THE PREDICTION AND EVALUATION OF THE
PERFORMANCE OF SOFTWARE FROM EXTENDED
DESIGN SPECIFICATIONS
by

CONNIE UMLAND SMITH, B.A., M.A.

August, 1980 TR-154

This report constituted the author's
Ph.D. dissertation in Computer Sciences

at the University of Texas at Austin.

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

THE PREDICTION AND EVALUATION OF THE PERFORMANCE

OF SOFTWARE FROM EXTENDED DESIGN SPECIFICATIONS

Publication No.
Connie Umland Smith, Ph.D.
The University of Texas at Austin, 1980

Supervising Professor: James C. Browne

A methodology is defined that can be used to quickly and easily
predict computer performance attributes of a software system prior
to its implementation. It can be used during design and implementation,
and throughout the life of the software to analyze the effect of
modifications to thé software, host computer system, or both.

There are usually several designs that are functionally equi-
valent, but which exhibit different execution characteristics, 1t
is always far less expensive and more productive to select an
appropriate design initially than to tune and patch systems with
inappropriate designs after implementation. ferformance crises are
thus prevented and efficiency gains are substantially greater,

A basic methodology is presented that is sufficient for designs
without complex interrelationships of components and for those designs
whose performance is independent of the environment in which they will
execute. Additional techniques are given for analyzing the effect of
envirommental factors: data dependency, competitiﬁe effects, and

vi

memory contention., The modeling of design complexities (internal

concurrency, synchronization, mutual exclusion, and blocking) are

explained,

Specifications are included for a comprehensive

performance prediction tool., A prototype demonstrating its feasi-

bility is presented,

The methodology embodies a number of new proposals that are

essential for software performance prediction:

1.

3.

The specification of performance determining factors

The graphical representation of the significant structural
elements of software systems including hierarchical
structuring and recursion, typical control representations,
concurrency and synchronization, and blocking for mutual
exclusion

Enhancements to static graph analysis techniques for data
dependent execution characteristics, hierarchical structuring,
and the spectrum of nodes and arcs

The uniting of graph analysis techniques and queueing network
models: the algorithms for the computation of elementary
model parameters as well as swapping, memory, synchronization,
and blocking model parameters

Queueing network model formulations for analyzing synchron-

ization and blocking,

The proposals are consolidated to produce the desired performance

prediction and evaluation capabilities.

vii

TABLE OF CONTENTS

CHAPTER S PAGE
l » Introduction ® e e L El L a o - ® ® o L] e L] L] L4 * 9 @ L L) a @ l
1.0. Performance Prediction Requirements o « o o« o o o o s o 1
l‘l. Motivation *® L] L3 L] ® * o L] e ® ° L] L3 a 2 L] a s L ® a 2 4
1.2. Overview of the Methodology e o o & a s & 8 o o o e = 7

1.39 Related Work e & © ® @ & ®© e & & © © 9 & & e & & & & & ll

2, Basic Methodolo€¥ « o s o o o o o ¢ o o s o 2 2 2 s o o s 15

2.0, Introduction . o o o o « o ¢ & s o o ¢ © s o o« o o o a 15
2.1, Graphical Representation « « s « o o s o ¢ o o s s o o 17
2.2, Performance Specifications . « ¢ o+ o o« ¢« o o o o o o o 25
2.3, Performance AnalySiS o o o o o o 2 2 o« s o o o s o o o 31
2.4, Performance Evaluationl o« o« o o o s « o s s o o ¢ o o o 37

2.5. Example ¢« & e o s e @ ¢ © e © © ® 8 © @& © 6 © e & @ & & 38

3. Environmental FACEOTS o o o o o o o s o o o s o s o s s o o 43
3,00 OVErview o o o o o s s o 2 s s s o o o o o 8 o o o o o 43
3.1l. Data Dependency e o o o o s o s o e s s s & s s o @ o 46
3.2, Cdmpetitive Effects e e s a s 3 8 s 8 s e 8 s o e & @ 58

3.3. Memory Analysis e o s s 6 s o 5 o o o a s s o 3 o 3 a 63

4., Concurrent ProcesSSing « o« « s s s s s ¢ s o o s s a o o a o 70
4.0. OverView L] L e Q o a ® L L L] 93 L L] @ a L] e L] * *® @ L L) 70
4,1. Intermal Concurrency and Synchronization . . « &« & & 72

viidi

CHAPTER ' PAGE

be2. Mutual Exclusion and Blocking . o <« o o s o s s o o o = 78
ho3e SUBMATY o o o o v o e o o o o o m oo e e e 91
S. Implementation of the Methodology « « « ¢ o o s o o o s s o 92
5.0. OVEIVIEW & o o o o o o o s a s s s s s« s s o o o s oo 2
5.1. Functional Specifications . « ¢ s o« o s o o o o s o o o 93
5.2. Prototype Tool e s o a s s 6 o e 8 s s o s s s 2 e @ e 95
6. Conclusions s e e o s 8 s 8 s e s s o 5 s 5 s & e s o = a o rlll
6.0 SUMMATY o « o o o o o o o o o o o o o o s o oo oo n . 111
6ole LiMItAtions o« = « o o o s o o o o o o o o o o o o o o o L12
6.2. Further Research « o« o o o o s s s o o o s o o 2 o o » 114
AppendiX .« « . o s o e s s 6 s s o s s s s s o s & 2 © s 8 o o s 116

Bibliography e« e @ ® ® ®» 6 © © & o O s & ® B ©® @& e © & © &4 & ¢ e 139

CHAPTER 1
INTRODUCTION

1.0 Performance Prediction Requirements

A methodology is presented that can be used to quickly and
easily predict computer performance attributes of a software system
prior to its implementation. It can be used during design,
implementation, and throughout the life of the software to analyze
the effect of modifications to the software, host computer system, or
both. The effectiveness of this information during design is far
greater than after implementation.

The methodology is specifically intended for use by software
designers rather than by performance analysis specialists. They can
apply it to:

1. Select suitable designs

2. Identify critical components

3. Quantify resource requirements and constraints
4., Scrutinize systems throughout implementation
5. Follow the evolution of the software

6. Analyze subsequent functional enhancements

7. Answer workload and performance attribute queries.

It provides the basis for the integration of the techniques
of software development, computer performance management, and
capacity planning tasks. The application of the methodology produces
information valuable not only to the software designers but also to

performance analysts for host system tuning functions, during the

1

design process, such as:
1. Global analysis of cowmputer system impact
2. Configuration analysis
3. Planning of operating system or other support system
enhancements

4. Investigation of file placement strategies.

The information can also be used for long-range capacity planning
tasks. The accuracy of forecasts of growth and resource usage is
improved. Hardware and software requirements can be ascertained and
acquisitions scheduled prior to the implementation of critical
software. The increased information can be used for cost
justification and accounting.

There are usually several designs that are functionally
equivalent, but which exhibit different execution characteristics.
It is always far less expensive and more productive to select an
appropriate design initially than to tune and patch systems with
inappropriate designs after implementation. Performance crises are
thus prevented and efficiency gains are substantially greater.
Tradeoffs on the ease of implementation, capabilities provided,
resulting performance, and computer system ilmpact can be effectively
considered in the evaluation and selection of the software design.

A precise prediction of performance is not feasible in the
design stage since the values of many critical variables are
uncertain and must be approximated. Nevertheless, reasonable
evaluations can be obtained indicating whether the design is, is not,
or is marginally satisfactory with respect to performance
requirements or goals. The components critical to meeting the goals
("bottlenecks”™ or rate determining processes) are usually clearly
isolated. Optimization efforts can then be concentrated for maximal
impact. This precludes devoting excessive time to less important

components.

(8]

This methodology does not purport to automate the process of
selecting optimal designs. It uses the limited information of
execution characteristics associated with software designs to maximal
effect. The result is the identification of feasible or satisfactory
designs, not the selection of optimally performing designs. Thus,
unsatisfactory or potentially disastrous portions of the design space
can be ruled out very early in the development process before
significant work is begun.

