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TABLE 3.3. EXAMPLES WITH DATA DEPENDENCY

- - - - Specifications - - - - Average
Scenarios p(conti) p(new) reads N Response Time
1. New request
10 qualify ¢ 1 6 10 1065 ma.
2. Subsequent screens
10 qualify 1 0 o] 10 498 wms.
3. Subsequent screeas
5 quallfy 1 0 0 b 267 ws.
.
4, New request &
2 subsequent 2/3 1/3 [ 25 1830 me. total
25 qualify 610 ma. average
5. New request®
10 qualify 0 1 6 10 1065 ms.

* Data dependent distribution for "Write to screen”

Next, suppose that the number of programs that qualify is 25,
If only 10 will fit on a screen, three queries will be needed, a new
one and two continuations. This is scenario 4 in Table 3.3. The
total response time is actually the sum of that of the first 3
scenarios.

The performance goals are not included in the example.
Appropriate values are 2 seconds if less than 10 qualify and 6
seconds for up to 100 qualifying. The performance goal is met in
both cases.

It is often possible to characterize data dependent
performance specifications by using random variables. Suppose that
the time for "write to screen” in Figure 2.5 is not constant, but
depends on the number of fields desired and that this number can be
approximated by a hypoexponential distribution with mean 5 and
variance 50, as shown in Figure 3.2.

The mean, variance, and probability density function (pdf)
are specified for each random variable. The algorithm in Table 2.6
is used to compute the average response time for the graph. The
specified mean is substituted for the random variable in this

computation. The variance of the response time is computed using the
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TABLE 3.4. CALCULATION OF THE VARIANCE OF THE RESPONSE TIME

Origin Node
Type

Basic node

Collapsed node

Repetition node

Or-node

Calculation
Add the variance to the current variance.

Determine the variance of the associated
sub-graph. Add it to the current variance.

1. Add E{(X)**2 * Var N to the current variance
where E(X) 1s the average execution time of one
pass through the loop; that s, total time

for the loop / E(N), the expected value of N.
Var N {s the variance of the loop repetitien
{actor.

2. For each node i in the loop, add

the product, E(N) * Var {, to the current
variance.

1. For every cowmbination of 2 paths, { and j,
out of the node, add:

P(L) * P(Y) * (E(1) - E(])) ** 2 to the
current variance. P(1i) and P(J) are the
probabilities of taking the respective

paths. E(1) and E(])} are the expected execu-
tion times of the paths beginning at the
or-node and ending at either a terminal node
or where the paths { and j jJoin.

2. Add to the current variance:

P(m) * Var k for each node k on esach

sub-path m out of the or-node.
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algorithm in Table 3.4. It is an enhanced version of the algorithm
proposed by Kelly [KEL74], that handles the graphical representation
of hierarchical structures, additional types of nodes and arcs, and
control mechanisms. The order of evaluation and manipulation of loop
repetition factors and execution probabilities are also different.

Kelly also defined a procedure for obtaining the probability
density function (pdf) for response time. It is a compound
distribution derived by taking the pdf”s of the nodes of a graph and
combining them according to rules based on several standard graph
structures. His procedure is to take the transform functions of each
pdf, combine them, then invert the resulting transform to obtain the
desired pdf. He concluded that this computation was too complex to
be used for non—trivial graphs. Some special cases exist, however,
that occur frequently in software systems, and that have
computationally tractable solutions for probability density
functions.

Consider the previous example where the time for "write to
screen” is changed to be a hypoexponential distribution with mean 5
and variance 50 as in Figure 3.2a. The processing time is 4 ms. per
field, therefore the distribution for the processing time is also
hypoexponential with mean 20 and variance 200, as shown in Figure
3.2b. The other specifications are shown in Table 3.3, scenario 5.
The average response time remains the same as in scenario 1, 1065 ms.
The variance of the response time is 200 since the variance is zero
for all other nodes in the graph. The value of the variance is the
same as that for “"write to screen”, but it is less significant with
respect to the mean of the response time.

The response time pdf can also be determined trivially. It
is the result of the convolution of a hypoexponential random variable
and the constant-valued random variables of the other nodes. This
results in a scaled hypoexponential compound pdf as illustrated in
Figure 3.2c. That is, the function is the same as that of "write to

screen”, but it is shifted on the x axis by the sum of the constants
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associated with the other nodes.
A study of a number of software systems with data dependent
execution characteristics produced the following observations:

1. When the specifications for several components depend on one
particular data object, the pdf~s for each component are
homogeneous. Only the mean and variance differ.

