A DEADLOCK ABSENCE PROOF TECHNIQUE
APPLIED TO A MULTIPLE COPY
CONSISTENCY PROTOCOL
by

Laura M. Haas
K. M. Chandy
J. Misra

- TR-149 July 1980

%
Work supported by NSF Grant MCS77-09812.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10:

11:

12:

13:

14:

LIST OF FIGURES

An example of deadlock

Not deadlocked

Not deadlocked

Processes 1 and 2 are deadlocked though 3 is executable

A simple network with 2 control processes and one data
base process

Cycle of operation of a user process
Waiting cycle diagram for a user process
Waiting cycle diagram of a data base process
Basic waiting cycle of a CP

External response cycle of a CP

Example illustrating P{X - Y]

]

.] R -
Waiting diagram for which P{Xi Xi+l

The network consisting of processes A and B.

Operation of processes A and B.

Abstract

This paper proposes a general method for proving absence of deadlock
in distributed networks of communicating processes, where messages are
the means of communication. This method is simple and, in particular,
easy to use. We demonstrate these properties by applying the method to
one solution to an important problem in distributed database systems:
Ellis’ algorithm for maintaining consistency in multiple copies of

databases.

Index Terms

Absence of deadlock, proof method, distributed systems, deadlock
absence proofs, distributed databases, multiple copy consistency

problem, message communication systems.

1. INTRODUCTION

It is important to prove absence of deadlock in algorithms for dis-
tributed systems. This paper proposes a very simple method for deadlock
absence proofs in general, and applies the method to an ubiquitous problem
in distributed databases: the multiple copy consistency problem.

Eliis [1], Thomas [2], Silberschatz and Kedem [3] and others have
proposed algorithms in the data base area, and have proven absence of
deadlock for their algorithms. Our goal is to present a general method
for proving deadlock absence in message communication systems and to

demonstrate the ease of using this method by analyzing one example. We

have chosen the multiple copy consistency algorithm because of the funda-
mental role that the algorithm plays in distributed data bases. Our
approach is applicable to a variety of protocols.

In section 2 we discuss our model of a network of processes. We
present the multiple copy consistency problem in section 3 and introduce
Ellis® elegant solution [1] to the problem. Theorems regarding process
waiting behavior are presented in section 4. Section 5 introduces the
concept of priority which is central to our deadlock-absence proofs. The
proof of absence of deadlock and starvation is found in section 6. The

conclusion is presented in section 7.

2. NETWORK MODEL

A network is a finite collection of processes which communicate with
one another exclusively through messages. Messages are transmitted along
communication lines. A line is directed from one process to one other
process. Each line has a unique label. There may be an arbitrary
(finite) number of lines between a pair of processes. Consider a line
(with label) e directed from a process hi to a process hj. Line e is said
to be incident on hi and hj' Process hi is said to wait on e if it is
waiting to send a message along line e. Similarly, hj is said to wailt
on e if it is waiting to receive along e. A process can only wait on a
line incident on it. A message may be transmitted along a line only if
the two processes at both ends of the line are both waiting on the line.

There is no parallelism within a process: it is impossible to execute
two statements within a process simultaneously. However, a process h may

wait in parallel on an arbitrary set of lines E incident on h. ©Note that

a message can be transmitted along only one of the lines in E, at a time.
Thus, though a process may wait in parallel on many lines, messages must
be transmitted to and from the process serially.

We shall ignore terminated and unborn processes in this paper. For
a more complete discussion regarding these issues, sse [4].

A process 1s in one of two states: executable or blocked. A process

is said to be executable if some statement in the process, other than a
message transmission statement, can be executed. Informally speaking, an
executable process is one on which processing can proceed without the
cooperation of other processes. A process is said to be blocked if it

is not executable. Since we assume {(in this paper) that processes do not

terminate, a blocked process must be ﬁaiting on a non-empty set of lines.

A blocked process h waiting only on a set of lines E, must continue waiting
on all lines in E until a message is transmitted along at least one line in
E. Informally, a blocked process is one in which processing can proceed
only with cooperation from other processes; in other words processing

can proceed only after a message transmission.

