*
ON DIFFUSING COMPUTATIONS

K. M. Chandy

J. Misra

TR-150 July 1980

*
This work was supported by NSF Grant MCS-7925383.

Abstract

Dijkstra and Scholten developed the notion of diffusing computations
to provide a very general framework for a large and important class of
problems. In this paper we show how the results of diffusing computa-

tions can be compiled efficiently and applied to a variety of problems.

1. INTRODUCTION

The advent of multi-micro processor systems has spurred efforts
in the development of parallel algorithms. Many parallel algorithms
consist of sequences of computational phases, where each phase consists
of several tasks which are executable in parallel. The effective imple—
mentation of such algorithms on message—passing systems requires distri-
buted methods to determine that a phase has completed and to determine
the results of one phase for use in the next. Dijkstra and Scholten [1]
were the first to discover a distributed technique for detecting the
termination of a distributed computation. Our work is based on theirs.
We are concerned with methods to determine the results of a computational

phase in a distributed manner.

2., THE DIJKSTRA-SCHOLTEN DIFFUSING COMPUTATION ALGORITHM

We next describe Dijkstra - Scholten algorithm. We modify
the algorithm and notation slightly to make it more applicable to a
class of graph problems that we are interested in. We are concerned
with a special class of distributed computations called diffusing

computations. A diffusing computation is carried out by a network of

processes, one of which is a special process called the initiator. The
network, N, is represented as a finite directed graph G where each vertex
in G corresponds to a process. Process A can send messages directly

to process B only if edge (A,B) exists in G. B is called a successor

of A, and A is called a predecessor of B. A process can send messages

to any of its successors whenever it wants to. (This assumption is
different from Hoare [3], where a process can send a message only if
the receiver is ready to receive the message. Diffusing computations
fall within Hoare's modél if every process is always ready to receive
messages from all of its predecessors.)

2.1 Process Behavior

A process is either executing or idle. An executing process is

one which can compute and may send messages without receiving any
further messages. An idle process cannot compute nor send messages
without receiving further messages. A process is always willing to
receive messages. An idle process becomes executing on receipt of a
message. An executing process may become idle after an arbitrary time
period. A process may transit several times between idle and executing
during a diffusing computation.

2.2 Network Behavior

Initially all processes, except the initiator are idle. The dif-
fusing computation begins when the initiator sends a message to one
or more of its successors which causes them to begin executing; these
processes may in turn send messages to their successors (who may be
idle or executing). Hence the name diffusing computation. The compu-
tation’terminates when all processes except the initiator are idle.

2.3 Signalling Scheme

Dijkstra and Scholten have devised a signalling scheme to determine
when a diffusing computation terminates. They assume that a process can

send signals to its predecessors (in addition to sending messages to
g g

(%)

its successors). Signals are used only for termination detection; they
have no effect on the computation.

A process may be either neutral or engaged depending upon its

signalling status. A process's idle/executing status depends upon

the process's computation, whereas its neutral/engaged status depends
upon the process's signalling. An engaged process may be idle or
executing, but a neutral process must be idle. The signalling scheme
will enable the initiator to determine the instant at which all other
processes become neutral (at which point all other processes must also
be idle). We may think of the signalling scheme in the following fashion:
every message sent by a process has two parts - the message content
part and a "return receipt"” containing the sender's identity. The
receiver "tears off" the return receipt and eventually sends it back
to the sender. The sender keeps a count of the number of receipts
outstanding, i.e. yet to be retﬁrned to it. Upon receiving a return
receipt, the count is decremented and the receipt discarded.

A process is defined to be (i) engaged if it has one or more return
receipts that it has not yet sent back, and (ii) neutral if it has no
receipts in its possession (either because it didn't receive any messages
or because it returned all the receipts). The initiator is always engaged.

The first message that a neutral process p receives which causes it
to go from neutral to engaged is special, and we call it p’s engaging

message and we call the associated receipt p's engaging receipt; the

process that sent the message is called p's engager; the time that p

became last engaged is called p's engaging time.