The design is reevaluated as cowmponents are implemented and
actual execution data is available. Better, more precise predictions
of performance can then be obtained, as well as constraints on the
resource requirements of the remaining components. Once measurement
data is available for the critical components, the prediction rapidly
converges to the actual behavior. Likewise, the resource
requirements become more accurate.

It is unusual for a software system to be implemented exactly
as initially designed. Modifications are made during the development
phase to add features and to correct problems. Information on these
changes can be incorporated and used to assess their feasibility,
desirability, and performance impact. The characteristics of the
evolving software are reconciled, so predictions do not become
obsolete. Upon conclusion of the project, the information is current
and complete and can be used to analyze subsequent major revisions
and functional enhancements. Only specifications for the revisions
need be input to obtain information about the entire revised system.

Another useful feature is the availability of data for
queries about expected workload and execution characteristics. It is
helpful to know which fundamental operations will be required most
often, at the time that algorithms are designed. A report showing
their relative frequency of occurrence can easily be derived from the
collected data. Similarly, it is desirable to have information about
the expected execution time of components. General queries of this

type are easily supported.

Data availability is particularly beneficial for computer
performance management tasks. A global analysis can be performed to ¢
determine the impact of new software on existing work. It may be
that a particular design results in a satisfactory response time, but
it significantly degrades the response time of other, more important
work. This situation is easily detected.

The hardware configuration necessary to support the new,
combined workload can be determined. For example, it may be that an
additional disk channel is all that is necessary to correct a
problem. Alternatively, revisions to the scheduling algorithm may be
necessary to ensure that incompatible jobs are not run
simultaneocusly. These types of software configuration adjustments
can also be analyzed. File placement is often a critical performance
factor. Various strategies can be studied, with little effort, using
the constituent models. This is superior to previous trial and error

techniques.

1.1 Motivation

Software performance is rarely considered early in the
development process when the design is malleable and improvements can
achieve the greatest impact. Emphasis is typically placed on
functionality and expediency of the completion of the project.
Often, when software is implemented, it performs so poorly that new
computer resources are required to run it, it is necessary to
immediately begin redesigning it, or it is never used. It is not -
wrong to emphasize functionality and expediency, but the usability of
the final product and its impact on the host computer system should
also be considered. The rapid growth of on-line and interactive

systems and the rapid integration of computer system processing into

human work procedures makes performance an integral part of
functionality. A system which unnecessarily wastes human time
increases costs and wastes the principal resource of an organization.

There are many reasons for neglecting efficiency. In most
organizations responsibility for host system performance is distinct
from software development responsibility. Performance analysts lack
the necessary data on new software designs and systems analysts lack
the expertise to analyze performance in the complex host environment.
Systems analysts have previously received little feedback on resource
requirements of software systems they have developed and therefore
are unable to provide accurate data on new systems. As a result,
they have a false idea of the quantity of informatiom necessary for
prediction and the time and effort required to make reasonable
estimates. They also lack confidence in the results of studies based
on these “inaccurate” estimates. It is argued that it is cheaper to
acquire additional hardware to alleviate performance problems than to
expend additional time and effort to develop efficient software.

It is certainly preferable to resolve these performance
prediction problems than to allow crises to develop and to solve them
by acquiring additional hardware. It is difficult to obtain
computing hardware on short notice. Most companies expect advanced
planning and justification for hardware purchases. Often a lengthy
RFQ process is required. Expansion is still bounded by maximum
amounts of memory and peripherals that can be added. The maintenance
of large computer systems becomes difficult to manage as they
approach this maximum size.

This methodology alleviates the above problems. Once
implemented, it can be used by software designers as an interactive
tool to produce feedback on design quality. Minimal specifications,
time and effort are required from the designer. Specifications
include estimates of expected values as well as upper bounds to
compensate for the uncertainty of resource requirements. (If the

performance goal is satisfied when upper bounds are used in

calculations, the design is likely to be suitable.) The evaluation is
repeated, as components are completed and actual data becomes
available, to obtain more accurate forecasts. Since feedback is
provided to the designer, future resource estimates also become more
accurate. The designer is motivated to use the tool since many
additional benefits (mentioned initially) are newly attainable. The
time and effort required to use the methodology are offset by
eliminating time spent on undesirable designs and focusing attention
on critical modules.

A pragmatic approach was used in this research. This
provides a means of validating methods and focusing attention on
solutions to problems typically encountered during software
development projects. Initially, the scope of the problem was
reduced, by limiting design and environmental complexities, to a
class of software designs whose performance could be predicted. The
resulting "basic methodology” and its application are described in
previous papers [SMI7%a,SMI79b]. Next, more complex software systems
were studied throughout design and impleﬁentation stages and the
techniques applied. Typical evaluation and prediction difficulties
were examined and solutions incorporated to resolve them. Another
previous paper contains some of these resolutions [SMI80]. This
document consoclidates the resulting comprehensive methodology which
encompasses features to handle most, general software design

problems.

1.2 Overview of the Methodology

The "basic methodology” consists of capturing performance
specifications, mapping them onto a graphical representation, and
using the graphs to perform static analysis procedures to derive the
mean response time, as well as expected best and worst cases.

The specifications provide information on the performance
goals, execution characteristics, linking information, and the
execution enviromment. The performance goal is a criterion against
which measurement data can be compared to determine whether or not
the software system is acceptable. An example of a reasonable goal
is a maximum response time of eight seconds for a specified data base
query scenario. Performance is unacceptable if the response time is
longer.

A top-down approach is used in the specification of the
execution characteristics of the system. Estimates are first
provided for resource requirements (such as CPU time) for software
components that can reasonably be predicted at the top level of the
design. Processing details of the remaining components are resolved
into sub-components; resource requirements can then be estimated for
some of the sub-components, others will need further resolution.
This process continues until sub-components, whose resource
requirements can be estimated, are defined and specifications are
complete. This explicit hierarchical structuring can be “collapsed”
into higher levels of abstraction as required.

For example, a data base query scenario consists of parsing
the query into standard data base commands then invoking these
commands. Estimates can be provided for the parsing component,
however, the details of the invocation must be refined and a
sub~component defined for each type of data base command that could
be invoked. Either specifications are provided for these
sub-components, or the processing details of the commands are

resolved, until estimates are provided for all processing that

occurs. Structural information is still available for the top level
(two components). Application of the analysis procedure ("collapse™)
then yields resource requirements for the top level component that
was originally specified through resolution of processing details.
The linking information defines the inter-relationships of |
components. All possible execution paths are defined along with the
type of connection and the frequency of occurrence. For example, .

component A contains procedure calls to B and C. B is called each

time A is executed, but C is only called 30% of the time.

The execution environment specifications are collected once,
and used in the evaluation of all software executing in that
environment. They include information on the host computer system
configuration and the operating system overhead and can easily be
provided by a performance analyst.

The data provided above is collected and the software system
structure is extracted. A graphical representation is used to depict
the structure. Functional components are considered nodes and links
are considered arcs. The structure is hierarchical with the lowest
level containing complete information on estimated resource
requirements. The performance analysis then proceeds with the
computation of the elapsed time for each function at the lowest
level. This is equivalent to collapsing a set of nodes and arcs into
a node in the next higher level of design. The elapsed time and
resource requirements for that node are then known and can be used to
collapse that level into a single node. Ultimately, the elapsed time
and resource requirements for the top level of the design are known.
The results are then compared to the performance goal and evaluated
accordingly.

