ON THE MULTITASKING MECHANISMS
*
OF THE ADA LANGUAGE

Abraham Silberschatz

TR-152 July 1980

This research was supported in part by the National
Science Foundation under Grant MCS 7702463, and in
part by the Office of Naval Research under contract

N00014-80-C-0592.

Abstract

The multitasking mechanisms of the Ada language are intended to
provide a facility for writing concurrent programs. Accept statements,
select statements and task procedures are the three main features of
the language that deal with the issues of communication and synchroni-
zation. This paper points ocut several problems that arise in connection

with these features and proposes various solutions to them.

Key Words and Phrases: Ada, Multitasking, communication, synchronization

CR Categories: 4.20, 4.22, 4.32

1. Introduction

The multitasking mechanisms of the Ada language [1,2] are intended
to provide a facility for writing concurrent programs. Central to this
facility is the concept of the task, which is a program module that is
executed asynchronously. Tasks are disjoint in address spaces; that is,
they do not share any variables in common. Tasks communicate and
synchronize their actions through:

(a) accept statements and entry declarations -- a combination of

procedure calls and message transfer.

(b) select statements -- the sequential control structure based on

Dijkstra's guarded commands [3].

{¢) task procedures-—a mechanism to allow several activities to be

exacuted in parallel within a single task.

We now briefly elaborate on issues (a) and (b) above. Discussion
concerning issue (c¢) will be deferved to section 4.

Central to the communication facility is the accept statement which

has the form¥%:

accept <entry name> [<formal parameter list>]:

[do <statements> end]

the statements of an accept statement can be executed only if another

task invokes the entry-name; at this peint in time

passed. After the end statement has been reached parameter may be passed

4

back, and both tasks are free to continue, Note that either the calling

with its corresponding communication. Thus the facility serves both

% , . . .
square brackets ([1)} denote an optional part, while curly brackets (1

denote repetition of zero or more times.

]
e

as a communication mechanism and a synchronization tocl.

Entry declarations can also specify a family of identical entriss,
each denoted by an index from a discrete range. In this case every call
must be subscripted by an index. This facility is useful in providing
additional synchronization power gince a caller can channel the call
to an appropriate entry.

Choices among several entry calls is accomplished by the select
statement which is based on Dijkstra's guarded command concept and which

has the form:

select
[when <foolean-expression> =>]
<galect-alternative>

[<statements>]

[l
Y
Boumend

{or [when <boolean expression>
<select-alternative”
[¢statements>]}

lelse <statements™]

end select;
A select—alternative may be an accept statement or a delay statement.
A delay statement allows the programmer to suspend the execution of a
task for at least the given time interval specified.

Execution of a select statement proceeds as follows:

(1) All the boolean expressions appesring in the statement are

evaluated., Each select-alternative whose corresponding

expression is evaluated to be true is tagged as open alternative.

(3

An alternative with no preceding when clause is always tagged
as open.

(2) An open alternative starting with an accept statement may be
selected for execution 1f another task has called upon an
entry corresponding to that accept statement. If several
open alternatives may be selected an arbitrary one will be
chosen for execution. If none can be selected and there is an
else part, the else part is executred., If there is no else part,
then a delay statement may be selected for execution (provided
that the appropriate time interval has elapsed). Otherwise, if
there is no else part, then the task waits until an open alterna-
tive can be selected.

(3) If no alternmative is opened and there is an else part, the
else part is executed. Otherwise an exception condition is

raised.

A select statement cannot contain both an else part and alternatives
starting with delay statements.

The accept statement provides the task with a mechanism to wait
for a predetermined event. On the other hand the select statement
provides the task with a mechanism to wait for events whose order
cannot be predicted in advance. These two constructs (together with
task procedures) are the only synchronization tools available in Ada,
Although these mechanisms have a rich range of features they neverthe-
less are not sufficiently powerful to program many common synchronization
problems in a straightforward and concise manner. It is our aim here

to elaborate on this issue.

