ON THE GENERALIZED CRITICAL
' REGION CONSTRUCT

Krishna Kantl
Abraham Silberschat22

TR-151 July 1980

1 Department of Mathematical Sciences, University of Texas at
Dallas, Richardson, Texas 75080.

2 Department of Computer Sciences, University of Texas at
Austin, Austin, Texas 78712.

This research was supported in part by the National
Science Foundation under grant no. MCS-7702463 and in part
by the Office of Naval Research under contract no. N00014-80-C-0592.

Abstract

In his paper "Implementation of a Generalized Critical Region Construct”,
Ford has proposed a modification to Brinch Hansen and Hoare's concept of
conditional critical regions. 1In this paper we point out some of the

problems with his proposal and provide possible solutions to them.

1. INTRODUCTION

In a recent paper [1], Ford has proposed a medification to the
concept of conditional critical regions of Brinch Hansern [2] and Hoare
[3]. The most striking points of difference are--

(1) The same shared variable is allowed to be used in more than ore
critical regions.

(2) No automatic mutual exclusion is enforced for entry toc a critical
region and the processes can not wait upovn arbitrary conditions at
arbitrary points Wwithin a critical region. Rather, the
synchronization 1s controlled ertirely by the 'entry conditions"
specified in the critical region declarations.

(3) The proposal uses Dijkstra's idea of a secretary process [41 for
handling the‘ synchronization. The code for the secretary process is
automatically generated by the compiler wusing the c¢ritical region
declarations. There is a single secretary for all the processes of a
concurrent program. All the processes communicate with the secretary

by means of messages.,

The critical regions are declared using the following syntax:

{region name>: shared (<shared var 1ist>) cond <entry condition>

A process can cperate orn the shared variables of a critical region
using the statement

critical <region name> Jg <statemerts>
which is translated by the compiler into the feollowirg sequence of
actions:
(1) 3end the request message to the secretary ard wait for the

permission to continue.

(2) Execute the <{statements),.

(3) Serd the release message tc the secretary.

The secretary maintainrs two counters A(i) ard W(i) for each
region i, A(i) specifies the number of processes executing within
region 1 and W(i) specifies the rumber of processes waitirg to enter
region 1. The entry conditions are constrained to be boclean
expressions over lirear relations irvelving A and W counters ard

constants only.

Whereas the idea of separatirg out the computation and
synchronization aspects is very attractive, the proposal has a number
of shortecomings that we would like to point out ard propose some

sglutions.

2. MUTUAL EXCLUSION

Critical regions were criginally desigred to guard against tLhe
time dependert errors by ensurirg that a shared variable can rot be
accessed simultaneously by more than cre process [31]. This is not
guarenteed by Ford's construct since the same shared variable car be
used in more than one critical regions. Thus, ir order tc ensure the
mutual exclusicn of a shared variable "v", it is required that the
condition A(r)=0 hold upon entry to every regior r usirg the variable
Wyr In gereral this 1is very difficult to ersure. First, such a
check requires determining whether an entry cordition legically
implies the condition A(r)=0, a problem which is likely to be worse

than NP-hard, perhaps undecidable. Second, the region declaration

dces not carry any informatiorn or the resting of the regions,
therefore, the whole program must be consulted ir order to set up the
implications to be checked, It is important to note that this
verification is not needed just for avoidirg some redundant terms:
merely adding the assertion A(r)=0 to the entry corditiors of allrthe
relevant critical regions can lead to deadlock wherever nested regions

are involved.

Here we presert an alternate rnotation for the region declaraticrs
which makes the irformal proof of the mutual exclusion easier. The
regions using a common set of shared variables®* will be put together
as a group and called regions whereas their compenents will be called
subregions. We shall require explicit declaration of the allowed
resting of the critical regions. We alsc include the facility for
initializing the shared variables of a region ir order to collect all
declarative information for a region at one place, The regior
declaration now assumes the following syntax:

{region name>: region (<shared var list>) =

{subregionl>: cond <entry cornditioniy

{subregiork>: cond <entry corditionk>
resting={ (<subregionil>,{(subregioni>,... J:}

(initialization: { <shared var>:= <value>;}]

end;

*The explicit counters introduced by Ford ir sectior VII of his parer
are also allowed and will be treated like other shared variables.