A process returns the engaging receipt only when (i) it has no other
receipts in its possession and (ii) has received receipts for all the
messages it has sent and (iii) is idle. Note that returning the
engaging receipt causes the process to become neutral at which point it
must also be idle from condition (iii). A process returns non-engaging receipts
at arbitrary times; we may assume immediate return.

We can prove that the diffusing computation has terminated when
the initiator has received all of its receipts. For a truly beautiful
proof see [1]. We merely sketch the intuition behind a proof here.
Suppose some process pi(K)’ other than the initiator is engaged. Then
i . i e p. . ,
it must have an engager Let it b pl<K+1) Then pl(K+l) must also
be engaged and, if it is not the initiator, it must have received its
engaging message earlier than pi(K) did, because only an engaged process
can send messages. Continuing in this fashion, we buiid up a chain of

nga s P, .v. from an rocess‘ . and the en ement
e g ger pl(o)’pi(l)’ y p pl(O)’ gag en
times decrease along the chain. Hence the chain cannot form a cycle

and must therefore terminate at the initiator. Hence if any proéess

is engaged, the initiator could not have received all its receipts.
3. RESULTS OF A DISTRIBUTED COMPUTATION

We consider the case where the result of a process pi's computation
is contained in some variable or set of variables Si at the point of
termination of the diffusing computation, and where the final result
of the diffusing computation is some function of the Si's. For example,
consider the problem of knot detection, solved by Dijkstra [2].

3.1 Knots [2]

We say that vertex p is reachable from vertex q if there exists a

path from p to q. A vertex p is said to be in a knot if and only if for
every vertex q reachable from p, p is reachable from q and there is

at least one such vertex q. It is required to design a diffusing compu-
tation in a network N corresponding to a graph G to be initiated by

an arbitrary process p, that will enable p to detect whether it is

in a knot. We associate boolean variables reachable and canreach

with each process q in the network; reachable (canreach) is set to true
if any only if q is reachable from (canreach) p. Dijkstra has presented
a diffusing computation to compute reachable and canreach. The ini-
tiator must determine not only when the diffusing computation ceases

but also the result of the computation (which is true if and only if
there are no processes with reachable = true and canreach = false).

We define the result of process i's computation to be a flag
subordinate, which is set to true if and only reachable = true and
canreach = false for process i. Thus, the knot algorithm is one example
of a computation whose result is a function, 1(¥ subordinatei},of the results

i
of each process's computation. There are many other such examples.
(See [5] for instance for implementation of discrete-event simulation

as a diffusing computation.) We next present methods for the initiator to

collate the results of all the process's computations.

4, DETERMINING RESULTS OF A DIFFUSING COMPUTATICN

The obvious method for determining the result of such a diffusing
computation is for the initiator to read the result Si of process i,

for all i, after the initiator has detected that the diffusing computation

is over. However, this solution requires that the architecture be
gsuch that the initiator can read results from each process.

4,1 A Cancellation Scheme for Reporting Results

The idea in this method is that a process sends back its current
result when it returns an engaging receipt. However, a process may
become engaged and disengaged several times during the course of a dif-
fusing computation, in which case the process will send back a sequence
of results and every result except the very last one will be incorrect
(because they will be out-of-date). Hence we must devise a scheme
whereby a process may cancel the out-of-date vesults that it has sent.
To allow such a cancellation scheme a process i maintains Ri’ the result
of the last computation that it sent back (i.e. when it last got dis-

3if no result was sent back

engaged»éhen Ri is null. When a process returns its engaging receipt
it must send back at least both its current result Si and its last
result Ri’ with the objective of cancelling the last result Ri that

it sent and replacing it by S,. All the Si's and Ri's that have been
transmitted during the course of a diffusing computation will be held
collectively by all the engaged processes at all times; at termination,
the initiator will be the only engaged process and it can deduce the
last result Sk of each process k from all the Si’s and Ri's it holds,