2. Priority-ordered gueues

A major area of application where the multitasking facility of Ada
can be utdilized is resource scheduling,’ In such a scheme a scheduler task
must be provided whose function is to coordinate orderly access to a
resource. Such a scheduler accepts calls from customer tasks and processes
them in some fashion. Since the customer might have to be delayed before
an access permission can be granted a mechanism must be available to
achieve this end. Ada supports such a mechanism by providing: (a) the
concept of family-of-entries; and (b) the when clause. These two concepts
allow ome to partlally simulate static priority-ordered queues. A customer
can be delayed in one of these queues only at its initial entry to the
scheduler.

The vast majority of standard examples in the literature can be
cleanly implemented by delaying a customer task just once in a static
priority-ordered queue. The problem is that a significant amount of code
may have to be executed before the scheduler knows which queue and what
priority is appropriate. The code may access either shared variables
(i.e. those variables declared locally to the scheduler task), or,
private variables (i.e. formal parameters passed to an accept statement) .
Such a scheme cannot be coded in Ada in a straightforward manner (if at alll),
Schedulers written in Ada (see [2], pages 11 21-11 28) tend to use awkward
layers of nested calls in which the separate procedures or entries have
been introduced sclely to allow waiting at their entry points. This

introduces unneccessary overhead and makes program harder to read and verify.

(va}

One example requiring processing before queuing (in which both shared
and private variables are used) is the interprocess communications facility
(IPC) from [4]. Suppose many tasks must occasionally communicate via
message buffers, where the messages are addressed by a rendezvous code.
Since the producer-consumer dialogs ave infrequent, dynamic allocation of
message buffers from a pool is therefore more appropriate than static
allocation for all possible rendezvous codes. A task needing to communicate
calls the IPC allocator task with a rendezvous code to obtain a message
buffer (Open), writes one or more messages to the buffer (Send), and
releases the buffer (Close). Another task capable of handling messages
with that rendezvous code would call the allocator with the same rendezvous
code (Open), read messages (Receive), and then release the buffer (Close).

The producers and consumers may or may not have the IPC open at the
gsame time. When an Open request is received, the IPC allocater must
search the Buffers array to see if the requestor’s rendezvous code is
already associated with some message buffer. 1If the code is in use, the
subsequent requests for Send or Receive will be directed to the existing
megsage buffer, If the rendezvous code is not currently associated with
a message buffer, then one must be allocated (or the request delayed
umtil 2 message buffer is available.) The association between a rendez-
vous code and & message huffer is not actually broken until the buffer
is empty and no process has that rendezvous code open.

A similar situation may occur in a hierarchical file system
where different users may know the same file under different namess.

When a user attempts to open a file, it may take the file system 2

number of disk accesses to discover that the file is the sams one which

has already been opened for exclusive access (e.g., write or update)

by another task. As was the case with the IPC, the file allocater
must do a significant amount of preliminary processing before it even
knows whether the requesting task will have to wait. This cannot be
cleanly done (if at all) in Ada.

What we have pointed out above is that Ada lacks an effesctive
mechanism to handle priority scheduling. In this section we develop
such a mechanism which is a variant of Kessels conditional wait comstruct [5].
Central this mechanism is the command

awalt (<boolean-expression>)
The await statement can appear only in a select-alternative,

With each await statement a list (called an await-list) is assoceciated
consisting of entries (activation records) each of which contains:

(a) the formal parameter (if there are any) passed to the

accept statement associated with the select-alternative
where the await is defined

(b) Information concerning the calling task (if the select

alternative is an accept statement)

(c¢) address of the statement following the await statement.

An activation record is used to save a partial state of a computation so
that this state can be restored at a later point in time.

When a task encounters an await statement it evaluates the boolean-
expression associated with this statement. If true, the task continues

its execution. If false, the task ocheys the following:

(1) 1t creates a new activation record, initializes it and

adds it to the appropriate await-list.

(ii) it proceeds with its execution at the first statement
following the select statement in which the await is defined.

Thus an await statement provides the programmer with a mechanism to
switch between various distinct computations.

With this new mechanism we have to redefine the manner in which
the execution of a select statement prcceecise In the introduction ws
have defined three steps which must be followed in the execution of a
select statement. With the addition of the await statement we add
another step to the computation which precedes all these thres steps:
(0) Consider only the await statements defined in the select statement

being executed.