We are not concerned here with the internal details of a process.
Hence, we assume that the length of time an executable process remains
continuously executable is finite. 1In other words we assume that all state-
ments and loops, which do not involve message communication terminate.
Deadlock

A non—empty set of blocked processes H in a network N is said to be
deadlocked at some stage in computation, if, at that stage, for any h_

i
in H, if hi is walting on some line e, and e is incident on hj, then hj
is also in H and hj is not waiting on e. It follows that all processes

in H will be permanently blocked.

Examples of Deadlock

Networks are represented as labeled directed graphs with processes
as vertices and lines as edges. The letter W at the junction of a process
h and a line e indicates that h is waiting on e; N indicates not waiting.
The letter "X" by a process h indicates that h is executable; "B" indi-
cates blocked.

Processes 1, 2 and 3 are deadlocked in figure 1. They are not dead-
locked in figure 2 because processes 1 and 2 are waiting on line c¢. The
processes are not deadlocked in figure 3 because, though process Z is
blocked, it is waiting on line d, and d is incident on an executable

process (viz process 3).

s

process 1 is waiting on process Z

line a
d W
3 blocked
B

process 2 is not waiting on line ¢

line ¢

Figure 1. An example of deadlock

Figure 2. Not deadlocked

Figure 3. ©Not deadlocked

d W
@
d N 3 executable
~ X
| N {::::%::::>
X

Figure 4. Processes 1 and 2 are deadlocked though 3 is executable

We cannot determine whether process 3 in figure 2 will ever become
executable without proving properties about the internals of process 2.
For example, processes 1 and 2 could send messages to one another, yet
process 2 may never wait on the line d connected to process 3. Thus,
though absence of deadlock does imply that at least one process can

proceed, it does not imply that no process will be permanently blocked.

A network N is said to be deadlock—-free at some stage of the compu-

tation if no set of processes H in N is deadlocked at that stage. N
is deadlock-~free if it is deadlock-free at every stage in every computation
sequence.

A process P is said to be starved on a line e incident on it, if P
is permanently waiting on e or if P waits on e infinitely often and no
message is transmitted along e. P may be starved on e and not be dead-
locked because P may be communicating along other lines. To prove absence

of starvation we shall assume a fair-scheduler which determines the line

along which communication will next take place. Two processes cannot both
wait permanently on the same line if scheduling is fair. Fair scheduling
also implies that two processes cannot both wait simultaneously on the

same line infinitely often.

[59

3. OVERVIEW OF ELLIS' ALGORITHM

A brief overview of the algorithm, is presented now. For simplicity

in exposition we initially consider a simple network comsisting of only

2 (two) users; the general network is considered later.

The simple network (figure 5) consists of 2 user processes (UPs),
2 control processes (CPs) and one data base process (DBP). The UPs
represent users who request updates to control processes and wait for
replies . The DBP represents the data base. The DBP gets update requests
from CPs, carries out the update and responds with update-done messages.
The CP is responsible for correctly managing an update. (The general

network will consist of an arbitrary number of processes of each type.)

EXT

CP
ACK

Figure 5. A simple network with 2 control processes
and one data base process

“~d

User process

The operation of a user process is straightforward. Each UP is con~
nected to one CP which is responsible for managing all of the UPs requests.
Each UP repeats the following operating cycle. Initially a UP is in a

"think'' or executing state. After some time, the UP waits to send an update

request (called an internal request by Ellis) to the control process

which manages its request. After sending the message the UP waits to
receive é reply from the CP; the reply may either be a DONE (request

completed) or REJECT (request denied) message. (A UP whose request is
denied may try to repeat the message.) The cycle of operation of a UP

is shown in figure 6.

start ith think wait to send =2 wait to receive-$4 end 1ith cycle,
cycle internal request repl start i+ 1 theyele
J y g y
Figure 6 . Cycle of operation of a user process

The time spent in an execution step is arbitrary but finite.
Execution steps do not play a part in deadlock; hence it is convenient
to focus attention on those steps in its cycle of operation
in which a process may become blocked. In other words, we shall only

consider those steps in the cycle in which a process is waiting for some

e

event. A diagram showing the sequence of points at which a process waits

to communicate is called a waiting-cycle diagram. The waiting-cycle diagram

for a UP is shown in figure 7.

start ith wait to i wait to end i thcycle
> send : receive start i+ 1 th
cycle internal :ﬁ reply s cycle
request

Figure 7. Waiting cycle diagram for a user process

Data Base Process

A data base process's operation is also simple. Its function
is to receive updates from control processes, implement the updates in
the order received and send update completed messages to control

processes. A DBP begins by waiting in parallel to receive update

messages from all control processes. When it receives an update message

from any control process, say CP m, the data base process ceases to wait

for further
of the data

sending the

update messages, implements the requested update on its copy
base and waits to send an update-over message to CP m. After

update done message to CP m, the DBP repeats its cycle, once

again waiting in parallel to receive update messages from control processes.