The ith process maintains two bags POSi and NEGi (for positive and
negative) where NEGi contains pairs of the form (Rk,k) denoting that
process k has cancelled the out-of-date result Rk, and POSi contains

pairs (Sj,j) where process j has sent back Sj'

Every process returns a positive and negative bag with every receipt.
When process i receives the two bags from its successor j it adds the
positive bag to POSi, and the negative bag to NEGi. When process i
disengages itself it sets S:.L to the new (most current) result, adds
(Si’i) to POS:.L j (Ri,i) to NEGi if Ri is not null, and sends back
POSi and NEGi with the engaging receipt. With receipts other than
engaging receipts, two null bags are sent.

When process i receives an engaging message it sets Ri < Si’ and POSi

and NEGi to null.

Theorem 1 The computation maintains the following invariant.
u POS, = U NEG, + U {(s,,10} D)
ieE iekE keD

and Rk = Sk if k=D nE | | (2)

where all operations in (:) are bag operations and where E is the

set of engaged processes, and D is the set of processes which have
disengaged themselves at least once during the computation (but may

be currently engaged or neutral).

Proof: Eqns (1) and (2) are vacuously true initially since E = {initiator},
D is null, POSinitiator = NEGinitiator = null. The equations can be
affected only when E or D changes, because Si’ Ri’POSi and NEG-:.L (all i)

can be changed only when E or D change. When process j gets engaged,

eqn (1) is not altered since POSj = NEGj = null at the point of engage-

ment, and D and Sk’ k € D,are also not altered by a process getting

engaged. Eqn (2) is maintained by process j setting R.j<-~Sj at the point

of engagement. Hence the invariants are maintained during an engagement.
Consider the sequence of events when process j gets disengaged.

Process j's engager, say process i, must be engaged at this point.

Let POS{ and POS{' denote the values of POS, before and after (respec-

tively) the disengagement. Then

L1 - U] i "o
POS | POS | , Posj U {(sj i)}

11 o % 7 1 2
NEG, NEGi U NEGj U {(Rj »3) 1

and hence the invariant holds.

Corollary When the initiator detects termination of the diffusing
computation,.
Posinitiator - NEGinitiator = Ki:D {(Sk’k)}'

It follows from the corollary that the initiator can deduce S, for every

k
k € D, from its local information (POS and NEG).
Note: The performance of the algorithm can be improved if we maintain

POSj and NEGj disjoint for every j £ E, by cancelling occurrences of

common elements.

4.2 Collating Results by a Second Diffusing Computation

The initiator starts a new diffusing computation to collate the
Si's. In this computation, process i maintains a set Ai of pairs

(Sk,k), where S, is the (final) result of process k in the original

k
computation. Process 1 returns Ai with its very first engaging receipt
and returns null with later engaging receipts and non-engaging receipts.
When process i receives Aj from a successor j it sets Ai-+ Ai!J Aj'
Initially Ai consists of the singleton (Si’i)'

When process i becomes engaged for the very first time it sends
a message to each onme of its successors. It ignores subsequent messages
received (except to return receipts). It is self-evident that the second
diffusing computation will terminate with the environment having a set

containing a pair (Sk,k) for each process k that participated in the

original diffusing computation.

5. APPLICATIONS

Dijkstra and Scholten developed diffusing computations to provide a

very general framework for a large and important class of distributed

programs. It is surprising that a single technique can be so general-
the reader can best appreciate the generality for himself by running

through several problems.

10

We list below a few of the problems amenable to this approach.

(1) Knot detection (discussed in section 4)

The application of the cancellation method results in a considerable
simplification of Dijkstra's algorithm for knot detectiom.

Note that it is sufficient to count the number of vertices i for
which subordinatei = true, because if this count is 0 (zero) then (and
only then) is the initiator of the diffusing computation in a knot.