The analysis is an iterative process. As measured data from
implementation executions is obtained, the specification data is
updated and the design is reevaluated. It is possible for the
initial evaluation to indicate that performance is satisfactory, but

for the execution characteristics of functional components, after

they are implemented, to vary enough from their specifications that
bottlenecks appear at later stages of the software development. The
importance of identifying these bottlenecks prior to final software
implementation cannot be over—emphasized. Alternate design
selections or additional hardware acquisitions performed prior to
implementation can prevent disasters. |

Extensions to the above "basic methodology” are incorporated
to handle three environmental complexities: data dependency,
competitive effects, and memory contention. It is often impossible
to provide precise specifications of execution characteristics since
they depend upon the data processed by the software. Design
structures often involve looping where the number of passes through
the loop is dependent, for example, upon the number of records in a
file of a particular type. Other possible dependent factors are CPU
time, I/0 operations, and execution paths. The data dependency
problem is resolved by introducing parameters to represent the data
objects upon which performance depends. Conditional performance
goals are also introduced. An example of one is a requirement that
response time be less than 10 seconds when 20 type A records are in a
file and less than 15 seconds when there are 100 type A records.

The second environmental complexity is the effect of other
software that executes on the host system and competes for the
computer resources. 1t introduces queueing delays into a scenario,
for example, when a job is ready for CPU processing but must wait
until another job has finished using the CPU. The problem is
resolved by using queueing network models. Parameters necessary to
run these models can be derived directly from the execution graphs in
a straightforward manner.

The third is the effect of contention for primary memory. An
extension of the analytic memory model of Brown, et.al.[BRO77],
formulated by Keller, is used as the vehicle for the analysis
[IRA79]. Once again, the execution graphs provide the information

for the derivation of model parameters.

10

The next extension to the "basic methodology” resolves the
effects of concurrent processing. Queueing network models are used
to reflect the processing of multiple, simultaneous users.
Specialized models are needed when synchronization of processing is
involved. For example, program A and B can execute in parallel, but
A needs the output from B before it can complete final processing and
terminate. There is no known analytical solution to this problem; a
satisfactory approximation is developed. Likewise, an approximate
analytical solution is used to incorporate the impact of blocking.
Blocking occurs when a process requires exclusive use of a resource
(such as a data base index) and causes other processes desiring
access to it to wait until it has been freed.

Details of each of these topics follow. Chapter 2 contains a
complete description of the basic model. The extensions to
accommodate the environmental factors are given in Chapter 3.

Chapter 4 covers the effects of concurrent processing. The
implementation of these features is discussed in Chapter 5. A
prototype system 1s presented that demonstrates the feasibility of
implementing such a tool. Conclusions and suggestions for future
research are in Chapter 6.

Simple examples are included throughout to illustrate and
validate the models. There is no single application to demonstrate
all features. A comprehensive example is presented in the appendix
to illustrate several design iterations. It contains many, but not
all, of the design problems addressed. The remainder of this chapter

contains a review of the previous and contemporaneous related work.

11
1.3 Related Work

The need for software development aids that provide feedback
to the designer prior to the implementation of software has long been
recognized. To date, emphasis has been on specification languages,
data bases and retrieval methods for design details; project
management aids; and issues such as verification, reliability, and
testing. Stavely discusses the state of the art in the field of
software design aid systems [STA78].

Few research efforts have considered performance directly.
Most design aid systems that use performance data are primarily
concerned with software behavior with respect to verification of
proper sequences of events in time. One‘exception is POD, a software
engineering tool for performance oriented design by BGS Systems, Inc.
[BGS79a,BGS79b]. Specifications of performance requirements are used
in conjuction with operational analysis methods [BUZ76, DEN78] to
produce performance evaluation data for the system design. Reports
can then be examined interactively. Facilities are provided for
altering the hardware configuration or the specifications and
repeating the analysis.

The POD concept is similar to this one. The major
differences are as follows:

1. It is oriented to use by performance analysts primarily for
capacity planning purposes

2. The analysis is not based on a graphical representation

3. Techniques for the derivation of model parameters are not
documented

4, No provisions are included for handling design issues such
as data dependency, blocking, or synchronization of

concurrent processes.

POD demonstrates the viability of an interactive approach to

performance prediction and evaluation of software designs.

12

Earlier systems combined functional and performance
specification, verification, and evaluation techniques. The first
was proposed by Graham, Clancey, and Devaney [GRA73]. Their
performance evaluation is based on a graphical representation of the
design. Some techniques are given to do a static analysis of the
performance with respect to CPU requirements. They recommend
simulation of software systems prior to implementation.

Another more comprehensive system is the Design Realization,
Evaluation and Modeling (DREAM) System designed by Riddle and the
Reliable Software Systems Group at the University of Michigan
[RID78a, RID78b]. Sanguinetti incorporates simulation as the primary
vehicle for the determination of system performance characteristics
using the DREAM methodology [SAN77, SAN78, SAN79]. The Software Tool
for Evaluating System Designs (STESD), designed by Baker, Chester,
and Yeh of the University of Texas provides system performance and
cost estimates using hierarchical simulation models that are
constructed along with the implementation of the software [BAK78].

The designers of these systems have considered the use of
graphical analysis techniques for computing execution time; however,
they have placed emphasis on the use of simulation for complex
software systems. Environmental effects are not considered.

This methodology is based on the philosophy that suitable-
approximations of performance can be derived, without simulation,
prior to software implementation. Since it is desirable to perform
the analysis interactively, and because the specification data used
is imprecise, the extra time required to model and simulate the
software to obtain more accurate performance predictions is usually
not justified early in software development projects.

Other related research has been done on the use of graphical
analysis techniques to study program performance. Algorithms to
derive mean, variance, and distribution of CPU time are presented by
Kelly [KEL74]. Sholl and Booth describe similar techniques and

include program size considerations [SHO75, BOO79]. The concept of

13

cost-oriented flows in network flow problems is related to program
execution time by Kodres [KOD78]. Graphs are used as the basis for
analysis of programs to determine optimal overlay structures by Baer
and Caughey [BAE72], Van Hoep[VAN71], Lowe [LOW/0], and Kernighan
[KER71].

These techniques are incorporated and extended here to
include systems of programs. This introduces additional
computational structures and techniques. Additional algorithms are
presented for the derivation of queueing network model parameters
from graphs.

Research has been done on other graphical representations of
software systems; however, emphasis is on depicting the system
structure rather than performance analysis. Hebalkar and Zilles
develop an interactive system for graphically representing designs
and maintaining an associated data base of information [HEB78]. It
depicts execution flow and data constructs at the module level but
does not provide features for a more refined level of detail. Ng
discusses a means of generating source code from Nassi-Sneiderdam
charts [NG78]. Similar techniques could be combined with this type
of analysis to yield a powerful software design aid tool. Haranda
and Kunii describe another interesting graphical representation of
software [HAR79]. Recursive graphs and recursive graph operations
are suggested as a basis for specification languages. Performance
analysis is not addressed.

Other approaches to the analysis of predicted performance
have been proposed by Allen [ALL79] and Shaw [SHA79], but are
considered ineffective as described due to the complexity of the
analysis. Allen uses flow graphs as the basis for an analysis which
consists of transforming the graphs to a first order differential
equation and solving it for the expected value of the response time.
It is a rather complex analysis not suitable for interactive

evaluation. Environmental factors are not considered.

14

Shaw developed formal techniques for specifying and verifying
program performance. They are extensions to verification techniques
for functional properties of programs. The complexity and level of
detail preclude application of these techniques to general prediction
problems.

Other research is related to the extensions to this basic
model; however, general analysis methods are addressed rather than
specific performance-related design issues. A discussion of the

relevant work is included as each model extension is presented.

CHAPTER 2
BASIC METHODOLOGY

2.0 Introduction

The basic methodology comprises the elements necessary for
the prediction and analysis of designs for all types of software. It
is sufficient for designs without complex interrelationships of
components and when the performance does not depend upon the
environment in which it will execute.

Concurrent processing adds complexity to software designs.

It may involve multiple users: one user delays the processing of
another due to sharing of or having exclusive access to data. It may
also involve parallel execution of software components for a single
user: communication or synchronization between components causes one
of them to wait on another.

Environmental effects may be unimportant when the software
executes on a dedicated machine or at a higher priority than all
other software. They are important when the execution
characteristics of the software depend upon the data to be processed
or when other software executing on the host computer system impacts
performance of the software. In this case, a lower bound for the
actual response time can be obtained from the basic methodology.