The waiting-cycle diagram of a DBP is shown in figure 8.

start ith
cycle

wait in parallel wait to send end 1th cycle
‘“"ﬁéto receive update == reply to CPHI~=~=%§ start 1+ 1 th
messages cycle

update message received

from any CP, say CP m

Figure 8. Waiting cycle diagram of a data base process

et
<

Control Process

A CP's behavior is described by two waiting cycles: the basic waiting
cycle and the external response cycle. The basic waiting cycle describes
how a CP handles requests received from its user process. The external
response cycle describes how a CP handles requests made by the other CP.

The basic waiting cycle of a control process (figure 9) say CP 1.

Step 1 Initially, CP 1 waits for a request from the user process; at
this point CP 1 is not waiting on any other line.

Step 2 On receiving the request, CPl ceases to wait to communicate
with the user process and begins to wait to send an "external
request' message to the other CP, i.e. CP 2. The external
request message asks CP 2 whether the internal request being
processed by CP 1 conflicts with the internal request (if any)
being processed by CP 2. If CP 2 responds with a positive
ACK there is no conflict. If CP 2 responds with a negative
ACK, there is a conflict.

Step 3 On sending the external request, CP 1 ceases to wait to send
to CP 2 and begins to wait to receive an ACK from CP 2. If the
ACK received is positive, CP 1 stops waiting for ACKs and goes
to step 4 of the basic waiting cycle, else to step 5.

Step 4 If the ACK received is positive then
begin: (updating)

Step 4a CP1 begins to wait to send an update message to the
data base processor.
Step 4b On sending the message, CP 1 ceases to wait to send

to the DBP and begins to wait for an update~over zeply

ot
o

Start of 1ith cycle

A 4
Step 1: Wait to receive internal request from UP
A4
Step 2: Wait to send external request to tke other CP
N
Step 3: Wait to receive ACK from the other CP
Positive ACK received
Negative
ACK Step 4a: Wait to send update to DBP
received
A 4
Step 4b: Wait for update-~done reply from DBP
e
Step 5: Wait to send reply to UP
4

N
end of ith cycle; start of 1 + 1 th cycle

Figure 9. Basic waiting cyele of a CP

1z

from the DBP. On receiving the reply, CP 1 ceases to
wait for messages from the DBP and goes to step 5.
end: (updating)

Step 5 CP 1 waits to send a reply to the user process. The reply is
a "DONE" message if the ACK that CP 1 received from CP 2 was
positive; otherwise the reply is a "REJECT" message.

The cycle is complete on sending the reply.

We next describe the external response cycle.

External response cycle of a CP (figure 10)

In parallel with the basic waiting cycle, a CP alsc executes an ex-—
ternal response cycle in which it waits to receive external requests from
the other CP, determines if there is a conflict with the internal request
(if any) that it is processing, and replies with a positive or negative
ACK. 1If a CP is waiting to communicate with its UP, (i.e. if the CP is
in steps 1 or 5 of the basic waiting cycle), then the CP is not currently
processing an internal request. Ellis points out that there is an advan-—
tage in efficiency in a CP postponing sending an ACK until the CP is in
steps 1 or 5 of the basic operating cycle, because in these states the
CP can always send a positive ACK, since it is not processing an internal
request in these states. However, if both CPs always postpone sending
ACKs until they are in steps 1 or 5 of their basic operating cycles, dead-
lock could arise with each CP waiting for an ACK from the other. Deadlock
can be avoided if a CP postpones sending ACKs only while it is updating
{(i.e. waiting to communicate with the data base process: step &4 of the

basic waiting cycle).

start ith wait to receive walt while wait to end ithcycle
cycle Nt external request | this CP is : send ACK start i+ 1th
from other CP updating to the £ cycle
other CP

Figure 10, External response cycle of a CP

The basic waiting cycle and the response cycle of a CP proceed
in parallel with no interdependence except that the transition into the
Y"wait-to-send ACK" step in the response cycle cannot be carried out
while the CP is in step 4 of the basic waiting cycle.