2. Constant, normal, exponential, and hypoexponential pdf~s are
usually representative.

3. The response time pdf is usually desired in order to get a
general idea of the shape of the curve as related to the
data objects and to determine the expected response time for
a specific quantile. (For example, 90% of the transactions
should have a response time less than or equal to 6

seconds. )

These observations suggest the following strategy for obtaining an
approximation of the response time pdf. The hypoexponential pdf is
actually a sum of two or more exponential random variables.
Therefore, when a hypoexponential random variable is convolved with
other hypoexponential or exponential random variables, the resulting
compound pdf is also hypoexponential. A compound pdf that includes
constant branching probabilities or repetition factors is a scaled
pdf as before.

Thus, the compound pdf for the response time can easily be
determined when constant, exponential, and hypoexponential random
variables are summed. When a normal pdf is needed, it can be
approximated by a hypoexponential pdf (the sum of a "large” number of
exponential random variables) to simplify the computations. Note
that when a "large” number of exponential and/or hypoexponential
random variables are convolved, the result approaches the normal pdf.

Another approximation can be used to further simplify
computation of the compound pdf and to eliminate the rather complex

calculation of the variance. The normal and hypoexponential pdf~s
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Figure 3.3 shows a central server model of a host system with
existing work reflected by job type 1. Figure 3.4 shows the
execution graph for proposed software. The specifications for the
estimated CPU time and number of disk I/0”s are shown for each
functional component of the graph.

First, the total CPU time and number of disk I/07s are
calculated using the standard graph evaluation algorithm in Table
2.6. Then, the branching probabilities out of node BP are calculated
from the total number of disk I/0"s. Since a type 2 job completes
after the last I1I/0, the branching probability from node BP to queue
TERM is the reciprocal of the total I/0”s (.l in this example).

Since the branching probabilities must sum to one, the branching
probability from node BP to the CPU is calculated from that of node
BP to TERM (.9 in this example).

The mean CPU service time is derived by dividing the total
CPU time by the total number of disk I/0”"s. The TERM and DISK
service rates are assumed to be the same as for job type 1.
Otherwise, the changes are included in the environment
specifications. The model parameters for the host with the existing
work (type 1) and the new software (type 2) are shown in Table 3.5.

The model solution yields revised response times for the
existing work and a response time estimate for the new software.
Resource utilizations, throughputs, queue lengths, and other
performance indicators are also derived from the model solutionm.

The analysis of the effect of multiple users of the software
is easily handled in this framework. The queueing network model is
developed as described. Increasing the degree of multiprogramming
for the job of interest then produces revised performance metrics for
that number of users. The model can be solved for a range of values
for the degree of multiprogramming to determine how many users can be
supported before the response time degrades.

The extension to more complex host environments is a

straightforward expansion of the queueing network mwodel. The
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These findings support the use of a simple approximation
technique. It provides good, inexpensive initial feedback on the
response time distribution. The extension for analyzing the effects

of other work competing for host system resources is described next.

3.2 Competitive Effects

It was assumed in the basic performance prediction
methodology that the software system would execute omn a dedicated
computer system. When other work is processed on the host computer,
external competitive effects are introduced. Software performance
may be satisfactory on a dedicated system but queueing delays for
shared resources such as the CPU and disks can cause significant
performance degradations that affect the new software, the existing
work, or both.

These external competitive effects are straightforwardly
represented in queueing network models of computer systems. The
software environment specifications must include a model of the host
computer system. Measurements of the existing work on the host are
used to derive the parameters for the model. The model is then
validated and calibrated until it is an accurate representation of
the existing computer system.

Another job type is then added to the model to represent the
new software [BAS75]. The resulting model is the elementary model.
Recall that in the basic methodology the performance specifications
for the software were analyzed and an execution graph was generated.
The queueing network model parameters for the new job can easily be
derived from this software execution graph [IRA79]. This procedure

is best illustrated by an example.
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can be approximated by an R-stage Erlangian pdf. It is a sum of R
exponential random variables where the means of all the exponential
random variables are equal to 1/R times the mean of the Erlangian.
When R is one, it is an exponential pdf. R can be selected to yield
a curve of the desired shape. From R and the specified mean, the

variance of the pdf can easily be computed:

1

Var = 9
R (Mean)