Six fundamental steps are necessary to satisfy the
performance prediction requirements:

1. Extending functional design specifications to include

performance goals and execution characteristics.

15

16

2. Mapping these design level specifications onto an

appropriate representation.

3. Analyzing the structure of the system and deriving
performance metrics.

4. Evaluating the software design with respect to the
performance goals.

5. Iterating the preceding steps as the software is implemented
and actual execution characterilstics are obtained.

6. Updating and retaining the execution characteristics for

more accurate capacity planning.

The specific procedures were derived by studying the désign
specifications and performance of actual software systems. The
information necessary for response time prediction was deduced and
performance specifications were formulated. They include information
on the expected execution characteristics of the software and on the
average time required for (some of the) operating system functions.
An appropriate representation was chosen that supports the

following design features of large software systems:

1. Hierarchical structuring

2. Conditional execution

3. Looping

4. Recursion

5. Nesting

Elementary graph theory 1is used as the basis for the representation
and the analysis [BER58]. Each functional component is a node in a
graph, where a functional component is a collection of program
statements, procedures, subroutines, modules, or programs that
perform a logical function with respect to the software design. The
arcs represent paths between the components. Traversal of an arc

implies some type of protection domain switch such as a procedure

17

call or a supervisor call. A probability associated with each arc
reflects the likelihood of traversing it.

Standard analysis techniques are used to find the shortest
and longest paths in the graph. They represent the minimum and
maximum response time. A technique similar to those of Sanguinetti
[SAN77] and Kelly [KEL74] is used to derive the mean response time.

The basic methodology was applied to the National Software
Works (NSW) system design [FOR78]. The response times calculated
were remarkably close to measured results [SMI79a]. The bottlenecks
and critical components were easily identified. This indicates that
these specification, modeling, and analysis techniques can reasonably
be used as the foundation for the methodology. It also indicates
that the essential elements with respect to software response time
are included. The representation is appropriate for supporting the
analysis and is adequate for depicting the structure of the system.
The algorithms yield. accurate results and are computationally
tractable. The model is suitable for interactive evaluationm.

The remainder of the chapter gives the details necessary for
understanding and using the basic methodology. The graphical
representation is presented first, and is followed by the
specifications, thé response time analysis, the evaluation of the

results, and an example.

2.1 Graphical Representation

Four types of nodes are used, as shown in Table 2.1. Basic
nodes and collapsed nodes both represent functional components. The
distinction is that the function performed by a collapsed node is
defined by another graph at the next level of detail. It is called
the associated sub-graph. Multiple levels of detail are allowed.

Symbol

o o [] ||

= >

(......

r-->

TABLE 2.1.

Name

Rasic node

Collapsed
node

Repetition
node

Dummy node

Arc

Bi-directional
arc

Double
bi~directional
arc

Dummy arc

Self loop

13

GRAPH NOTATION

Description

Repregents a functional component
whose execution characteristics
are defined at this level.

Represents a functiocn whose
execution characteristice are
included in a graph at the next
level of detail.

Deflines the beginning of a loop
that will be repeated N times.

The last node in the loop has

a dummy arc back to the repetition
node.

No processing is associated with
the node.

Shows a transfer of control or &
protection domain switch.

Shows that control will retura to
the origin node when processing 1is
completed at the destination node.

Same as above except that control
returns te the driver, X.

No processing time {3 assocfated
with the arec. They may be bi~
directional.

Shows that processing may be com—
pleted at this node when there are
additional nodes below it in the
graph.

19

Collapsed nodes represent hierarchical and recursive structures.
Recursion is represented by placing a collapsed node within its own
sub-graph.

Repetition nodes indicate that some of the functions
following the node are repeated one or more times, as indicated by
the repetition factor. A special arc connects the last node in the
repetition loop to the repetition node. Dummy nodes are occasionally
needed to represent special software structures.

There are five types of arcs, as shown in Table 2.1.
Standard arcs represent a transfer of control. Bi~directional arcs
are used when control will eventually return to the origin node, as
in a procedure call. Nested procedure calls are represented by a
series of bi-directional arcs.

A double bi-directional arc (DBA) is used when one component
functions as a driver: it calls many other components and regains
control between each of the calls. Note that any of the components
called by the driver could be represented by a collapsed node and
thus may contain nested procedure calls. A sequence of DBA"s is used
as a shorthand notation for ordering the components called by
drivers.

A dummy arc is used to illustrate precedence between nodes;
no processing is associated with it. An example of its use is a
dummy arc between a repetition node and the last node in the
repetition loop. A self loop is a special dummy arc. It is used in
conjunction with bi-directional arcs to show that a node may either
call a component below it in the graph and return to the origin node
when that component completes, or return without issuing a call.

Figure 2.l contains four examples that illustrate how these
conventions are used to represent typical software structures.
Figure 2.la is the representation of nested procedure calls. Figure
2.1b is the representation of a driver. A is the driver; the
execution of component B precedes the execution of C, but there is no

direct connection between B and C. Figure 2.lc is an extension of

20

A A
A
A
<
8 3
IA
c [
| ORI
(a) Nested procedure calls: (b) Sequence of procedure calls
A calls 8, then B8 calls C. {driver)
A calls B then after completion
of B, A calls C.
A A
¥
1
t
=
e x 8
| [I
1 A .7
{ .25
——— 8
ey C
~rA
¢
{¢) Repetition loop: (d) Self loop:
A calls 8 3 times A calls B8, B calls C 25% of the .
then A calls C. time then returns. 75%5% of the

rime B returns without the call.

FIGURE 2.1. EXAMPLES OF SOFTIWARE REPRESENTATIONS

21

2.1b in which component B is called 3 times by A before C is called.
Note that the arc that represents the procedure call is included in
the loop. A dummy arc connects A to the repetition node since no
corresponding processing takes place at that point. Figure 2.14d
illustrates the use of a self loop. Collapsed nodes are not shown in
the example; however, any of the graphs shown could be a sub-graph
associated with a collapsed node. For example, Node B in Figure 2.la
could be a collapsed node represented by the sub-graph in Figure
2.1d.

There is an additional convention that is not explicit in the
notation; the nodes can be or-nodes. An or-node is the origin of two
or more arcs, each of which has a probability associated with
traversing it; the sum of the probabilities must be one. Only one
arc is traversed each time the node is reached. Node B in Figure
2.1d is an or-node.

An initial node in a graph represents the first functiomal
component executed in the graph. Initial nodes can only be the
origin of arcs, not the destination. Node A is the initial node in
all graphs in Figure 2.1. It is necessary (for the analysis) to
impose a restriction that only one initial node is allowed in a graph
or a sub—graph. This is a minor restriction, since a dummy or-node
can be inserted with an arc to each component that could be executed
first.

A terminal node in a graph is the last functional component
executed. A special interpretation of "last” is required when
bi-directional arcs are involved; that is, a terminal node is the
last function called. It 1s possible that processing may actually
continue upon the return from the component; however, the last
function called is still considered the terminal node. This is
because, in the analysis, the total execution time is computed for
each node, disregarding the internal ordering of procedure calls and
processing. By this definition, a node with a self loop is also

considered a terminal node. There may be multiple terminal nodes in

22

a graph or a sub-graph. Node C is a terminal node in all graphs in
Figure 2.1. Node B in Figure 2.1d is also a terminal node.

A path is a sequence of arcs between an initial node and a
terminal node in a graph. There may be multiple paths in a graph.
For this analysis, if a path includes a repetition loop, the arcs
within the loop only appear once in the path regardless of the value
of the repetition factor.

A restriction is required that all loops in the graph must be
either repetition loops or self loops. Again, this does not reduce
the modeling power of this graphical representation since equivalent
representations can be used that contain only these types of loops,
as shown in Figure 2.2.

A sub—path is a segment of a path. There is a sub-path
associated with each arc out of a node that is either an origin or a
destination of multiple arcs. The sub-path terminates with the arc
into a terminal node or a node that qualifies as an origin of another
sub-path. A self loop is a trivial example of a sub-path. The paths
and sub—paths associated with the graphs in Figure 2.1 are shown in
Table 2.2.