The general network

Now consider the case where there ave an arbitrary (positive) number
of user, data base and control processes. Let there be R UPs, K DBPs and
M CPs. Each UP communicates with one CP which manages its requests.

The operation of a UP and a DBP are as described before. The basic
operating cycle of a CP is modified in the obvious way to handle a
multiplicity of processes. In step 1 the CP waits in parvallel to receive
an internal request from any one of its UPs. The sending of external
requests to CPs and the receiving of ACKs from (CPs {steps 2 and 3) are
done in parallel for all CPs. The positive ACK branch is taken only if

positive ACKs have been received from all CPs. [The negative ACK branch

ot
£

is taken only if ACKs have been received from all CPs but not all the

ACKs received are positive.

Since there is an arbitrary number of data base processors, a CP

must now ensure that updates are carried out by all DBPs. Hence steps

4a and 4b are done in parallel for all DBPs, and the final DONE reply

to the UP is sent only after receiving update-done messages from all

DBPs.

The CP's response cycle is not modified; however, each CP must execute

several response cycles in parallel, one response cycle for every other CP.

The names given to the lines in the network are shown in Table I.

LINE NAME FROM TO MESSAGE MEANING OF MESSAGE

INTrm 0Pt CP m Internal Request Request to do update

RE?mr CP m UP r Reply to internal , Internal request is done
request or rejected

EXTmn CP m CP n External request Can I implement this update?

ACK o CP n CP m Acknowledgement Yes (ACK+ or No (ACK-)

o to external

request

UPDmk CP m DBP k | Update request Carry out update

OVka DBP k CP m Over Update has been implemented

Table 1.

Names of lines in the network

4, PROCESS WAITING BEHAVIOR

Definitions

X <X

Let X and Y be two distinct lines in the network. We use the notation
X < Y to denote the condition that a message was transmitted on line Y
after the last message transmitted on line X. At any given time during
the execution of the network, if X and Y are lines incident on the same
process P either X < Y or Y < X, because a process cannot communicate along
two lines simultaneously.
WAIT[P,X]

Let X be a line incident on a process P. We denote the condition
that P is waiting on line X by WAIT[P,X].
BLOCKED[P]

We denote the condition that process P ig blocked by BLOCKED[P].

Initial Conditions

Initial conditions are specified as a partial ordering on all
lines in the network. In Ellis'® protocol, and many other protocols, the
partial ordering specifying the initial condition may be derived from
the conditions obtaining after complete traversals of the waiting cycles.
For example, the initial conditions for Ellis' algorithm, using waiting
cycles in figures 7 - 10, are displayed in table 2. These conditions
merely state that at the start of the protocol we assume the convention
that earlier internal requests were followed by external requests, ACKs,

updates, update-over messages and replies to the user, in that order.

i6

INT < EXT all r, n, m
rm mn

EXT < ACK all m, n
mn nm

ACK < UPD all n, m, k
nm mk

<
UPDmk OVRkm all m, k
OVka < REPmr all r, m, k

Table 2. Initial conditions for the protocol

X precedes Y in P or P{X = Y]

Let X and Y be lines incident om a process P. We shall say that X

precedes Y in P, denoted by P[X = Y] if
WAIT[P,Y] » Y < X

Example If P must communicate along X after a communication along Y and
before P next waits on Y (and if this behavior is consistent with the
initial condition) then P[X = Y], because if P is waiting on Y then it
must have communicated along X after it last communicated along Y.

In figure 11, we have P[Xi > Xﬁ] for any 1 # j, because if P were
waiting on Xj then P must have communicated on every Xi’ i# 3, after it

last communicated on Xj'

X Results in Y in P, or P[X = Y]

Let X and Y be lines incident on a process P. We shall say that
X results in Y in P, denoted by P{X =» Y] if

Y < X and BLOCKED[P] > WAIT[P,Y]

17

start of cycle

end of cycle

Initial condition: X <X, <..<X
Figure 11. Example illustrating P{X - Y]

Example In figure 12, P[Xi = Xi+l}’ i=1,..,n-1 because after a

communication along line Xi’ P waits on line Xi+l'

P drives X
Let X be a line incident on processes P and P'. P is said to drive
X if
BLOCKED[P'] and WAIT[P,X] - WAIT[P',X]
In other words, if P drives X, it is impossible for P to be waiting

on X while P' is blocked and not waiting on X.