(1) 1if no await statements are defined or if each await-list is

empty proceed to step L.

(1i) Tag all activation records whose assoclated boolean-expression
is true as ready records (mote that if the boolean expression of
an await statement contains only shared variables then the
activation records of this statement are either all ready or
none is ready; that is, only one evaluation ig required.) If
no activation record is ready proceed to step 1.

(ii1) 7Pick a ready activation record and remove it from the asscciated
await-list. Restore the state of the task using the information
obtained from the removed record.

Note that if a state restoration occurs, the value of the program

counter is also being affected.

It should be clear that 1f the boolean expression of an await
statement ranges over private varlables (as well as shazgd varisbles)
then the number of expressions that need to be evaluated (in the
process of tagging ready records) will be proportional to the number
of entries in the associated await-list. On the other hand, if the
boolean expression contains only shared variables only one evaluation
is needed. Thus, from an efficiency standpoint one should avoid the
inclusion of private varisbles in an await statement whenever possible.

In order to aid the programmer in achieving this end, we add one
more feature to the await statement to give the programmer a closer
control over scheduling. We extend the await statement to allow the
inclusion of priority information [6].

await (<toolean expression>) Eéz,(<priority~expressien>}}
The by clause is optional. When a task encounters an await statement
with a false boolean-expression, then the priority-expression is
evaluated to produce an integer priority wvalue. This priority wvalue
is also stored in the activation record added to the await-list. When
an activation record is picked during the exscution of z select state-
ment (step (0) (4ii)), the activation record with the smallest priority
wvalue ig removed. If no priority value is present an arhitrary record
is removed. This new feature allows the coding of many common synchroni-
zation problems (e.g., shortest-job-next, alarm clock, disk schedulers)
with the boolean expression restricted to range only over shared variables.

Let us illustrate these concepts by considering a simple resource

scheduling scheme. Suppose that one wishes to define a task whose

function 1s to allocate a resource among a number of tasks in the
shortest job next order.

task body SJN is:
Free: boolean: = true;

begin

loop
select

2 ‘
accept Acquire (Time: in integer) do
await (Free) by (Time);
Free; = false;
end;
or
accept release;
Free := true;
end select;
end loop;
end SJN;
It should be pointed out that the shortest job next scheme could
not be coded in a straightforward manner in the original Ada (as a
matter of fact it is not clear whether it is possible to do it at
alll)

Let us consider now the more complicated example of the IPC
scheme sketched sbove., We assume that there are 10 message buffers
to be allocated among customer tasks. For brevity we only present
those program segments that illustrate our concepts. The main data
structure needed are:

Resource: array (1..10) of record

Rendezvous=number: integer

Hold=count: integer
end

Count, Index, Last-chamnel: integer: = 0;
Central to the IPC allocator is the select statement described below
whose function is to accept two types of calls: Open and Close.
Open has two formal parameters: Channel-id -- the rendezvous code
supplied by the caller, and Buffer=id -~ the index corresponding to

the allocated message-buffer.

10

select
accept Open (Channel-id: integer; Buffer-id: out integer) do
for I in 1..10 loop
if Resource(l). Rendezvous-number = Channel-id then
Resource(l). Hold-count: = Resource(I). Hold-count + 1;
Buffer-id: = I;
exits
end if;
end loop,
await (Count < 10 or Chanmnel-id = Last-channel);
if Count < 10 then
for I in 1..10 loop
if Resource(l). Hold-count = 0O then
Resource(I). Rendezvous-number: = Channel-id;
Resource(l). Hold-count = 1;
Buffer-id: = I;
Index: = I;
Last-Channel: = Channel-id;
Count: = Count + 1;
exit;
end if;
end loop;
alse
Resource (Index). Hold-count: = Resocurce(Index ;. Hold-count +1:
Buffer-id: = 7JIndex
end if;

or
accept Close (Buffer-id: integer);

Resource (Buffer-id). Hold-count = Resource (Buffer—id). Hold-count-1;
if Resource (Buffer-id).Hold-count = 0 then ’

T Resource (Buffer-id). Rendezvous=-number: = 0;
Count: = Count - 1
end if;

end select;

Note that a considerable amount of code needs to be executed before the
await statement is encountered.