The following example illustrates the graphical
representation of a software system. Figure 2.3 shows the top level
of an execution graph of a query against a data base containing
computer performance data. The nodes represent the functional
components of the query language and the data base management system.
The query is “display programs run between November 15 and December
1, 1979 that required more than one hour of CPU time.”

In the graph, "interpret command” is an or-node that
transfers control to "parse” for new queries and to "send message”
for a continuation of a previous query, that is, to retrieve more of
the data that satisfied the original request. “"Get data” is repeated
once for each data base record that satisfies the request until
enough information has been retrieved to fill the screen or the

screen is full. “Process request” and "get data"” are collapsed

TABLE 2.2,
Graph Paths
la. 1. (A,B) , (B,C)
ib. 1. (A,B) , (B,0)
le. 1. (A,R) , (R,B) , (A,CQ)
1d. 1. (A,B)
2. (A,B} , (B,0)
A
B
c
75
.28
D
)
(a) "lllegal' loocp
FIGURE 2.2.

23

EXAMPLES OF PATHS

Sub—-paths

1. (A,8) , (8,0)

. (A,8) , (8,C)

L. (A,R) , (R,B) , (A,0)

1. (A,B)

2. (8,8)

1. (A,B)

2. (B,0)
A
i
i

—————

i

|

|

|

I 8

l

{

|

|

b - c

(b) Equivalent Repetition Loop
where N is geometrically
distributed with mean = b:
F) = (1/8) (37N

AN EQUIVALENT GRAPH USING A REPETITION LOOP

< cont! | INTERPRET

COMMAND

NEW

l PARSE f
USER _QUERY

SEND MESSAGE I

SEND MESSAGE

NAL!DATE REQUESTJ

RECOVER “ 5ROCESS H
LNEQRMATION i REQUEST

...... UNTIL FINISHED
~ OR SCREEN 15 FULL

I

] SAVE]
INFORMATION |

‘ WRITE }
TO SCREEN

FIGURE 2.3, LEVEL 1: DATA BASE QUERY

25

nodes. The details of each function are in level 2 and are shown in
Figure 2.4. The level 2 graphs also contain collapsed nodes.

The level 3 graph for the level 2 collapsed node, "get
record,” is shown in Figure 2.5. In it, “"check memory"” is a driver
that first checks to see if the desired record is already available.
If it is not, a component is called to allocate a buffer and issue a
read. In both cases, another routine is then called to set a pointer
to the desired record within a block. A self loop is required to
show that some of the processing below the "check memory” node may
not be done. Since there is a probability associated with the self
loop, 1ts associated node must be an or-node. By convention, drivers
are not also or-nodes. The processing is more clearly visualized by
explicitly representing the conditional execution of the allocate and
read components. Therefore, a dummy node and arc have been included
to represent the two possibilities resulting from the memory cﬁeck.

A dummy arc leads to it since there is no actual link to the dummy
node. There 1s a double bi-directional arc between the "read" node
and the "set pointer” node. It indicates that there is actually no

connection between the two nodes, but that when the "read” is needed

it is executed prior to the "set pointer.”

2.2 Performance Specifications

Generally, functional design specifications contain
insufficient data to analyze the performance of the finished
software. Emphasis in this section is on the additional data
required, rather than the format for the actual specifications. For
example, an estimate is required for the CPU time: the estimated

lines of code could be specified and mapped into an estimate for CPU

GET RECORD

LOCATE DATA

N TRANSLATE FIELDS

FORMAT SCREEN

MOVE DATA TO
SCREEN BUFFER

{a) Process Request (b) Get Data

FIGURE 2.4. LEVEL 2

CHECK MEMORY (CM)

p(FouND) | _ |

P(NOT FOUND)

&cn

ALLOCATE BUFFER

h
oM
7

SET POINTER TO
REC !N BLOCK

FIGURE 2.5. LEVEL 3: GET RECORD

26

27

time. It is assumed that the data can be derived in a reasonable
manner, thus the consideration of the best initial format for the
specifications and the mapping into the necessary data is not
addressed.

The performance goal is the first specificatidn necessary.

It is used as the basis for comparison inlfhe evaluation of the
resulting performance predictions. The software design is
satisfactory if the performance goal is met.

The specification of the performance goal for software
designs is not only necessary for this analysis, but generally
desirable. Once the expectations are clearly stated, the choice of
appropriace designs and algorithms to be implemented is much easier.
Several people are usually involved in the design and implementation
of large software systems. It is important for them to realize what
the overall performance goals are, so that decisions made on
implementation issues are compatible. This methodology helps to
analyze the impact of an implementation decision upon the rest of the
sof tware system.

The type of goal selected depends upon the nature of the
software. A natural choice for an on-line transaction oriented
system, eg., an airline reservation inquiry program, is the response
time. For the software controling terminal activities, eg., polling
and transmission, throughput is appropriate. For batch programs, the
host system impact is important. The goal may be conditioned upon
environmental factors. For example, the response time depends upon
the number of terminal users. Information of this type must be
included in the specifications: the response time must be less than
8 seconds with up to 10 users, and less than 12 seconds with up to 20
users.

The performance analysis techniques depend upon the type of
goal selected. The analysis described in this chapter is appropriate
for response time and throughput goals. Since competition for host

system resources is not modeled here, the effects of multiple

28

terminal users cannot be analyzed using these basic techniques. The

other types of goals are accommodated in the extensions in chapters 3

and 4.

Response time goals can be derived quite easily for

interactive jobs based on the type of user interaction required and

the amount of processing necessary.

Martin gives some guidelines for

acceptable response times for various types of interactions [MAR67].

In order to determine if the goal can be met, information is

required about the expected execution characteristics of each of the

functional components.

This information is shown in Table 2.3.

TABLE 2.3. SPECIFICATIONS FOR FUNCTIONAL COMPONENT
EXECUTION CHARACTERISTICS

Factors

Cowponent ldentifier

CPU time
Module Size

1/0 requirements:
File Name

Number of opens

Type of 1/0

Number of 1/0"s
Information transferred

Operating System Calls: (1)

Type of call
Frequency

Linkage: (1)

Destination cowmponent

Type of link
Frequency

Units
Identifier
ns

bytes or words

Identifier (2)
integer
{dentifier (2)
integer
characters (K)

Identifier (2)
Integer

Identifier
Identifier (2}
probabtlity

Example
LOCATE
43

20 words

ACCESS RIGHTS
0

Read

25

2

CLOCK

FORMAT SCREEN
dunmy
1

(1) Information is repeated for each type (and file).
(2) Reference to information in Table 2.4.

The factors are selected because of their impact on the elapsed

execution time of a software component.

Since these factors are not

easily estimated prior to implementation, two figures are used for

each of them: an expected value and an upper bound. The expected

value is the best guess for each of the requirements, while the upper

29

bound is a number that can be met with high certainty, For example, a
component will probably require 8 ms. of CPU time, but it will
“certainly” require less than 30 ms. The upper bound for each
component is used in the analysis to determine a worst case. If the
goal is met by the worst case and the upper bounds are chosen
judiciously, performance should be satisfactory.

Of course, the better the estimates of expected values and
the tighter the upper bounds, the more meaningful are the results of
the initial evaluation. As designs are detailed and as componehts
are implemented, revised figures can be used for each of the factors.
The upper bound and the expected value will then be equal. Thus, the
accuracy of the evaluation will improve with successive iterations.

The linking information in Table 2.3 defines all functional
components that could receive control from the component being
specified, the probability that they will actually receive control,
and the type of link. Examples of types are procedure calls,
subroutines calls, and forks (for concurrent execution). ;

Information is also required on the execution environment of
the software. Data must be supplied for all factors that affect a
component”s total execution time (elapsed time). The operating
system overhead influences the component execution time even when no
other work is run. The specific data necessary to define the
operating system overhead is shown in Table 2.4.