When an R-stage Erlangian is convolved with a constant, the
compound pdf is still an R-stage Erlangian that is scaled
appropriately. When several R-stage Erlangian random variables are
summed the resulting compound pdf is hypoexponential, since the means
of the individual R-stage Erlangian random variables are not equal.
However, it can be approximated by an R-stage Erlangian with the new
R equal to the sum of the R”s associated with the individual random
variables that were summed. The resulting compound pdf is a close
approximation to the pdf obtained from the procedure defined by
Kelly. The variance, as computed from the resulting mean and the
value of R, will not be exact. However, it is usually acceptable
since the specifications on which the analysis is based are rarely
precise enough to warrant the extra work required to obtain the exact
variance.

These computations for the data dependent mean, variance, and
distribution of response time apply to software execution in a
limited environment. Competitive effects and other external factors
affect the response time characteristics. Lazowska and Sevcik have
shown that in the presence of competitive effects, the response time
distribution is asymtotically normal [LAZ78]. He also makes the
observation that host system bottlenecks can completely dominate the
response time distribution thus causing a drastic change to a

distribution computed as above.
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TABLE 3.5. MODEL PARAMETERS WITH NEW JOB

a. Service rates (job/second)

Job Type*

Node 1 A
Cru 175 250
DISK 33 33
7Y .05 .05

*Type 1 = existing work
Type 2 = new job
o. B3ranching probabilicies Zor Type 1
From: To:

C?yU DISK TY BF

CPU o] 1 0 0
DISK 0 0 0 1
TTY 1 0 0 0
3P .95 0 .05 0
c¢. Branching probabilities for Type 2
From: To:

CPU  DISK TTY BP
CPU 0 1 0 0
DISK 0 0 Q 1
TTY 1 0 0 0
BP 9 0 .1 o]

analysis techniques previously developed can be used to obtain the
model parameters from more complex software execution graphs.

The additional performance metrics from the elementary model
enable the consideration of other performance goals such as bounds omn
resource utilization and bounds on the degradation of the response
time (or throughput) of existing work. They also help to determine
bottlenecks: performance limiting devices (resources) are identified

by high utilizations. The software design can then be analyzed with
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respect to requirements for that resource. Alternate design and
implementation strategies that potentially reduce those resource
requirements can be developed and evaluated.

For example, suppose the bottleneck device is the CPU. The
execution graphs are analyzed and a histogram of the CPU requirement
of each component is produced. Those components with the greatest
total CPU requirements are studied and alternatives are investigated.
For each feasible alternative, the specifications are revised, the
graphs are re-evaluated to produce revised model parameters, and the
elementary model is re—solved.

Thus, the effect of design alternatives is easily evaluated
with quantitative results produced for each. The appropriate design
is then selected with consideration of the ease of implementation and
the performance benefits. Since the analysis begins prior to
implementation, extensive coding modifications to enhance performance
are avoided.

0f course, the evaluation may indicate that the performance
will be unsatisfactory even after design improvements are
incorporated. 1In this case, a modification to the host configuration
is necessary. Various reconfigurations and equipment upgrades are
easily evaluated by making appropriate modifications to the queueing
network model.

The technique of uniting the graphical representation of
software execution and the queueing network model technology supports
many additional types of software design evaluation. It is a natural
combination whose potential is just beginning to be realized. The
queueing network models preserve the criteria of quick, interactive
evaluation of designs while adding tremendous modeling power.
Extensions to the models to facilitate the analysis of memory
contention, a typical and complicated external influence on the

software design, are described next.
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3.3 Memory Analysis

The effects of the contention for executable non-paged memory
on response time are two-fold:
1. Jobs are delayed by a scheduler upon arrival to the system
until sufficient memory is available to begin
2. During execution, jobs may be swapped out of memory, when
long waits for resources are encountered, to allow other

jobs that have sufficient resources to use the memory.

Consider the example in Figure 3.4. A request is entered at
a terminal and sent to the host computer system. It then enters a
memory wait queue where it remains until sufficient memory is
available for the user application program, APP, to be loaded. Once
available, APP is loaded and begins execution. APP is a driver that
calls each of the components indicated in the graph. There is
minimal APP processing between each of the calls. If the elapsed
execution time of any of the called components exceeds a
predetermined swap threshold, APP is swapped out. It is swapped in
again when the component is complete; further user processing is
delayed until the swap in is complete. The swap out can execute
concurrently with the component processing, but the swap in cannot.
Figure 3.5 illustrates the revised execution graph with nodes

representing the swapping activity included. A node is added for
each component whose estimated elapsed time exceeds the predefined
swap threshhold. These nodes are identified by applying the
following algorithm to compute the estimated elapsed time of each
component:

1. The elementary model is run to obtain the average queue time

for the CPU and DISK.
2. The estimated elapsed time for each component is computed by
weighting its CPU and DISK requirements by the expected

queue time.



