structures; a substantial saving in storage requirement may
be achieved. With LBANC and MVA algorithms, since the recursion is done
over the population vectors, additional saving is possible since an entire

array, indexed from 0 to N, of normalization comnstants 1s not needed.
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The least amount of space overhead needed for dynamic scaling, with
any computational algorithm, is to use a single scaling factor, say o , for
all chains (at the expense of, perhaps, some flexibility). This way, only
the mapping between N (=Nl + N2 + ... + NK) and o needs to be remembered
and can be accomplished with a minimal amount of space overhead; specifically,
only the values of N at which a scaling change occurs need be remembered.

A simple technique to do scaling is as follows. Let G(a,M,N) be the
normalization constant that we want to scale down (or up). Scaling can
be simply accomplished by updating the pair of values of G and o for the
given M and N as follows

o + B a

¢ « gV

where N = Nl + N2 + ... + NK. Suppose LARGE and SMALL denote the largest

and smallest numbers that we can use. To scale G down to about unity

when an overflow occurs, we can choose

1
(LARGE)1

/N

To scale G up to about unity when an underflow cccurs, we can choose

B« L
1
(smarL) /N i
IV. NETWORKS WITH EXTERNAL ARRIVALS, DEPARTURES AND POPULATION SIZE CONSTRAINTS -

The queueing network model described in Section II is for closed routing
chains, each with a fixed number of circulating customers.The model is next
extended to include chains that can have external arrivals and departures.
External customer arrival streams to the chains are assumed to be Poisson

processes. It is also assumed that a new external arrival to chain k joins
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class ¢ with probability q.> SO that

¢ in RC(k)

To determine the set of arrival rates {Xm } for use in the traffic inten-

k

sities {pmk}, the following set of equations should be used (instead of (1))

v, =q,+ z v D d in RC(k) (23)
S O
A, = ) v (24)
mk ¢ in SC(m) ¢
and RC(k)

There can be 2 types of Poisson arrival processes:

Type 1 The arrival rate of chain k customers is a function of the total
network population N3 yk(N), k=1,2,...,K. Define
y(N) = Yl(N) oy, (M) + o+ YK(N)

Type 2 The arrival rate of chain k customers is a function of the
number of chain k customers in the network; Yk(Nk>’

k=1,2,...,K.
For networks with K open and closed chains, Baskett, Chandy, Muntz and
Palacicos [3] showed that the product—form solution in (7) becomes
a(n) M

I pm(g,ﬂ> (25)
G m=1 ;

P(n) =

where pm(nrn) was given by (8), G dis the normalization constant and is

equal to the sum of the unnormalized solution in {(Z5) over all feasible

n states, and
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N(E)-l
( [ v (1) for type 1 arrivals
i=0
a(n) = 3
) kM@l
| I I v, (1) for type 2 arrivals (26)
Y ok=1 i=0 k

where N(n) is the total number of customers and Nk(g) is the total number

of chain k customers in the network for network state n. Note that if all

chains are closed, a(n) = 1 by definition. If at least one chain is open,
then for those routing chains that are closed, say chain j for example, the
product—form solution given by (25) -~ (26) is applicable if Yj(i) is set
equal to zero in y(i) for networks with type 1 arrivals or yj(i) is set
equal to 1 for all i in (26) for type 2 arrivals.

One way to view a closed network is that it is an open network but the
routing subchain population sizes are kept fixed by two mechanisms:

1. a loss mechanism whereby a new external arrival is discarded and
lost forever;

2. a trigger mechanism whereby a departure from the network triggers the
instantaneous injection of a customer into the same chain as the
departed customer (from an infinite supply of customers).

A closed network is thus eguivalent to a network of open chains with the

above two mechanisms in place all the time.

The above mechanisms can be invoked or revoked as a function of the
population vector N corresponding to the current state of the network.

This strategy gives rise to networks with arbitrary sets of feasible popu-

lation vectors. (See Figure 5.) Such networks are said to have population

size constraints and it was shown by this author [5] that if V is an irreducible
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set of feasible population vectors, then a sufficient condition for the
product-form solution in (25) and (26) to remain valid is: for any k, and

population vectors N and N + 1 in V, the loss mechanism is invoked

k
for a chain k external arrival in any network state with population
vector N if and only if thetrigger mechanism is invoked for a chain k
external departure in any network state with population vector N + llg'
(In other words, feasible transitions between adjacent feasible popula-
tion vectors in Figure 5 are paired.)

The class of networks with population size constraints provides a
general model that includes networks with closed chains, networks with
open chains and networks with mixed open and closed chains as some special
cases. The normalization constant G is given by the sum of the unnormalized
product—form solution in (25) over all feasible n states for each feasible
population vector in the set V.

The next theorem characterizes the behavior of the population vector
N of product-form BCMP networks with external arrivals and departures
and population size constraints.