Clearly, the time required for operating system functilons
depends upon the workload on the system. Specifications are averages
under a representative workload for the new software. They can be
derived from measurements of the host system or from specifications
for new systems. Default values for various environments are easily

established.

Total processing time

30

TABLE 2.4. EXECUTION ENVIRONMENT SPECIFICATIONS:
OPERATING SYSTEM OVERHEAD
Factors Units Example
¥umber of processors Integer 1
Memory available bytes or words 400K words
Process initialfzation (1) ms <1 ms
1/0 processing: (2)
Type of 1/0 Identifier Read
Open/close time ns 100
Supervisor time ma 28
1/0 completion time o8 1 ms/K
Linkage: (2)
Type of 1link Identifier Procedure | Dummy
Processing time o8 1 ms lo
Operating system calls: (2)
Type Identifier CLOCK
Elapsed time ms 1 ms
Process termination ms <1ms
(1) Includes resource allocation znd activation time
(2) Information is repeated for each type.

TABLE 2.5. PROCESSING TIME COMPUTATION
Terms Ezample
Process initialization -5
1/0 processing: + 0

Number of opens/closes x open/close time ,

Number of I/0"s x supervisor time + 700

Numbar of 1/0"s % information transferred

x 1/0 completion time + 50
Operating system calls: + 32

Number of calls x time
CPU time 6
Process Termination + -5

798 ms.

31

2.3 Performance Analysis

The performance specifications are used, first, to evaluate
the proposed software execution in isolation in order to determine a
lower bound for the performance. Clearly, if the goals are not met
in this environment, performance will be unsatisfactory.

The first step in the analysis is to use the specifications
to construct a graph of the software execution profile. Next, the
processing time for each node 1is computed as shown in Table 2.5. It
is the sum of the times for process initialization, operating system
calls, 1/0 processing, process termination, and the CPU time for that
component. The computation is done twice, once using the expected
values for the factors defined in Table 2.3, and again using the
upper bounds. This gives (an estimate of) the expected value and the
worst case elapsed processing time for each component.

These values can then be used to compute an elapsed time for
the execution of all components. The computation differs depending
on whether the performance goal is for maximum, minimum, or expected
response times. The basic procedure for computing the expected
response time is described next. Variatioms of it follow.

The analysis begins at the top level of the design. Table
2.6 contains a list of rules to be applied to each node in the graph.
The initial node is evaluated first; the;appropriate rule for it is
selected and applied. After the application of the rule, the
successor of the node in the sub-path 1is evaluated according to the
appropriate rule. This analysis continues until the end of the
sub—-path is reached.

When a collapsed node is encountered, its corresponding
sub-graph is evaluated recursively, using the same rules, to obtain
the total for the collapsed node to be used in the calculations.
Nested repetition loops are handled by first multiplying the

repetition factors then using the product to calculate the elapsed

TABLE 2.6.

Rule

Note:

or

32

BASIC RULES FOR OBTAINING EXPECTED ELAPSED TIME

FOR EXECUTION GRAPHS

Origin
Node Type

Basic node
Dummy node

Collapsed node

Repetition node

Or-node

Terminal node
Any node with
multiple

entrance arcs

Procedure

Compute the node and arc cost and add to
the current total.

Evaluate the corresponding subgraph to
obtain the node cost. Add it and the
arc cost to the current total.

Save the repetition factor. Use it to
compute each node and arc cost within
the repetition loop.

Select one arc out of the node and
push the others onto a stack.

Compute the node and arc cost and

add the sum to the current total.
Save the probability and use it to
compute each node and are cost on the
sub-path out of the or-node.

Processing of the sub-path terminates.
Pop an avc off the stack. Add the arc
cost to the current total.

are cost in rules 1-4 refers to the (gelected) arc
originating at the node being evaluated. If it is »a

terminal node,

the arc cost is zero. 1In rule 5 the are

cost corregponds to the arc from the stack.

32

time for each node in the nested loop. An or-node on a sub-path out
of another or-node is handled by first multiplying the probabilities
associated with the sub-paths then applying the appropriate product
to each node on the sub-path out of the subsequent or-node. Both
repetition factors and probabilities may apply to nodes.

When a node is encountered that has multiple arcs leaving it,
evaluation of a new sub-path begins. One of the arcs is selected,
the rest are pushed onto a stack. Evaluation continues with the new
sub-path. When one of the following is encountered:

1. A terminal node
2. A node with multiple arcs into it (one or more paths join at

the node)

processing of the current sub-path stops. If the node is a terminal
node or if one or more of the other sub-paths leading to this node
have not been evaluated, another arc is popped off the stack and the
evaluation of a new sub-path begins. If all sub-—paths into the node
have been evaluated, an arc out of the node is selected and the
evaluation of a new sub-path begins. If there are multiple arcs
leaving it, the others are pushed onto the stack.

This process continues until all sub-paths have been
evaluated. This is indicated by an attempt to pop an item off an
empty stack. The expected response time is the value contained in
the "current total”.

When sub-paths join at a node, the branching probability of
the sub-path below the node is the sum of the probabilities of the
sub-paths that join. If the node is an or-node, the branching
probabilities of each new sub-path are multiplied by this sum. The
sum of the probabilities should never be greater than 1l since the
entire sub-graph originates at a single initial node.

An example of the application of the rules to the graph in
Figure 2.6 is shown in Table 2.7. The times shown for the components

in the example are estimated elapsed times. They are computed using

34

A
(10 MS)

|

SRR

FIGURE 2.6,

ILLUSTRATION FOR SUB~GRAPH EVALUATION

TABLE 2.7. EVALUATION OF A SUB-GRAPH

Current Current

Step “Node Total
Init A o
+10
o
1 R +(5*1)
s
2 B +(5%3)
+(5*.3*)
s
3 o +(5%.3*10)
+(5*.3%1)
w
4 G H(.TH5R1)
ss
s ¥ +(.7R5%1)
+(.7%5%25)
7.5
6 G +(5%2)
+1
8.5
7 H +4
87.5
End none B87.5

Stack
Contents Repetition Probabllity Rule

empty 1 1 li 1
|
\/
empty 5 1 I3
1
\/
(8,F) 5 .3 I &
H
(B,F) 5 3 1] 1>
eapty 5 .7 1 5*
empty 5 (.7+.3)=1 }} 1
i
\/
empty 5 1 11 s*
I
\/
empty 1 1 Il s*
I
\/
empty 1 1

Note: 5% indicates that processing of a sub-path Is complete

35

36

the procedure described earlier. All arc times in this example are 1
millisecond (ms.) with one exception: dummy arc times are zero ms.

The initial node, A, is considered first. By rule 1, arc
(A,R) is evaluated first. The current total is updated with the cost
of the node and arc (10). Necde R is evaluated next. By rule 3, the
current total is updated. In step 2, the repetition factor is saved
and applied to all nodes and arcs through node G. Steps 2 through 3
involve probabilities as well. The resulting total for the graph is
87.5.

This computation is based on that of Kelly [KEL74]. He
develops the graph theoretical proofs for the algorithms. There are
three main differences between the two approaches:

1. The addition of a technique for handling hierarchical
graphs, various types of nodes and countrol representations.

2. The introduction of a different order of evaluation.

3. The application of the loop repetition factor and execution

probability to each component individually.

The first extension makes the specification and analysis procedure
symbionic with a top-down design approach. The second and third are
to provide a straightforward interface for the extension to handle
data dependency. The order of evaluation facilitates the
calculations, since repetition factors and branching probabilities
are easily managed, and the range of nodes and arcs to which they
apply is easily identified.

A variation of the above procedure can be used to obtain
estimated minimum and maximum response times. Finding the maximum
response time is equivalent to finding the longest path in the graph.
In this case, the cost of a collapsed node is the cost of the longest
path in its corresponding sub-graph. Repetition loops are evaluated
as in the previous analysis. Or-nodes need no special processing;
the longest sub-path is desired regardless of its probability of

execution. It is not necessary to distinguish between parallel and

37

sequential processes in this computation since the single path that
dominates is sought regardless of its characteristics. The procedure
for finding the minimum response time is analagous.