This fact allows the encoding of the bags POS and NEG as a simple count
C. When process 1 disengates itself, it sends a number d with its en-

gaging receipt where

c, +1 if subordinatei has changed to true during

the current engagement

d = c, -1 if subordinate; has changed from true during

the current engagement

Ci if there is no change in subordinatei
during the current engagement

When a process j receives a number d from a successor it updates Cj

to Cj + d. Clearly C is a count of the number of processes

initiator

for which subordinatei = true at the termination of the computation.

(2) Maximal Strongly Connected Components

The problem is for a vertex V to determine whether it is in a
non-trivial strongly connected component and, if it is, to determine
the identity of all vertices in the component. The vertex V acts as
the initiator and starts diffusing computations tec label vertices
reachable from V and vertices which can reach V. S, = {j} if j can

be reached from v and j can reach v; Sj = { } otherwise.

i1

(3) Network Flow

We use the standard augmenting path approach. A diffusing compu-
tation phase is used to find an augmenting path to the sink and another
phase is used to increase the flow corresponding to the augmenting path
found (if any).

To demonstrate the elegance and utility of diffusing computations
we consider one problem in detail.

(4) Shortest Path and Detection of Negative Cycles

We want to determine the shortest path from some vertex (say vertex
1) in a finite graph to all other vertices. If there is an edge from
vertex i to vertex j, then it has finite weight wij' If there is a
cycle of negative weight which is reachable from vertex 1, then all
vertices reachable from that cycle are defined to have a minimum
distance (from vertex 1) of - » ., We construct a network of processes
corresponding to the graph, and process 1 is the initiator. Each
process has the weights of outgoing edges available to it. We assume
(for purposes of brevity) that every vertex is reachable from vertex 1
because unreachable vertices will not play a part in the diffusing
computation.

A straightforward attempt at constructing a diffusing computation
to solve this problem may result in the following:

The ith process has a local variable di associated with it, which
is the minimum distance to that process, determined at the current
stage in the computation. Process i sends messages containing a number

tij to process j where tij = di + wij' Thus the message from i to j

12

is the length of a path to j with 1 as its prefinal vertex. Initially
dj’= o for all j # 1, and dl = (. Upon receiving a message tij from
its predecessor i, process j, j # 1, takes the following actioms.
If d, > t,, then d, « t,, and send messages t,, to all successors
N 1] J 1] ik

k, where t, = dj + W, (Note that if dj f-tij no action is taken.)

ik jk’
This diffusing computation will not terminate because any procesé
on a negative cycle will send and receive messages indefinitely often.
Hence, we must modify our straightforward attempt, so that we detect
negative cycles, and then force the diffusing computation to terminate.
The Dijkstra-Scholten signalling scheme can be adapted for more than

termination detection; we use it to detect negative cycles and to thus

force the diffusing computation to terminate! The crucial difference

between the Dijkstra-Scholten algorithm and ours is that a process may
change engagers without disengaging itself.

The algorithm works in two diffusing computation phases. When the
first phase ends we will have corréctly determined the minimum distance
only to all vertices which have a true minimum distance other than - .
In the second phase we identify vertices with a minimum distance of - =,

This algorithm for phase 1 differs in two essential aspects from
the Dijkstra-Scholten scheme.

1. A process may change its engaging receipt during computation.
2. When the initiator detects "termination" of phase 1, there may
still be some engaged processes in the network! For these processes

the distance from the dinitiator is - = .,

13

Sketch of the Algorithm (Phase 1):

£d, <t

-] ij

then return the receipt for this message

else d, « t,.;