Theorem (1) The population vector N is described by a continuous-

time Markov chain, and (ii) the equilibrium probability distribution of

N is
a (W)
P = Gla, M, M) (27)
G
where
N-1
¢ I v{i) for type 1 arrivals
[
a(§) - i=0
{ -
\ K Nk 1
I I v. (1) for tyvpe 2 arrivals
, k
k=1 i=0

and
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G(a,M,N) is the normalization constant of an equivalent closed network

with population vector N and scaling factors o4y = klk’ k=1,2,...K, given

by (23) and (24), and

6= )} a® G,M,N (28)
N in V

We shall first consider part (i) of the theorem. Let S denote a
detailed network state that is Markovian (see [3]).

§ = (Sl,S R

M
where Sm is the state description of service center m. The equilibrium

probability of S has the following form [3]

*
I (S)

P(S8) G

]

a(N) T (S) a(N) Hl(Sl) HZ(SZ) ces HM(SM}
ST T G ‘ (29)

where N is the population vector of Markovian network state S, and a(N)
was defined in the theorem.

Let/é?be the set of all feasible Markovian network states and}é{g)
be the set of feasible Markovian network states with population vector N.

Since V is the set of feasible population vectors, we have

P N Uy

Let N(t) denote the network population vector at time t. To show part (i),

(2)

{1
it is necessary and sufficient to show that for ﬁ\ ) and N inV

Lin == PN = 8P/ ne-m =3P g < ra® -y

A0
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where R(ﬁ(l) -> g(Z) ) is a constant rate that depends only upon §(1)

and g(Z).

Transitions in V are either of the type N >N + %l( or the type
N + 1k + N. The first type of transitions corresponds to the arrival of
an external customer to chain k and occurs with the rate Yk(Nk> or yk(N).

The second type of transitions corresponds to the departure of a chain k

customer from the network and occurs with the following rate

Lim —— P[N(E) = N / N(t-£) = N + 1, ]

pvg B k
a(N+1 ) ) ) ) ms R (s s )1 - ) p
T TK i Re@) S in g s °in 8 wemoom d in RC(K) ©
aN + 1) ) ) I st

c in RC(k) S in JN) s*C¢ in §FC

. ; . Fe o,
where S is a Markovian network state in éﬂg) and X is the set of network

states in ’g(g + llc) that are the same as network state S but with an

+c

extra class ¢ customer. Class ¢ is in chain k and service center m. SH
i

X +c | ore . .
is the mth component of network state § in 4 7; it describes service
5 1. —~
center m with the extra class ¢ customer. Sm is the m*" component of S.
+C , . e +c .
R (s -~ 8 3} is the transition rate from S to S corresponding
m o m m m m
to the departure of the extra class ¢ customer from center m, and
(1 - Z pcd] is the probability that the departing class c
d in RC(k)
customer leaves the network instead of joining another service center.
After cancelling the term a{N + 1§) in both the numerator and
- -k
denominator and noting that the summation in the denominator is over all

network states in jﬁN + 11(), the denominatoer is equal to the normalization

constant G{a, N -+ lgﬁ) of an equivalent closed netowrk with population

]



27

vector N + }]£ and scaling factors o . The expression in the numerator

L ) (s
s in S0 s7¢ i ¥C

+ +
Y R 535)
m m m

divided by G(g, N + lk) is, by definition, equal to the throughput rate
of class ¢ customers in an equivalent closed network with population

vector N + }1( and scaling factors o, which is

v G(a,N)
T(N+1,)= —=
c - -k
G(a,N + 1.)
2T Ik
We then have
lim w%- PIN(t) =N/ N(t-4) =N+ 1, ]
A0
-1 @+l (1= ] Ped]
¢ in RC(k) » d in RC(k)
Z G(a,N)
= v [1 - P .1
¢ inro(k) G NFLY o e d in RC(k) 9
G(a,N)
= Gl,N+ 1. (30)
I T Ik
where the identity
v o [1- p =1 (31)

¢ in RC(k) © d in RC(K)  ©¢

can be easily demonstrated using (23) and E g = 1.
¢ in RC(k) ©

Note that ykmk given by (23) - (24) can be interpreted as the mean

number of visits by a chain k customer to service center m between
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successive visits to an "imaginary' service center acting as the source
and sink of chain k customers. Recall that the throughput rate Tk of a
closed chain was defined earliier to be the throughput rate of service
center 1 which is arbitrarily chosen. For an open chain, it is more
meaningful to define its throughput rate to be that of its imaginary
source/sink service center. With the set of relative arrival rates from

(23) - (24) and defining the scaling factor o, to be A the corres-

k 1k’
ponding relative arrival rate to the source/sink center is unity. Hence

the open chain throughput rate is

G(a,N)

P i T chain k is open (32)
Gla,N + 1.)