Let us consider another example which will allow us to compare
Ada's synchronization scheme with ours. The example is of a controller

for the allocation of group of items from a set of resources (see [2]

page 11.23).

11

‘task Multi-resource-control is
"type Resource is (A,B,C,D,E,F,G,H,I,J,K);
type Resource-set is array (A..K) of Boolean,
entry Reserve (Group: Resource-set);
entry Release (Group: Resource-set);

end;

task body Multi-resource~control is
Empty: constant Resource-set: = (A..K => false);
Used: Resource-set: = Empty;

begin
‘loop
select
accept Reserve (Group: Resource-set) do
await ((Used and Group) = Empty)
Used: = Used or Group;
end;
or
accept Release (Group: Resource-set)
Used: = Used and not Group;
end select;

énd Toop;
end Multi-resource-controlj
it would be interesting to compare our solution with Ada’s. Our
solution is much more concise, easier to understand and more efficient,
This is because in Ada one had to use awkward layers of nsasted calls
in which the separate procedures or entries have been introduced solely
to allow waiting at thelr entry points.

We conclude this section by commenting on two issuss concerning

our synchronization scheme.

{(a) The await statement was specifically designed so that it can
be implemented efficiently. If the boolean expressions range
only over shared variables then the number of evaluations needed
to perform a specific task is minimal. We have introduced the
by clause as an extension to the await statement so that a

larger number of synchronization schemes could be coded with

the hoolean expression restricted to shared variables only.

fo
{38

®)

Additional saving can be obtained by resorting to various
optimization techniques (e.g. Schmidt [7]). For example, in

the Multi-resource-control task described above the await
statement needs to be evaluated only after z release call has
been accepted.,

We have tried our proposed scheme on various scheduling problems.
We have found that our algorithms were usually more concise and
easier to understand than those coded in the original Ada {(this
should not surprise the reader; after all our synchronization

scheme has a richer range of features than the one in Ada),

3. Select Statement

The select statement as defined in Ada is too restrictive because
every select-alternative must either be an accept statement or a delay
statement. There are many circumstances where one may want the select-—
alternative to be more general. To illustrate this we consider an
example.

Consider a background task which almost always has useful work
to do but whose operation is occasionally modified by an external request
(entry call). This situation was illustrated in [8] with the
bounded buffer problem. A system is to be designed consisting of
two tasks, Producer and Consumer. The Producer task produces some
information that the Consumer task consumes. Since the two tasks may
run at different speeds, one may construct a buffering scheme which
consists of N buffers which can be filled and emptied in some fashion
by the Producer and Consumer. This problem has been traditionally
programmed by constructing a buffering task which includes the N buffers
and the operations Send and Receive that are invoked by the Producer and
Consumer respectively, In order to take advantage of the distributed-
processing architecture, one should associate each of these tasks with
a separate processor (thus Increasing parallelism). This, however, will
result in an unnecessary copying from the address space of Producer, to
the address of the buffer task and then to the address space of the
Consumer. Since in a distributed system no shared mencry is assumed this
extra copying is very expensive; it should be avoided if possible [8].

An alternative is to incorporate the N buffers in the Producer task. This

will minimize the amount of copying necessary.

14

In such an environment the Producer task alternates between two
activities: producing new buffers and transmitting the content of the
buffers to the Consumer. Thus the central command in the Producer task
must be a select statement in which one of the alternatives is an
accept statement (whose function is to transmit the contents of the
buffers to the Cansumer), and the other alternative is the code
corresponding to the production of new buffers. New buffers can be
produced only if there is at least one empty buffer.