-] 1]
make this message the engaging message (the pvevious
engaging receipt, if any, can now be returned);

send messages t,, to all successors k where t,

<~ d, + W,
ik jk 3

jk

end phase 1

Example

Consider figure 1(a). At some stage in the computation we may have
the situation (figure 1(b)) in which processes 1, 2, 3 and 4 are engaged
and 5 and 6 are neutral; 2's engager is 1 (represented by the edge (1,2))
3's engager is 1 and 4's engager is 3. At this point process 4 may be
sending messages 11 and 12 to processes 5 and 6 respectively, while
process 2 is sending the message 5 to process 4. When process 4 receives

message 5 it updates d, to 5, changes its engager to 2 and returns the
g 4 g gag

receipt to process 3 and sends messages 6 and 7 to processes 5 and 6,
respectively. The resulting situation is shown in figure 1(c). Now,
since process 3 has no outstanding receipts, it returns its engaging
receipt. Meanwhile, process 5 sends the message 2 to process 2. Process

2 changes ite engager to process 5 and returns its receipt to process 1

resulting in figure 1(d). Now the initiator detects termination of,
phase 1 even though processes 2, 4, 5 and 6 are engaged! (This is pre-
cisely the situation that Dijkstra and Scholten avoid! But the situ-

ation turns out to have some redeeming features.)

14

1(b)

1(e) 1)

15

Process 1, the initiator, takes the following action on receiving

t,,:
a message t

If 0<ty,
then return the receipt for this message

else halt phase 1 (since process 1 is in a negative cycle).

When the initiator receives all its outstanding receipts it halts phase 1
(if it has not already halted because it is on a negative cycle).

Properties of the algorithm (Proofs in appendix)

Define @; to be the true minimum distance to process j.
Theorem 2 Consider a process j for which d;k # - » ., At the end of
phase 1, (i) dj = d;: and (ii) process j is neutral.
Theorem 3 If df = -~ o then there exists a process i which can reach j
and which is engaged at the end of phase 1. (Note that i could be the

same as j).

Corollary At the end of phase 1 if (i) process j is engaged then
*
dj = - w (ii) if every process on every path from 1 to j, (other than
*
1 itself) is neutral and if 1 is not on a negative cycle then dj = dj

(and dj* # - o),

Theorem 4 Phase 1 terminates.

I , .
Sketch of phase 2 The goal is to set dj = dj for all processes j

for which d;: = - o _ and to then halt computation. This goal is
accomplished as follows:

Set dj = - » for all processes reachable from a process (other
than process 1) that remains engaged at the end of phase 1 and to force
all processes in the network (other than process 1) to become neutral.

If process 1 has detected that it is on a negative cycle, then all

processes j have dj set to - « in phase 2.

16

Phase 2 employs two kinds of messages which show the end of phase
1: over? and over- . An over~ message is sent by process j to all its
successors if process j has determined that phase 1 is over and d;k = - @
an over— message orders the recipient to halt all phase 1 computation
(if it has not dome so already), set its d to - = and propagate the over-
message to its successors. An over? message is sent by process j to all
its successors when it has determined that phase 1 is over, but has not
determined whether d;k = - ., An over? message orders the recipient
to halt all phase 1 computation; if the recipient was neutral at the end
of phase 1 it sends over? messages to its successors, otherwise (if the
recipient is engaged) it sends over- to its successors. Note that it
is redundant to duplicate messages, and to send over? after over- .
The computation starts by process 1 sending an over- message to all
its successors if it has detected that it is on a negative cycle, and
an over? message otherwise. It is self-evident that dj = d;k for all
processes j at the end of phase 2 and that phase 2 will terminate.

The values of the minimum distances to all the processes can be
determined by process 1 at the end of phase 2 by the methods of

section 4.

6. CONCLUSIONS

Diffusing computation is a powerful method for solving a variety
of graph problems, in parallel, on message-passing architectures. The
Dijkstra-Scholten termination detection scheme is central to diffusing

computation algorithms. We have shown (i) how to extend the Dijkstra-

Scholten algorithm to obtain the result of a diffusing computation and
(ii) demonstrated the power of the Dijkstra-Scholten algorithm by
using a modified version to solve the minimum distance problem and

by indicating solutions to other graph problems.