The throughput can be obtained from the calculated response
time by applying Little”s law [LIT6l]. Of course, a specification

for the arrival rate is required.

2.4 Performance Evaluation

These analysis techniques are employed for both the expected
value and worst case specifications. If the worst case elapsed time
is less than the response time goal, the performance of the software
should be satisfactory. If the worst case is higher, but the
expected value is lower, the performance is marginally satisfactory.
If it is marginal, or if neither the expected value nor the worst
case response time is less than the goal, an analysis is needed to
determine the critical components and possible bottlenecks. Possible
bottlenecks include excessive CPU time, I/0 processing, operating
system calls or linkage time.

Sufficient information is contained in the graphs for the
automatic generation of a frequency distribution showing, for
example, each component of the software and its total CPU time
requirement. Reports of this type are generated for all the
specification factors. The ratio of each to the elapsed time is
computed; the largest ratio indicates the most critical resource. A
ratio significantly higher than the others indicates a bottleneck.
The components with high requirements for that resource are the
critical components.

Other useful reports show the number of times each component

is invoked, and the types of links and their frequency of occurrence.

38

Components that are invoked many times are alsc critical since small
changes in execution characteristics have a significant impact.
Possible solutions for bottlenecks are:
1. Reducing the resource requirements by revising the design
and thus the specifications
2. Reducing the system overhead by upgrading hardware and thus
revising environment specifications
3. Restructuring the processes (combining them) to eliminate or

reduce linkage time

The visual nature of the graphs often reveals structural type
optimizations to the design, such as removing components from loops
whose function is loop invariant. Other similar compiler-type
optimizations are equally applicable to software designs.

Note that these are passive resolutions to the bottlenecks
since the problem is not resolved by the methodology. Nevertheless,
the means for identifying the problem and evaluating possible
solutions is provided. An example of the application of these

techniques is described next.

2.5 Example

Consider the software execution graph in Figure 2.7. Only
the top level of the processing is illustrated here. The CPU time

and I/0 requirements for each component are shown in Table 2.8.

FIND FOR PROBLEM #
BEAM DEF 2600 QUALIFY
SORT ON

BEAM NUMBER

K-mrmmm e e e N N=2600
L
i
|
|
| RETRIEVE
| SEAM DEF
i
§
i
|
i FIND FOR PROBLEM # A
: NODE LOC (NODE1 V NODE2)
| E 2 QUALIFY
i i
'
i 7
|]
i
i
}
! |
| |
| € e = RETRIEVE
| &= NODE LOC
| v 4/5
i
! ; 1/5
] I
!]
! I
i , SEND DATA
i : :
] \ ;
H i
| e -
e S 0

FIGURE 2.7, COPTIMIZATION EXAMPLE

39

40

TABLE 2.8, RESOURCE REQUIREMENTS FOR OPTIMIZATION EXAMPLE

Function Disk Accesses CPU Time (ms)
Find beam definition 7 111
Sort on beam number 72 32,644
Retrieve beam definition 72 88,832
Find node locatioans 21 3,018,726
Retrieve node locations 36 177,016
Send data] 2,600

Total 208 3,319,929 ms.

The elapsed time to complete an I/0 is assumed to be 30 ms. Other
specifications are unimportant in this example.

The average response time for this scenario is 3326 seconds
(55.4 minutes). This is clearly unacceptable for an interactive
transaction. The bottleneck analysis indicates that the CPU is the
eritical resource since it has a higher ratio to the elapsed time
than the I/0 ratio. Furthermore, the "find node location” compomnent
is the critical component.

The processing details of this collapsed node are not shown;
however, close examination of them indicates that it invokes a "find"
data base command once for each of the three keys then takes the
intersection of the records that qualify. Also, the result of the
"find" for the problem number key is invariant throughout the ioop
and need not be repeated. A knowledge of the nature of the problenm
leads to the observation that most of the time (85%) the "find" omn
the node 1 key yields the same result as the "find” on the node 2 key
from the previous pass through the loop, and need not be repeated.

These optimizations are reflected in the execution graph in
Figure 2.8. This graph is more complex; however, the total

processing requirements are reduced, as shown in Table 2.9.

FIND
BEAM DEF

FOR PROBLEM #
2600 QUALIFY

SORT ON
BEAM NUMBER

FIND FOR PROBLEM
NODE LOC 1500 QUALIFY
T
i
1
—————————— N=2500
N
- 4/26]
:§A§‘§Z§ FIND NODE LOC
22/26
FIND FOR NODE! INTERSECT
NODE LOC | QUALIFIES ON PROSLEM
1
i
|
4
INTERSECT Il o e
ON PROBLEM ~
- |
!
i
y I
RETRIEVE ! RETRIEVE
NODE LOC - NODE LOC
;
4
e e v
175
ﬁ ——————
I
} 1/5
x A\,
i SEND DATA
i T
I !
\ H
| S
e = e e =
FTIGURE 2.8. REVISED OPTIMIZATION EXAMPLE

FOR (MODET Vv
NODE2)

2 QUALIFY

42

TABLE 2.,9. RESOURCE REQUIREMENTS FOR REVISED OPTIMIZATION EXAMPLE

Function Disk Accesses CPU Time (ms)
Find beam definition 7 . 111
Sort beam number 72 32,644
Find node location & 1,075
Retrieve beam definition 72 88,832

Find node location:

B-tree 1/0 17 102
Find 2 nodes -- 44,000
Retrieve 2 nodes -— 27,200
Find 1 node - 26,000
Retrieve 1 node - 76,800
Record 1/0 . 36 216
Send data 0 2,600
Total i 208 297,580 wms.

The response time has been reduced by 3023 seconds, a substantial
savings!

The response time (303 seconds) is still unacceptable for
most on-line applications. Another optimization, storing the "beam
def" data in beam number sequence, precludes the sort. The resulting
response time is 269 seconds. This process continues until a
resulting response time of 82 seconds is obtained.

The performance is still only marginally acceptable, but it
is a dramatic improvement over the original design. The bottlenecks
are detected and corrected prior to actual coding, therefore, the
modifications require minimal effort.

Having demonstrated the basic methodology, the next step is
to incorporate the environmental effects. The specification and
analysis of data dependent execution characteristics are next,
followed by the inclusion of contention for memory and the effect of

other software competing for host system resources.

CHAPTER 3 A
ENVIRONMENTAL FACTORS

3.0 Overview

The basic methodology incorporates a static analysis to-
derive estimated response times for software execution in an
environment without competition for resources. An extension to the
basic methodology is required when the performance impact of
environmental factors is to be considered. It embodies dynamic
analysis techniques to manage the following:

1. data dependent execution characteristics
2. external competition for host system resources

3. memory contention and overhead.

Additional performance metrics are obtained from these dynamic
analysis techniques. The performance goals are expanded to include
consideration of resource utilization, host system impact,
conditional geals, and response time distributions and variances.

Resource requirements of software systems may vary
substantially between executions against different sets of data.
This variability is primarily due to changes in execution paths. The
number of times that components are executed is typically dependent
upon data characteristics while the individual component execution
characteristics are often nearly constant.

An example is a data base retrieval module that is repeated
many times. Data is retained in buffers and the retrieval can

sometimes (conditionally) be satisfied with data in buffers, thereby

43

44

eliminating processing steps to initiate I/0 and thus reducing
resource requirements.

Variability may appear within a component at a given level of
resolution. For example, the amount of CPU time required by a
compiler component depends upon the size and structure of the program
to be compiled. In this case, however, when the processing details
of each component are resolved, the execution paths of sub-components
are once again observed to be the primary cause of the variability.

A possible solution to the data dependency problem is to
devise a representative benchmark workload and specifications of
expected values and upper bounds for that workload. The results,
however, are still not generally applicable to other workloads.