i8

start of cycle

wait
on
Xl,

v

end of cycle

Initial comndition ¥, < X, <.. <X
1 2 n
Figure 12. Waiting diagram for which P[Xi = X*%l}

Lemma
Let X and Y be lines each of which is incident on processes P, and P,.
L
Then

P1 [X = Y] and P, [X > Y] - P, drives Y

2 2

it

v

WAIT [PZ,Y] +~ Y < X

BLOCKED[Pl] and Y < X » WAIT[Pl,Y]

Hence BLOCKED [Pl] and WAIT [PZ’Y] -+ WAIT [Pl’Y] '
Examples

It follows directly from the lemma that a CP drives all communica-
tion (replies and requests) with UPs:

UP[INTrm => REPmr] and CPm[INTrm > REPmr] - CPm drives REPm

r

UP[REP => INT__] and CP_[REP =INT] =~
m rm m mr rm

T
UP_[REP__ => INT_] and CP_[REP _ -+ INT | - CP drives INT
r mr M m mr rm m m
Note that UP_also drives INT .
T ™
Likewise, a CP also drivesoutgoing external requests (EXTs),
outgoing ACKs, and update-over replies (OVRs) from DBPs. OVRs are

also driven by DBPs.

Mutually exclusive waits. MUTEX {Pl,X; PZ,Y]

Let X and Y be lines, each of which is incident on processes Pl and Pz.
Pl waiting on X and P2 waiting on Y are said to be mutually exclusive,
denoted by MUTEX{Pl,X; PZ,Y], if WAIT [Pl,X] + NOT WAIT {PZ,Y].
Lemma

Pl[X + Y] and P2 [y - X] - MUTEX {Pl,Y; Pz,X]
Proof

WAIT {Pl,Y] > Y <X (since Pl{X > Y1

WAIT [P,,X] + X <Y (since P,[Y + X1)
Hence WAIT [Pl,Y] > NOT WAIT {PZ,X]
5. PRIORITIES

It is helpful in deadlock absence proofs to assign certain real
numbers, called priorities to edges of the network. Let gN(e,S) denote
the priority assigned to an edge e in network N, when the computational

state of the network is S. Note that the priority assigned to an edge

may change when the computational state of the network changes. &y {)

is called a priority function. It has been shown [4] that a necessary
and sufficient condition for absence of deadlock is the existence of a
priority function satisfying certain properties called proper priority
conditions; we shall prove absence of deadlock in Ellis' algorithm by
presenting a priority function which satisfies these properties. It
should be emphasized that priority functions are concocted by the program
prover exclusively for proof purposes.

In the following, we shall drop the subscript N when talking about
parameters dealing with network N.

We define the propriety condition for a priority function g(),

process P, and line L incident on P as follows: The propriety condition
H(g,P,L) holds if and only if for every computational state S in which
P is blocked and not waiting on L there exists a line L' incident on P
with g(L',8) < g(L,S).

We use the following short-form to define the propriety condition:

H(g,P,L)} holds if and only if

NOT WAIT [P,L}] and BLOCKED[P] - g(L,S) > g(L',S) for some
L' incident on P.

A priority function g for a network N is said to be proper if the
propriety condition H(g,P,L) holds for every process P in the network
and every line L incident on P.

Example

Consider a network consisting of two processes A and B (figure 13).
Process A initially waits to send out the number O {(zero) to process B,
After sending any message to B, A waits to receive a message from B.
Upon receiving a message (assumed to be an integer), A adds 1 (omne) to

the integer received and waits to output the sum to B. B's operation

is identical to A's except that B begins by waiting to receive a message

from A. Figure 14 shows the operation of processes A and B.

messages from A to B

Figure 13. The network consisting of processes A and B.

messages from B to A

PROCESS A

A

start i th cycle

wait to send .____ﬁg*wait to receive __iiend ithcycle;

start i+ 1 th cycle

PROCESS B

start 1thcycle -——%%wait to receive -—%.wait to send end i thcycle;

start i+ 1 thcycle

Figure 14. Operation of processes A and B.

We define a priority function gN(e,S) as follows. TIf process A is
waiting to receive, then theline from B to A is assigned a priority
of 0 (zero), and the line from A to B is assigned a priority of 1 (one)
else the line from B to A is assigned a priority of 1 (one) and the line
from A to B is assigned a priority of 0. It is easy to see that the priority

function is proper.