Job Type

VALIDATE REQUEST

GET DATA 2A SWAP QUT *
¥ T
I ]
| |
|,
: JOI:I/ ............... d
i
1
!
SWAP IN 2B
l APP
~
FORMAT SCREEN 2A
lAPP
SEND MESSAGE 2A

* not included in swapping model

FIGURE 3.5.

EXECUTION GRAPH WITH SWAPPING ACTIVITY

64



65

Special fork and join nodes have been added to the graph to
delineate the concurrent component and swap out processing. The
concurrent processing can actually proceed in one of three ways:

1. Processing for one completes before the other begins
execution

2. The processing of both proceeds in parallel

3. A combination of these where only part of the processing is

parallel.

The major influences of memory contention on response time
are analyzed first. It is a best case analysis; extensions for the
analysis of the more complicated situations are discussed later. The
assumptions for the best case are as follows:

l. There is complete overlap of concurrent processing
2. There is no wait for memory allocation prior to swap in
3. The swap out processing has minimal impact on the host

system performance.

The first assumption implies that the swap out processing will
complete before the component processing, so it will not be necessary
to wait for the swap out to complete before the swap in can be
started. The second implies that sufficient memory is always
available to swap in the user program. The third implies that the
swap out processing can be omitted from the model with little affect
on the resulting response time.

None of these assumptions are essential for modeling swapping
activity. They are included to simplify this discussion and the
model solution. Since it is simple, this swapping model is evaluated
first. If the best case results are unsatisfactory, modifications
are necessary regardless of the results of the more complicated
models. The model variations to preclude these assumptions are

discussed later.
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The best case swapping model uses dependent job typing to
reflect the time required for swap ins [CHA77]. The user application
program, APP, is loaded and begins execution as job type 2A. It
remains type 2A throughout the component and APP processing. It
changes to type 2B when a swap in begins and back to type 2A‘when the
swap is complete. A typical scenario will have several such changes.

The queueing network model is shown in Figure 3.6. The model
parameters are computed independently for each type, using the
algorithm in Table 2.6. That is, the total CPU time and total number
of I1/0”°s for type 2A determine the CPU processing rate for type 2A.
The CPU rate for a type 2B, swap in, is specified with the
environmental specifications. It 1is the reciprocal of the average
CPU time overhead to initiate the swap in. The service rate for the
SWAP device is calculated from the size of the program to be swapped
and the environmental specifications for the hardware swapping device
(the seek, latency, and transfer time).

The branching probabilities are slightly more complicated
than those in the elementary model; these must also include the
probability that a job changes type. The job changes type only at
the BP node. The number of times a job reaches the BP is the sum of
the number of I/0"s and swaps, TOTBP. One of these is the job
completion, so the branching probability for type 2A from the BP to
the TERM is the reciprocal of this total. The branching probability
for type 2A from the BP to the CPU and remaining type 2A is the ratio
of the number of I/0”s minus one to the TOTBP. For type 2A from BP
to the CPU and changing to type 2B it is the ratio of the number of
swaps to the TOTBP. Type 2B jobs always change to type 2A and branch
back to the CPU. These model parameters are shown in Figure 3.6.

The swapping model is solwved and the performancé metrics are
obtained for each job type. The revised response time for the
scenarioc is the sum of the response times for type 2A and 2B. The
proportion of the respouse time due to swapping and its impact on the

host system are easily obtained.
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The analysis of the impact of the wait for memory allocation
is based on the single job-type queueing network model proposed by
Brown, et.al. [BRO77]. This model was extended by Keller to handle
multiple job types [IRA79]. The additional memory model parameters
consist of:

1. A discrete probability distribution of memory requirements
for each job type
2. The total memory available for allocation

3. The number of users of each type.

These parameters are used to determine the probability that the
various combinations of job mixes will occur. The swapping model is
then run with each of the feasible job mixes. The metrics obtained
from the swapping model results are then weighted by the probability
that the corresponding job mix will occur to obtain the expected
performance metrics.