This formulation of the Producer can be coded within the framework
of Ada in various ways: none however would be considered satisfactory.
One way to code the Procducer is to rely on busy waiting. Another way is
to duplicate code., Yet another way is to ''cheat' by using a delay
statement with time interval equal to zero. The most natural way would

be to code the Producer as follows:

task body Producer is

Buffer: array (0..9) of portion;
In, Out: integer: = 0;
P: portiong
begi
loop
select
when Out < In =>
accept Receive (X: out portion) do
X: = Buffer (Out mod 10);
end
Outs= Out + 1

>

]

or when Out < In + 10
PRODUCE (P)
Buffer (IN mod 10):=7P
In:=1In + l;ﬁu

end select;

end loop;
end Producer;

Unfortunately, the above is not a valid Ada program because a select

alternative must be either an accept statement o. a delav statement.

15

We propose that the select statement be modified to as follows:

(a) The syntax is as originally definied

(b) A select-alternative may be:

i) an accept statement
ii) a delay statement
iii) an arbitrary statement; in this case the when clause
Ty
must prece%%?this alternative.

(c) Execution of a select statement proceeds as defined above,
with the additional understanding that a select-alternative
which 1is an arbitrary statement can always be selected for
execution provided that the boolean expression in the when
clause (which must be present) is true.

It should be clear that the modified select statement is more general

than the original ome. It corresponds more closely to the Dijkstra's

guarded command [3] and Hoare's alternative command [9].

16

4, Task Procedures

Procedures in a task specification can be called concurrently from
several other tasks. One of the main reasons for introducing task
procedures in Ada is to provide a safe mechanism for handling resourcé
scheduling schemes. With this mechanism one can encapsulate the
resource within the scheduling task thereby ensuring that users of the
scheduler cammot directly access the component resources or their
internal representation. Thus most properties of the resources (e.g.,
mitual exclusion, ordering comstraints, priorities) are defined and
enforced by the scheduler task.

Although it is important for a language such as Ada to provide a
mechanism for the safe handling of resource scheduling schemes, we
nevertheless disagree with the choice of the task procedure concept
as a mechanism to achieve this end. We can think of three reasons in
support of our claim.

(1) 1If several task procedures can simultaneously access the same
shared variables, time dependent errors can occur [10]. Much has heen
said on this subject; suffice it to say that in recent years we have
seen a trend in language design to disallow concurrent activities within
the same name space (see, CSP[9], Concurrent Pascal [11], Modula [12],
DP [13]1.)

(2) The multitasking mechanisms of Ada were designed to be implemented
on two different kinds of architecture:

(1) Shared-memory--a few physical processors share a common
memory
(11) Distributed-processing--a large number of processors with
local memory but no shared memory.

17

Task procedures can be efficiently and effectively implemented in a shared
memory architecture; this however is not the case in distributed-processing
architecture. This is due to the fact that in such an environment
concurrency is achieved by multiplexing rather than by having real
concurrent activities. This defeats the purpose of the distributed
processing architecture.
(3) The only method for achieving safe resource scheduling schemes

in Ada is to force the user of a resource to always reach the resource
through the scheduler. The task procedure concept was specifically designed
to support such a scheme. However, forcing the encapsulation of a resource
with the scheduling task may result in a significant amount of overhead.
There are many circumstances where this overhead would not be acceptable.

A good example is the common case of a scheduler which simply allocates
from a pool of wmiform resources (e.g., the IPC allocator described above,
a pool of tape drives on a large computer system). Another example is the
case where Ada is implemented on a distributed processing architecture. In
such an environment each access would have to go through some interprocessor
communications channels in order to reach the central scheduler. Since there
is no shared memory, call-by~reference is impossible. Call-by-value must
be used between processors, Every extra layer of schedulers between
the user task and the resource therefore requires an additional transfer
of the parameters associated with every access to the resocurce. This is
clearly very expensive!

In a real system that magnitude of overhead would cause the centralized

scheduler to be rejected in favor of some less structured but more efficient

18

technique. We believe however that one could provide more effective
and efficient mechanisms in Ada to allow the safe handling of resource
scheduling schemes,

One approach is to divorce the resource from the scheduler
except during allocation and release. Such an approach was advocated
in [4, 14], by proposing a new type of module called manager. When an
allocation is made, the scheduler ('manager' of the resource) grants
the requesting process a "capability" for the allocated resource.