The shared variables declared within a region can orly be
accessed within the subregions associated with that regiorn. The entry
conditions can reference the activation ard wait counters (henceforth
referred to as the implicit counters) and the explicit counters, if
any, of the parent region only. A process can execute a critical
region using the followirg syntax:

gritical <region-rname>.<{subregiocn-name> do <{statements>
The nesting clause specifies allowable nesting of the subregions as
ordered 1lists of the subregion names where the first element of easch
list specifies the outermost subregion, As a special case, this
declaration also specifies the subregions which are rot nested within
any other subregiorn, These lists must be mutually consistent i.e. no
two subregions may be nested withir each other. A process carn use a

subregion only in ways permitted by these declarations.

As an example of the usefulness of these constructs consider the
final version of the reader-writer problem giver in section IV of

Ford's paper. This can be written as follows irn our rnotation:

Readwrite: region(database)=
readpriority: cond W(write)=0 A A(write)>0
read: cond A(write)=0
write: cond A(write)=0 A A(readpriority)=0
nesting: (readpriority,read):; (write):
end;

A reader process accesses the database by executing—-

Critical Readwrite.readpriority dg;
Critical Readwrite.read d¢; "read from database” end;
erd;
A writer process accesses the database by executing--

Critical Readwrite.write dg; "write into database" erd:

O
o
a8}
(1]

BN

We rote the following advantages of this notatior over the one
presented by Ford-

(1) All the interdependent critical regions appear at ore place thus
making the declarations more modular and less error-prone,

(2) By examining the nesting clause, one car immediately conclude that
the assertion A(write)=0 is not required in the entry condition of
the subregior "readpriority" for ersuring mutual exclusion for the
writer. One can also conclude that the assertion
A(readpriority)=0 must not be implied by the entry conditior of
the "read" subregion otherwise deadlock will occur,

(3) The compiler can easily verify if the program actually conferms to
the nesting declarations and thus aviod erroneus synchronization
resulting from improper nesting. For example, in the program
above, the compiler can make sure that the "read" subregiecn is not

used outside the scope of the subregion "readpriority".

3. SCHEDULING

In section IV of the paper, Ford states that "a simple way to add
high level schedulirg capability to the construct is to permit entry
conditions to reference these wait counters.... This obviates the
need for artificial rumerical priorities®, These claims are
misleading since the orly mecharism available for scheduling is the
use of wait counts in the entry corditions; this is iradequate for
implementing even a simple FIFO scheduler, Ir the absence of arny
other constructs, the only pessible form of scheduling is where all

the processes have statically assigred priorities and there is a

Sseparate critical region for each priority class. All the examples

Page 7

cited in Ford's paper posses these characteristics,

Introducing gereralized scheduling capability to the construct
requires the wuse of 1local rprocess data irn the erntry conditiors,
Unfortunately, such a generalization will make the implementation very
expensive. Here we propose a more restricted construct for specifying

scheduling and show that it 1is adequate for solvirg many common

scheduling problems.

The critical region invocatior will be allowad to specify a
priority expression whose value 1is sent as a part of the "request®
message to the secretary. The secretary mairtairs the wait queue for
a regior 1in the nondecreasing order of these priocrity values, When
the wait condition becomes true the waiting processes are repeatedly
woken up starting at the head of the queue urntil either the wait
condition becomes false or there are no more waiting processes, This
idea 1s similar to the "scheduled waits" of Hoare [5]. We adopt the
following syntax for specifying the critical region invocations:

critical <region-name> (priority=<expression>) dg <statements>
Where the <expressiocn> does not use any shared variables and is free
¢f any side effects. The first restrictior is necessary so as to
avoid any concurrent access to the shared variables as a result of the

priority evaluatiorn,

Now we present twe examples of scheduling- A shortest-job-rext
(3J8) scheduler and a simple disk head scheduler [6]. We shall use

our notation in the latter example.

g
1
[S]

[0

Cu

3.7 Shortest Job Next Scheduler:

SJN: region (resource) cond A(SJN)=0
A user process uses this scheduler by specifying the required service
time T as the priority—

Critical SJN (Priority= T) do; end;

3.2 Disk head Scheduler:

Ir this example we shall use an explicit counter ‘'count®, Note
that the nesting clause does noi permit any nested use of the
subregicns.