We have thus shown that the population vector N can be described as
a continuous~time Markov chain with transition rates

- yk(N) for type 1 arrivals
R(lﬂ +1§+lk) = S

i

{ Yk(Nk) for type 2 arrivals

and

) =
RN+ 1, »N) =T (N+1)

for any pair of N, N+ 1, in V.

Part (ii) of the theorem is an immediate consequence of the theorem
in [5] based upon a''local balance” property of P(S). We shall provide a
simpler proof of it by demonstrating a local balance property possessed
by P(N).

Chandy [2] first observed that the product-form solution P(8) of
many queueing networks has a local balance property. This observation

proved to be very useful in the discovery and characterization of the class



29

of BCMP networks [3].

Muntz [4] found that individual service centers in BCMP networks
have the M => M property gyhich can be explained as follows. Consider
class  in service center m (viewed in isolation). Center m has the M => M
property if given that the arrival process of customers to class ¢ is a
Poisson process, the departure process of customers from class ¢ is also a
Poisson process. Hm(S) in the product-form solution II(S) was fouynd tO

satisfy the following sufficient condition for the M => M property:

+ +c
) TS YRGS T8 )
S+C in ot m m m- m m .
kS - =5
m A0m HE. o (33
m m

o oo, .
where P, is the set of center m statesthat are the same as state §
A m m

but with an extra class ¢ customer. (33) can be rewritten as

. kY - +c +c -
H(8))v = ) T (S HR (8~ » 8
moom e, gt m m m m il
5 in ¥
m 2 m

where we can interpret

rt

(ay the 1HS to be the "flow' out of state‘Sm due to class ¢ arvivals,
and

(b) the RHS to be the flow into state S_ due to class c departures.
The above equation is an example of a local bzlance equation. Since

it is with respect to the arrivals and departures of a specific class,

it will be referred to as a class local balance equation. (A detailed

k)

treatment of local balance can be found in the work of Chandy, Howard

and Towsley [13].)

[}

Since TI{8) has a product form, the iation can be rewritten as

n(s) v_= 1(s™%) R (5 T8 )
8 T in X (34)
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which will be used to demonstrate a local balance property of II#*#(S) with

respect to external arrivals and departures of a routing chain; this will be

referred to as chain local balance. Consider chain k. Suppose the popu-

lation vectors § and g + }1{ are feasible.

Recall the identity in {(31).

1= ) v [1 - ) P ]
c in RC(k) © d in rRC(k) 4

Now replace vC in the RHS of the above using (34) and get

nste Rm(Sm+c >5)

)
S+c in )84—(:

1= ) [1 - Py
¢ in RC(k) n(s) d in RC(k)
Let N be the population vector of network state S and define
- yk(N) for type 1 arrivals
Y M =) (35)
{ yk(Nk) for type 2 arrivals
Multiply both sides of the above equation by Yk(g) and rewriting
x4 *
(s /1(S) as T (57 /v, () 17(S), we get
* + +
T (s) v, (W) = ) te b e THETOR (S 7T+ s )1
c in RC(k) § 7 in J m d in RC(k)
(36)

*
which then is a local balance equation satisfied by II (S) with respect

to chain k; we can interpret

(a) LHS of (36) to be the flow out of state S due to chain k arrivals;

(b) RHS of (36) to be the flow into state S due to chain k departures.

Note that (36) is applicable only if rransitions between

N and N + 1, are feasible.

pcd}



31

Let us sum (36) over S in ig%g), and get

* *  +c +c

}o T (s) v, (W) = ) ) ¥ (S )R(S =~ +5)

s in J(N) k s in J) ¢ in RC(K) st in g mom o
[1 - ) p ]
g d in RC(K) ©9

We recognize in the above equation that

LHS

i

GPM) v, (M

RHS

i

GT,(N+1,)PN+1)

by recalling the definitionof P(g)and the definition of Tk(§ + lk) for
an open chain. Thus we have shown that if transitions are permitted
between the feasible population vectors N and N + 1 in V, then P(N)

and P(N + lk) satisfy the following local balance equation

PON) v, () = PN+ 1) T, (N+1) (37)

which says that the flow out of N due to chain k arrivals is equal to
the flow into N due to chain k departures.
The results in part (ii) of our theorem above are now immediate using (35), (37)
together with (32) or Lemma 2. It is interesting to note that P(N), and
consequently P(S), is independent of feasible transitions in V imposed
by the loss and trigger mechanisms. It does, however, depend upon the
set V through the mormalization constant G.
Corollary (M => M property fbf a routing chain) If external arrivals

to-chain k form a Poisson process with a constant rate vy then chain k

k,

customers departing from the network form a Poisson process at the same

rate.
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The above corollary is easily proved using (37) and Muntz's arguments
[41.