Thereafter the process accesses the resource directly via the capability.

Another approach using a capability scheme was described in [15]. The
advantage of a capability scheme is that accessing of the resource is

via the central scheduler only when coordination is actually required,

The capability scheme protects the internal representation of the
resource and provides control over the updating of shared variables. It
does not ensure that constraints on the order of operation be enforced
if accesses can be made without going through the central scheduler (e.g.
open a file before reading it). The problem was considered in [16, 17].
The approach taken was to explicitly describe the allowable sequence of
operation for each module by means of augmented regular expressions,

For the reasons listed above we strongly suggest that the designer
of Ada consider replacing the task procedure construct by more structured
and efficient constructs.' A good starting point might be the previous

work described above,

19

2...Conclusion

The accept statement, select statement and the task procedures
are the three features of the language that provide the programmer with
the needed tools for handling communication and synchronization. We
have pointed out several problems that arise in connection with those
features and have proposed various solutions to them.

We have shown that the restriction that a calling task can bhe
delayed only at its initial entry to another task does not allow one
to code various synchronization schemes in a straightforward manner. We
have proposed the concept of the await statement to resolve this diffi-
culty, -

We have shown that the select statement as defined in Ada is too
restrictive because every select alternative must either be an accept
statement or delay statement. A modification to remedy this situation
was proposed.

Finally, we have argued that the task procedure mechanism has
several deficiencies. Discussion concerning possible alternatives was

presented,

20

(1]

(2]

[31

[4]

[5]

[6]

[7]

[81]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

References

Preliminary Ada Reference Manual, ACM SIGPLAN Notices 14, 6
(June 1979), part A.

Ichbiah, J.D., et al, Rationale for the Design of the ADA
Programming Language, ACM SIGPLAN Notices 14, 6 (June 1979), part B.

Dijkstra, E.W., Guarded commands, nondeterminancy, and formal
derivation of programs, Comm ACM 18, 8 (Aug. 1975), 453-457,

Silberschatz, A., Kieburtz, R.B., and Bernstein, A.J.,lxtending
Concurrent Pdsecal to Allow Dynamic Resource Management, ILLED
Iransactions on Software Engineering 3, 3 (May 1977), 210-217.

Kessels, J,L.W., An alternative to event qudues for synchronization
in monitors, Comm ACM 20, 7 (July 1977), 500-503.

Hoare, C.A.R., Monitors: an operating system structuring concept,
Comm ACM 17, 10 (Oct 1974), 549-557.

Schmid, H.A., On the Efficient, Implementation of Conditional
Critical Regions and the Construction of Monitors, Acta Informatica
6 (1976), 227-279.

Silberschatz, A., On the Decomposition of Distributed Systems
into Modules, Technical Report #73, University of Texas, 1980.

Hoare, C.A.R., Communicating Sequential Processes, Comm ACM 21
8 (August 1978), 666-677.

Brinch Hansen, P., Operating System Principles, Prentice-~Hall,
Englewood Cliffs, N.J., 1977, ’

Brinch Hansen, P., The Programming language Concurrent Pascal,
IEEE Trans. on Software Engr 1, 2 (June 1975), 199-20Q7.

Wirth, N., Modula: a programming language for modular multiprogramming,
Software Practice and Experience, 7, 1 (Jan 1977), 3-35.

Brinch Hansen, P., Distributed processes: a concurrent programming
concept, Comm ACM 21, 11 (Nov. 1978), 934-940.

Kieburtz, R.B., and Silberschatz, A., Capability Managers, IEEE
Transactions on Software Engineering, 6 (Nov. 1978), 467-477.

Andrews, G.R., and McGraw, J.R., Language Features for Process
Interaction, ACM SIGPLAN Notices 12, 3 (March 1977), 114-127,

21

[16] Lauer, P.E., Torrigiani, P.R., and Shields, M.W., COSY--A
System Specification Language Based on Paths and Processes,
Acta Informatica 12, 2 (1979), 109-158,

[17] Kieburtz, R.B. and Silberschatz, A., Access Right Expressions, Technical
Report #44, University of Texas, 1978.

22