18

APPENDIX

*
Proof of Theorem 2, part (i) Note that the algorithm keeps dj z_dj
invariant because it is true initially, and if dj is updated the new

value of dj is:

%
d,. =d, +W,, >d, +W,, >d,
3 i ij — 1 ij — 73
* %
Assume the converse of part (i), i.e. dj # dj and dj # - o,
*
Then d, > dj . Consider the case where process j is reachable from
*
process 1, i.e. dj # o« and consider a minimum distance path from
process 1 to process j and let 1 be the first process on this path
* *
for which di > di . If P is process 1 then di < 0, and there is a
negative cycle that includes process 1, and all processes j reachable
from 1 have dj = - o , Contradiction! Suppose 19 is a process other

than process 1. Let Py be the process preceding p, on the shortest path

from process 1 to process 1. Clearly,

d* * + W
i T % ki
3 * 3
First we note that dk will be set to dk at some time, since otherwise

%
1 would not be the first process on the path for which di > di :

*

*
whenever dk is reduced to dk , process k sends a message dk + wki

* *
(which is d1) to process 1 and hence process i must update di to di .

Contradiction!

Proof of Theorem 2, part (ii) If process j is engaged, and there is

no negative cycle on the shortest path from process 1 to process j, then

j's engaging chain is a loop-free path which terminates at process 1.

19

Hence it is impossible for process 1 to receive all of its outstanding

receipts while process j is engaged.

Proof of Theorem 3 If a process is on a negative cycle then after it

is engaged, at all subsequent times, there exists at least one engaged
process in the negative cycle, because at any time at least ome process
in the cycle must be having its d value reduced.

Assume the converse of the theorem; i.e. dJ = o and every process
which can reach j (except process 1) is neutral at the end of phase 1
Hence, any process k other than process 1, which is on a negative cycle
and which can reach j, must never have been engaged. In particular, if
j is on a negative cycle, then j has never been engaged.

Now consider the first process i with d;= = — « on any simple path
p from process 1 to process j. (Note: 1 may be 1 or j or any inter—-
mediate process.) If i = 1, the theorem is trivially true since process
1 is always engaged. Hence assume i # 1 and process i has never been
engaged. Let k be i's predecessor on path p. If k ever got engaged
then it will send a message to i, thus causing i to become engaged.
Hence k has never been engaged either, which implies dk = 4+ o , Note
that d* # 4+ o gince k is reachable from 1 along path p. Hence dk # d;:

k

at the end of phase 1. Since i is the first process on path p with

* * % *
di = - », we know that dk # - o Hence’we have dk # dk and dk #F -
which contradicts theorem 2!
Proof of theorem 4 Assume the converse of the theorem, i.e. process 1

never receives all its outstanding receipts from its successors. Process 1

sends a message to a successor exactly once. Hence there must be some

20

successor of process 1, say process il which never returns its engaging
receipt to its engager (process 1). By a similar argument, there

must be some process iz, which got engaged by il and never returned its
engaging receipt to il- Continuing in this manner, there must be a

cycle of processes within the sequence pl, pi s pi s+« .« But this
1 2

is impossible since 1 has no engager and all other processes in the

sequence have exactly one engager. Contradiction!

21

REFERENCES

(1]

(2]

(3]

(4]

[5]

Dijkstra, E. W. and C. S. Scholten, "Terminal Detection for
Diffusing Computations, EWD 687a, Plataanstraat 5, 5671 AL Nuenen,
The Netherlands.

Dijkstra, E. W., "In Reaction to Earnest Chang's Deadlock Detection,"”
Plataanstraat 5, 5671 AL Nuenen, The Netherlands.

Hoare, C. A. R., "Communicating Sequential Processes,’ CACM, Vol. 21,
No. 8, August 1978.

Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton
University Press, 1962.

Chandy, K. M. and Jayadev Misra, "Diffusing Simulation: Parallel
Simulation via Diffusion Computation," Technical Report, Computer
Science Department, University of Texas, Austin, Texas 78712.