In summary, we found that the class local balance property of Hm(S) of a
service center in BCMP networks implies a chain local balance property of I*(S),
a chain local balance property of P(N) and the M => M property for routing

chains.

An Example

Consider a network with 2 chains. The set V of feasible population
vectors comsists of (1,1), (2,1), (1,2) and (2,2). Type 2 arrival
processes are assumed. The feasible transitions in V are shown in

Figure 6.

2

, L ‘
T,(2,2)

1 -

0 : : N

oo

Fig. 6. An example of a two-chain network with
population size constraints.
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Instead of applying (27), we shall solve for P(Nl,Nz) directly using

the local balance equation (37), from which we get the following relation-

ships:
Xl(l)
P(2,1) = =—— P(1,1)
T1(2,1)
Ay (1)
P(2,2) = —r P(2,1)
T,(2,2)
and
A (1)
P(2,2) = —5—— P(1,2)
Tl(2,2)

Let P{(1,1) = C and solve for the others in terms of C.

P(1,1) = C
ed

P(2,1) = ——— ¢
(2D

P(2,2) = 3 (;2§§>T%%;11) ¢
2(2,2) T, (2,

o T,(2,2) A, A ) C

’ Kl(l) TZ(Z’Z)TI(Z’l)

Applying Lemma 2 to the 2 paths of increasing sequences of population vectors

from (1,1) to (2,2), we have
= 2 m 7
T2(1,2) T1(292) T2(2,u) Ll(@,l)

We can then rewrite the solution for P(1,2) as
A, (1)

P(1,2> = *f;fijfy C
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The constant C can then be determined from

P(1,1) + P(2,1) +P(1,2)+ P(2,2) =1

Evaluation of the normalization constant G

The normalization constant G in (28) is evaluated as a summation over
the set V of feasible population vectors. For open chains without popu-
lation size constraints, the set V is dinfinite. TIf the external arrival

rates to the open chains are constants, i.e.
N) =
Y (M = v

then G can be found easily. First, if all chains in the network are open,

then it is well-known that [3]

where

Second, if some of the chains in the network are open while the rest are

closed then it was shown by Reiser and Kobayashi [7] that

6= Gopen. G(§)
where
M 1
Go en I 0
P m=1 1 -op
m
e}
pm = Z pmk
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The normalization constant for the closed chains with population vector
N can then be evaluated separately with some modifications to account
for interactions (if any) between open and closed chains at individual

service centers. Let

o~ = ) 0
m k closed mk

1. At an IS center, open and closed chains do not interact. No modification
is necessary in the computation of G(g) with respect to the IS center.
2. At a fixed-rate center, the closed chain traffic intensity should be

modified as follows in the computation of G(N)

to account for the effect of the open chairson the closed chains at this
center.

3. At a queue-dependent service rate center, the interactions are more
complex than the above and the effect of the open chain traffic
intensity p;) needs to be accounted for by a convelution operation
(see [71).

If the chain arrival rates Yk{g) depend upon the population vector
and/or the network has population size constraints, then G must be

evaluated from (28), repeated here

]
i

. a®) G(a,M,N)
N in V
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We mentioned earlier that V car be a very large set, possibly infinite.
Note that 311 normalization constants G(g,M,N) of the equivalent closed
networks must use the same set of scaling factors. Hence, it is likely
that no single set of scaling factors can be found so that G(a,M,N),

N in V, will fit into a given range of floating point numbers. For-

tunately, since we are dealing with a summation of terms, if some terms
in the sum are too small relative to the others (i.e. underflow ocecurs)

they can be discarded without affecting the accuracy of G to be evaluated!

V. CONCLUSIONS

We found that previous difficulties with evaluating the normaliza-
tion constants of closed BCMP queueing networks are due to the use of a
fixed set of scaling factors. Normalization constants G(a,M,N) and
G(B,M,N) based upon different scaling factors were found to be related
very simply by

K N

Gle,M,N) = T (o /B)) G(B8,M,N)
k=1
As a result, in the course of evaluating a set of normalization constants
(using any computational algorithm), one can repeatedly change the set of
scaling factors to avoid overflow or underflow problems that might be
encountered. Hence normalization constants for very large population sizes
can be obtained with computers having just a modest range of floating
point numbers.
We also found that BCMP networks with external arrivals, departures
and population size constraints can be considered as a collection of closed

networks, corresponding to the set of feasible population vectors. Each

feasible population vector is an aggregate state of the set of feasible



states of the corresponding closed network. The behavior of the network
state over the feasible population vectors is described by a continuous-
time Markov chain (the time spent in each aggregate state is ''memorvless').
We also showed that the class local balance property possessed by the
product—form solution of BCMP networks implies a variety of interesting

properties for chains.
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