The preferable solution is to identify the data objects upon
which performance depends and provide specifications in terms of
those objects. The specifications contain either parameters or
random variables to represent the data objects. The response time
algorithm is then modified to accommodate these parameters.
Additional algorithms are added for the calculation of the variance
and distribution of response time when random variables are used in
specifications. Approximation techniques are included that greatly
simplify these calculations with little effect on the usefulness of
the results.

The second environmental factor addressed is the external
competition for host system resources. Other software that executes
on the host competes for shared resources such as the CPU and I/0
devices. This introduces queueing delays when a job is ready to use
the resource but must wait until it is free. External competition is
important not only because of its effect on the software design of
interest but also because the new software may exhibit satisfactory
response time characteristics at the expense of the response time of
the other, perhaps more important, work on the host. It is also
important to know how many users of the gsoftware can be supported

without a significant degradation of response time.

45

A solution to this problem is to construct a queueing network
model of the host system to reflect its performance with the
competing work [KLE75,KLE76]. Graph analysis algorithms are applied
to yield data for the model parameters necessary to include the new
software. Solution of the resulting queueing network model, the
elementary model, yields the revised response times for existing
work, response time for new software, and additional performance
indicators such as resource utilization, wait (queue) time for each
resource, and throughputs. The additional metrics are useful for the
evaluation of other performance goals as well as the identification
of potential bottlenecks.

The third environmental factor is the contention for
executable memory on a non-paged host system. When a host system
with non-paged memory is shared among multiple users, there is
usually contention for the available memory. This limits the number
of users that can execute in parallel and adds additional overhead
for swapping, that is, replacing inactive users (who hold memory
while waiting for resources) with users who can execute.

For example, a transaction arriving to a busy system may
experience a delay until enough memory becomes available for the
necessary programs to be loaded. During execution, if a program has
a long wait for the results of a called sub-program, it may be
swapped out of memory. When the results are available, the job is
delayed until the program is swapped in again. The delay experienced
by the job depends upon the host system configuration and its
workload.

The soclution to this problem is to first insert special swap
in and swap out nodes into the execution graphs to represent the
additional resource requirements. The elementary model is augmented
to produce a model of the system with the swapping activity
incorporated: the swapping model. Then, the queueing network
modeling techniques of Brown, et.al., as extended by Keller, are

employed to quantify the memory wait and its impact on response time:

46

the memory model [BRO77,IRA79). Additional algorithms are introduced
to obtain the memory model parameters from the execution graphs.

The remainder of this chapter elaborates on these dynamic
analysis techniques and the necessary performance specifications.
The data dependent execution characteristics are discussed next,

followed by the external coumpetitive effects, and memory analysis.

3.1 Data Dependency

When the resource requirements of software vary considerably
with the data to be processed, specifications for the expected value
and upper bound provide insufficient information to adequately
characterize performance. This problem is resolved by using
variables in an expression of the relationship between the behavior
determining data objects and the variable resource requirements,
execution probabilities, or loop repetition factors.

Consider the examples shown in Figure 3.1. 1In 3.la, the CPU
time required for the “"lexical and syntactic analysis”™ component
depends upon the number of statements in the source program. A
variable loop repetition factor is shown in 3.1b and variable
execution probabilities in 3.lc. The calculation of the average,
pinimum or maximum response time proceeds using the algorithms in
Chapter 2; the calculations now include variables as well as
constants. Figure 3.1 illustrates some average response time
calculations invelving variables.

Values are assigned to the variables during the evaluation as
soon as sufficient information is available. Consider the example in
Figure 3.lc. The value of P depends upon the access method, the
number of records in a buffer, the total number of records, and the

number of buffers retained in memory. The relationship is defined as

PROGRAM
INPUT

LEXICAL &

SYNTACTIC
ANALYSIS

COMP I LATION
COMPLETION

Resource requirements:
source program.

-
i

|

i

i

] RETRIEVE
] RECORD

{

]

|

|

-~ TALLY

(b) Loop repetition factor:

VAL IDATE

REQUEST

T

READ
RECORD

MOVE INFQ
QUT OF BUFFER

(c) Execution Probability:

FIGURE 3.1.

47

CPU Requirements Computation

iQ 10
+ 1
.03 s + .03 8
+ 1
758 + .75 S
12+ .78 8
S represents the number of statements in the
N x 1
20 + N x 20
+ N x !
5 + N x5
N x 27

M is the number of requests in the data stream.

P is the probability that the data is not in memory.

VARIABLE EXECUTION CHARACTERISTICS

Random access: P = 1 - (NB x RB) / RT
Sequential access: P = 1 / RB
where NB

[}

number of buffers
RT = total number of records

RB number of records in a buffer

Since the response time is calculated for a specific
scenario, values for each of these particular variables are provided
as part of the specification process. Only one of these variables,
the total number of records, will change from one execution to the
next. The rest are actually design decisions and will probably
remain constant after implementation. Using variable specifications
at this point in the design process allows the analysis of alternate
design decisions.

This example illustrates a problem in the application of
previous graphical analysis techniques [KEL74]. The algorithﬁ for
replacing a repetition loop by a single node with an equivalent
execution time (the repetition factor times the elapsed time per
repetition) requires an assumption that the time for each repetition
of a loop be independent of the time for the previous repetition and
the number of repetitions. The assumption 1s violated in this
example for the sequential access method since the number of times
the data is in memory is dependent on the number of repetitions of
the loop.

The answer to the problem is to defer assigning a value to
the variable, P, until the value of the loop repetition factor, N, is
known. The total elapsed time is then calculated for all loop
repetitions. This resolves another problem, that is, the actual
number of times that the "read record” component 1s executed must be
an integer. The ceiling function (next higher integer) is added to

the expression for P resulting in

49

P

[N/ RB]

Note that the ceiling function can only be added to the expression
for all loop repetitions. Otherwise P would always be one,
incorrectly indicating that "read record” is always executed.

In the previous example, reasonable valugs for all of the
data dependent variables could be provided with the scenario '
specifications. This is not always the case. For example, the value
of the loop repetition factor, N, in Figure 3.lb may depend on data
characteristics not known a priori, such as the number of employees
earning less than $1000. When this happens, the variables are
retained throughout the computation. The result is a response time
function in terms of the dependent variables. A conditional
performance goal is then introduced, that is, the goal depends on the
value assigned to the variable in the response time function. For
example, if the loop in Figure 3.1b is repeated once for each
employee who earns less than $1000, the conditional response time
goal could be 8 seconds if 25 or less employees qualify, 12 seconds
if up to 100 qualify, 20 seconds if there are more.

-The response time analysis of software with data dependent
execution characteristics is best demonstrated by an example.
Consider the software described in Chapter 2 and depicted in the
graphs in Figurés 2.3, 2.4, and 2.5. Suppose the elapsed time for

each basic node has been calculated; the results are in Table 3.l.

TABLE 3.1. ESTIMATED PROCESSING TIME OF BASIC NODES

Name

Level 1:
Interpret Commmaad
Parse
Send Message
Validate Request
Recover information
Save information
Write to screen

Level 2:
Locate
Format screen
Translate flelds
Move data

Procesaing time (ms.)

45 + (36 * freads)
5
5
1

Level 3:
Check memory
Allocate buffer
Read
Set pointer

-G R

The arc cost is one millisecond (ms), except the dummy arcs which are
zero ms. The variables will temporarily remain undefined. ©Note that
the time required for the terminal I/0 is excluded from the model, so
the calculated response time is the elapsed time in the host system.

The calculation of the average response time is carried out
using the variable names rather than substituted values. The result
is a function for the response time in terms of the variables. Table
3,2 illustrates the calculation. The assumption that p(not) equals
.9 is obtained by assuming there are 10 blocks in the file,
retrievals are random, and there is only one buffer. Thus, there is
one chance in ten that the desired block is in memory.

The average response time is evaluated with respect to the
scenario and the specified value of each variable. The branching
probabilities, p(conti) and p(new), are implicitly defined by the
scenario. The number of reads and the number of programs that
qualify are specified as part of the scenario. In Table 3.3,

scenarios 1, 2, and 3 illustrate three such calculations.