Disk: region (headpos: cylirder; count,pass: integer) =
Request: cond A(Request)=0 A A(Acquire)=0
Acquire: cond Count=0 A A(Request)=0 A A(Acquire)=0
Release: cond Count>0
restirg= (Request);(Acquire);(Release);
initialization: pass:=0: count:=0;

end;

The code for a typical user process locks as follows—-—

dest,cyl: cylinder; mypass: integer:
"Get disk for use®
Critical Disk.Request dgo;
If dest>= headpos thep do; mypass:= pass; cyl:= dest: ends;
glse do; mypass:= rass+1; cyl:=z cylmax-dest; end:
end;
Critical Disk.Acquire (Pricrity= (mypass,cyl)) dg:

headpos:= dest; pass:s mypass;

Irncrement(count): erd:

ise and release disk®

Critical Release dg; "Use disk...."; Decrement(count): end;

The variable "count" gives the total number of users simultareously
using the disk. The program above does not take care of the everntual

overflow of the variable "pass”. This deficiency carn be easily fixed.

The priority ivr this example is a 2-tuple with orderirng assumed to be

the usual lexicograrhic ordering on its components.

4, IMPLEMENTATION

The implementation of [request,i] as proposed in section V of
Ford's paper is ircorrect because W(i) is incremented before checking
if T} is true. As a result, while T} is being evaluated, W(i) car
never be 0 and none of the reader-writer soclutions will work. The
problem can be fixed by using the solution given under "simplification

1" in section VI,

Ford attempted to cut down unrnecessary beolean expression
evaluations by statically determining the entry conditions which can
not become true when a counter changes. Here we show that a more

detailed analysis allows further improvements.

As shown in Ford's paper, the entry condition rg for region j can
be expressed as- f3 = Bj(Rj1,Ri2,... JRjm) where Bj is a boolean
expression over the relations Rj1,Rj2,... ,RJm and uses the operators
A and V¥ only. Let all the implicit and explicit counters relevant for
a critical region (usirng our rotation for regicr declarations) be
denoted as X(1),X(2),... X(r). Then the relatiorns Rjk [k=1..m] can
be written as follows:

Rjx = [élaég‘u X(.i)] > Cjr
Now we analyze the eff;ot of incrementing X(i)'s on the truth value of

the entry conditions. The arguments for the case of decrementing

X(i)'s are very similar and are igrored.

Paze 10

We assume that Bj has been put in the disjunctive normal form

m
i.e., Bi= V (RIKTARjK2A ... ARjkIk). Clearly, Bj is false if and

K=1

only 1if all the disjuncts are false, Corisider some disjunct

Rik1ARJk2A ... ARJKlk. Each of Rjkn,[n=1..1w] is a lirear equation

with X(1i)'s as "unknowns". We alsc know that all X(i)'s must be

nonnegative and all the Rjkn's must hold if this disjunct could
possibly make Bj true. Thus we have a linear programming like problem
at hand. (There 1is no optimization to be performed however, we are
only interested in the feasible region defined by the constraints.)

Now consider a specific X(i). We shall examine Bj one disjunct at a

time and Keep only those which could possibly become true zs a result

of incrementing X{(i).

(1) If X(i) dces not occur anywhere ir a disjunct, it can be ignored.

(2) If a disjunct does rot define any feasible region, it can be
ignored.

(3) If by increasing X(i) we can never crossover from infeasible to
the feasible region, then the correspording disjunct can be
igrnored. This happens if and only if the coefficient of X(i)
term in every constraint Rjkn, is zero or negative,

(4) If the hyperrplane corresponding to a constraint Rijkn doces not
form the boundary of the feasible region, the constrairt is
redundant and can be deleted from the disjunct. See fig 1 for a

2-=D case~

oy
—

Feagible region

. Redundant

/ conatralnd

Pig 4

If after applying these tests, Bj still consists of more thar ore
disjunct it.might be useful to (a) Consider Bj as a boolean expression
and apply the stardard minimization techniques and to (b) Arrange the
disjuncts in the decreasing "likelihood" of becoming true based upon

some heuristics.