22

Theorem 1

A network N is deadlock free if and only if there exists a proper
priority function g() for N
Proof See [4].
Note: The theorem implies that there does not exist a set of proper
priorities for the stages shown in figures 1 and 4. The reader may find
it instructive to verify this fact for himself.

We have found that it is easy to derive a proper priority function
from a deadlock-free algorithm, as we shall show for Ellis' algorithm
[1]. Our method has also been applied to other important problems [5].

6. ABSENCE OF DEADLOCK AND STARVATION

We next present a priority function for Ellis' algorithm and then
show that it is proper; only then shall we attempt to motivate our choice
of the function. It is much easier to understand the reasoning underlying
the choice of a priority function after going through one proof demonstrating
that a priority function is proper.

The priority function is described in table 3. For each line and for
all possible conditions of the processes incident on the line, the table
specifies the priority of the line. For example, the first row states
that the priority of the line from UP r to CP m is 1 (one) while CP m
is waiting on that line.

Proof that the priority function is proper

We shall consider every process P, every line L incident on P and
show that the propriety condition H(g,P,L) holds.

STEP 1: Propriety condition for CP m

The lines mentioned in the basic operating cycle of a CP are lines

between CPs and UPs, CPs and DBPs, outgoing external requests and incoming

Row No. Line Condition Priority

1 INT Ccp waits 1
rm

2 Ccp does not wait and 4

up waits
3 Ccp does not wait and 6
UpP does not wait

4 REP CP waits 1
mr

5 CcP does not wait 5

6 ACK : EXT cp waits 3

nm n

7 cp does not wait 6

8 OVR Ccp waits 1
km

9 cP does not wait 8

10 UPD CP waits 2
mk

11 CP does not wait 7

Table 3. The priority function

23

ACKs; the lines not mentioned in the basic operating cycle {(and mentioned

in the external response cycle) are incoming external requests (EXTs) and

outgoing ACKs.

L is a line in the basic operating cycle

In any given computational state S, a CP is at some point in its
e - U3 3 e *
basic operating cycle and hence is waiting on some line L mentioned

in the basic operating cycle if it is blocked.

*
gL ,8) <3

From table 3

24

For any line L mentioned in the basic operating cycle
NOT WAIT [CP,L] - g(L,S) > 4 (table 3)
%*
Hence, g(L,S) > g(L ,S) » H(g,P,L)

L is the outgoing ACK (ACKmn) from CP m to CP n

BLOCKED [CP m] and NOT WAIT [CP m, ACKmn]
+ WAIT [CP m, EXTnm] or WAIT [CP m, UPD mk] or WAIT [CP m, UVRKm]
for some k (see response cycle - figure 10).

Case 1 WAIT [CP m, EXTnm] -+ NOT WAIT [CP n, ACKmn] (because MUTEX)

> g(ACKmn,S) = 6 (see table)

*
Hence g(ACKmn,S) > g(L ,8) » H(g,P,L)

Case 2 WAIT [CP m, UPDmk] > g(UPDm ,S) = 2 (see table)

k

g(ACKmn,S) >3 {see table)

Hence g(ACKmn,S) > g(UPDmk,S) ~ H(g,P,L)
Case 3 Same argument holds for WAIT[CP m, OVka]

I, is the incoming external request (EXTnm) from CP n to CP m

NOT WAIT [CP m, EXT] - NOT WAIT [CP n, EXT] (since CP n drives EXT)
nm nm m

> g(EXTnm,S) =6 (see table)
*
> g(EXTnm,S) > g(L ,S) » H(g,P,L)

STEP 2: Propriety condition for UP r

I is the internal request line(INTrm)from UP r to CP m.

NOT WAIT [UP r, INT_] - NOT WAIT [CP m, INT] (since CP m drives INT)
m rm Tm

25

g(INTrm,S) = 6 (see table)
> g(INTrm,S) > g(REPmr,S) (see table)
+ H(g,P,L)

1. is the reply line (REPmr) from CP m to UP r.

NOT WAIT [UP r, REPmr] -+ NOT WAIT [CP m, REP mr] {(since CP m drives REPmr)
g(REPmr,S) =5 (see table)
BLOCKED[UP r] and NOT WAIT [UP r, REPmr]

-+ WAIT |[UP r, INTrm] (from UP r operating cycle)

+ g(NT ,8) <4 (see table)

+ g(REP__,S) > g(INT_,S) + H(g,P,L)

STEP :3: Propriety condition for DBP k

1. is the update—over line (OVka) from DBP k to CP m.

NOT WAIT [DBP k, OVka] -+ NOT WAIT[CP m, OVka} (since CP m drives OVka)
> g(OVka,S) = 8 (see table)
- g(OVka,S) > g(UPDmk,S)(see table)
~+ H(g,P,L)

L is the update request line (UPDmk) from CP m to DBP k.

NOT WAIT[DBP k, UPDmk} -~ WAIT [DBP K, OVRkn} for some CP n (see DBP
operating cycle)

- WAIT[CP n, OVRkn] {since DBP k drives CP n)

- g(OVRkn’S) = 1 (see table)

g(UPDmk’S)-i 2 (see table)

Hence g(UPDmk,S) > g(OVRkn,S) - H(g,P,L)

Absence of starvation

1.

No process can be waiting permanently on a line with priority of

1 (one), because the process at the other end of the line must also
be waiting on the iine since one is the lowest possible priority (and
the priority function is proper).

We now show that no process can wait permanently on a line of priority
2 or lower. Line L can have priority 2 only if 2 is a iine from a CP
to a DBP and the CP is waiting on L. If the CP waits permanently on
L then the DBP never waits on L. This implies that the DBP waits
permanently on a message-over line which has a priority of 1 (from
earlier arguments). This is impossible.

Similar arguments applied to lines with priorities 3, 4, 5 and 6, in
sequence, show that no process can wait permanently on a liine of
priority 6 or lower. Hence user and control processes cannot be
starved, because the maximum priority of any line on which a user

or controcl process is waiting is 6.

Intuition behind the definition of the priority fumction

The priority function is defined by comsidering, oddly enough,

the proof which must be made to show that the function is proper.

Originally, a set of values is ''guessed" by choosing one or more

"important" processes, and assigning each line a low priority when

one of these processes waits on it, and a high one otherwise. These

values are then adjusted until a valid proof is obtained, by considering

for each line L and process P, what line(s) P will wait on when not

waiting on L, and assuring that the priority of L is higher than these

lines when NOT WAIT[P,L].

27

For Ellis' algorithm, we started with the basic operating cycle
of the control process because it was at the heart of the algorithm
and assigned a priority of one (1) to a line on which the CP was waiting,
and any arbitrarily high value otherwise.

Analysis of the UPs showed that the intermnal request line should
have a lower priority than the reply line, when the CP was not waiting
to communicate with the UP and the UP was waiting to send a request.
Similarly, if the UP were not waiting to send, the priority of the UP
sending line had to be higher than the reply line, and these arguments
led to rows 2 , 3 and 5 of the priority table. The same arguments
applied to the DBP resulted in rows 9, 10 and 11 of the table.

A CP is not waiting to send ACKs while it is updating (see external
response cycle). Hence the priority of the ACK lines must be greater
than the priority of the lines between a CP and a DBP, while the CP
is waiting to update. This lead to row 6 of the table.

Finally, it should be emphasized that these priorities are not
unique. The numbers themselves are not important; their relative values

are.

7. CONCLUSION
The value of our approach is its simplicity. Applications to other

protocols have also been straightforward.

2
oo

REFERENCES

(1]

(2]

(3]

[4]

(5]

Ellis, C. A. "A Robust Algorithm for Updating Duplicate Databases,"
2nd Berkeley Conference on Distributed Computing, May 1977.

Thomas, R. H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases,’ ACM TODS, Vol. 4:2, June 1977,
pp. 180-209.

Silberschatz, A. and Z. Kedem, ""Consistency in Hierarchical
Database Systems,” Journal of the ACM, Vol. 27:1, January 1980,
pp. 72-80.

Chandy, K. M. and J. Misra, "Deadlock Absence Proofs for Networks
of Communicating Processes,”" Information Processing Letters,
Vol. 9:4, November 20, 1979, pp. 185-189.

Haas, L. M., "Proving Temporal Properties of Distributed Systems,"”
Ph.D. Dissertation, Computer Science Department, University of
Texas, Austin, Texas 78712 (in preparation).