In the above, the atomic terms of the booclean expressions were
assumed to be arbitrary linear relations. However, all the examples
we have seen in the literature can be programmed with atomic terms
containing Jjust one implicit or explicit counter. In this case each
Rjkn will be of the form x>a or =x>a where ¥ is a counter and we can
apply the above mentiored tests very easily. Let us again consider
the case of incrementing certain X(i). We can claim the following—
(1) If a disjunct contains multiple occurrences of a counter x then
all these occuwrrences can be reduced to atmest two occurrences in 0(r)
time by using the rules of integer arithmetic and boclearn algebra.
For example, the terms x>0 and x>2 will reduce to a single term x>2.
Similarly,the terms like -x>=1 and x>2 represert ar infeasible case
and the disjunct contairing them can be ignored.

(2) After applyirg the simlification (1) above and the aforemertioned

tests with respect to counter x we are left with only cne interesting

U
&
68
(¢

Y

pV)

case., That is, the disjuct contains two x terms x>a, -x>-b and a<lb.
This implies that the disjunct is relevart with respect to incrmentirg
X only when x<=za (and with respect to decrementirg x when x>z=b).
Therefore, if the term x>a (-x>=b) 1is evaluated first, some

unnecessary evaluation can be avoided,

5. OTHER ISSUES

Ford suggests a single secretary for all the critical regions of
a concurrent program. This not only makes the secretary the
synchronization bottleneck, it alsc means that the whole program will
crash if the secretary fails. It would be more reascnable Lo have one
secretary for each set of critical regions operating on commen
variables.The syntax intreduced 1in section 2 of this paper is

particularly suited for doing this.,

Limitihg the atomic terms in the entry conditioens to linear
relations involving dmplicit cournters and constarts only, is indeed
highly restrictive. To overcome this difficulty, Ford has introduced
explicit counters in section VII of his paper. Explicit counters can
be used to keep track of arbitrary information about the total state
of a concurrent program ard thus car be used for solving a variety of
synchronization problems (See Gerber [713. However, their
implementation as proposed by Ford has a a number of weaknesses:

(1) All the processes of a corcurrent program nmust use the same
step-size for inoremeﬁting/décrementing the explicit counters.
Clearly, the sclution is to pass the step size as a rart of the

“request” message to the secretary.

U
)
o708
6]
—d
i

(2) The propesal treats the explicit and implicit counters in the same
mannar ., This 1is both irefficient and dangerous. The inefficiency
arises because many entry conditions may need to Dbe evaluated every
time an explicit counter is charged. It is darngerocus because the user
has to ensure the consistency of the shared data whersver ary explicit
counter 1is changed. These rproblems can be easily aveided if the
explicit counters are treated in a special mannar i.e. the secretary
Just keeps track of the values of the explicit counters; any entry
cenditior evaluation and sigralling is dene orly wher the implicit

ceunters change.,

6. CONCLUSIONS

In this paper, we have pointed out some problems and their
possible soclutions with Ford's proposal of a generalized eritical
region concept. Tnough our idea of localizing the region definitions
ard explicitly declaring region nesting help ir informal verification
of mutual exclusion and deadlock freedem, time deperdent errors can
still occceur, What is really required is the ability to explicitly
declare that a certain region needs wmutual exclusion arnd 1let the
compiler verify 1f that is the case. Unfortunately, this is at best a

NP-hard problen.

The introducticn of <the idea of Yscheduled waits® provides
limited scheduling capability t¢ the proposed corstruct. It remains
to be seen if mere powerful scheduling capability can incarporated in

the construct without making the entry conditions deperdent on local

data ¢f the user processes.

[11

(21

[31

[u]

(71

REFERENCES

FORD, W.S.= "Implementatior of a gereralized c¢ritical regior
construct”, IEEE Trars. on Scftware Engg., Hov 73, pplidg-Ui55,
HOARE, C.A.R.~ "Towards a theory of parallel programming”
Operating Systems Techniques, Academic Press, 1972.

BRINCH HANSEN, P.~ "Operating 3ystems Principles™, Prertice Hall,
1973, Chapter 3.

DIJKSTRA, E.W.= "Hiearchical ordering of sequential processes”,
Acta Informatica, Vol.l, Fac.2, 1971, ppl115-138.

HOARE, C.A.R.-~ "Moritors: An operating system structuring
concept™, Commurnications of ACHM, Oct TH, ppbi9-557.

HOWARD, J.H.- "Provirg Monitors", Communications of ACHM, May 76,
pp273-279.

GERBER, A.J.- "Process synchronization using counter variables®,

0.5. Reviews, ACM=SIGOPS, Oct 77, ppbd-17.