The additional memory model parameters are essentially
derived from the execution graphs. The discrete probability
distribution,

P (1) where P (1) is the probability that a type j job

will have a memory requirement of i units

is determined from the swapping model results and the execution
graphs. The estimated elapsed time algorithm is used to compute the
elapsed time of each component in the graph. The ratio of the
elapsed time of a component to the total elapsed time of the scenaric
is the probability that the component is executing; its size is
contained in the functional component specifications. The available
memory and number of users are contained in the environmental
specifications.

Recall that some simplifying assumptions were made earlier.
One was the best case assumption that there is no wait for memory

allocation prior to each swap in node. This is, perhaps, an
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unreasonable assumption for some host systems. A variation of the
memory model that precludes this assumption is derived by adjusting
the branching probabilities from node BP for type 2B jobs. In the
revised model, type 2B jobs change to type 2A jobs and branch to the
TERM. These jobs are immediately ready; therefore the TERM service
rate is adjusted to reflect the "mean equivalent user think time."” It
is a weighted average deduced from the number of swap outs and the
original think time.

The other simplifying assumptions are concerned with the
inherent internal concurrency of swapping activity and actual
processing. The modeling of internal concurrent processing is
presented next. The techniques described there can be applied to the
swapping model to reflect the competitive effects of the concurrent

swap out processing.



CHAPTER 4
CONCURRENT PROCESSING

4.0 Overview

The previous chapter is primarily an analysis of the
interaction between the software and the environment. Bottlenecks
are corrected by adjusting the design, the host environmment, or both,
so that they are symbionic. Software systems are rarely specifically
designed to accommodate the variability of environmental factors.

This chapter contains techniques for the modeling and
analysis of aspects of software designs that are more directly
related to the resulting performance. Internal concurrency and the
synchronization of processing are discussed first. Internal
concurrency results when software processing forks and multiple
processes execute in parallel. Synchronization occurs when various
parallel processes must join (complete) before processing can
continue. )

The swapping scenario in Figure 3.5 is an example. The
processing forks at the point that a swap out begins. The swap out
executes in parallel with the component processing. The processing
joins again prior to the execution of the swap in. Both parallel
processes must complete before the swap in can begin.

Internal concurrency is incorporated into software systems to
overlap processing and thus shorten response times. Increasing
concurrency also increases the competition for shared resources which
increases queue time. It Is desirable to model concurrency

explicitly to quantify the extent and effectiveness of the
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concurrency since various design strategies will exhibit very
different performance characteristics.

The second effect of concurrency on software designs that is
modeled is the effect of blocking by mutual exclusion. This commonly
occurs when highly used portions of data bases such as keys and
pointers are held in exclusion to be updated. All other data base
processing involving those data elements is then blocked until the
update is complete.

Queueing network models are used as the vehicle for the
analysis of both of these software design characteristecs. This is
necessary for compatibility with the envirommental analysis and to
preserve the requirement that the design analysis be suitable for
interactive evaluation.

The representation of synchronization and blocking in
queueing network models is a difficult problem. Analytical solutions
for models including blocking behavior are available only for special
cases [KON76,B0X79]. Lam has shown that product form solutions can
be obtained for networks with population size constraints [LAM77] and
Zahorjan has given a general convolution algorithm that includes
Lam-type networks [ZAH79b]. None of these results is satisfacotry
for modeling general blocking behavior.

Towsley, et.al., formulated a model of concurrent processing
for representing the overlap of CPU and I/0 processing within a job
[TOW78]. He collapses a network into a two queue model then solves
the corresponding Markov model to obtain exact analytical results.
Brown, et.al., [BRO75] and Zahorjan [ZAH79a] used an iterative
solution technique for the modeling of multiple disk per controller
systems where holding of the controller for transfer may inhibit the
initiation of seeks.

The synchronization and blocking models presented next use
the iterative solution approach. The approximation techniques can be
used to obtain results quickly. Once again, this approximation is

sufficient for design level evaluation when the specification data is



imprecise. The extra effort required for an exact solution is
usually not justified. An exact solution technique should, perhaps,
be used at later development stages for software .systems when more

precise performance metrics are crucial.

4,1 Internal Comncurrency and Synchromization

The modeling of internal concurrency and synchronizatiion
within a software design begins with a specification and resulting
graphical representation. The functional component specifications
include a description of the linkage between components. A link,
FORK, is specified for each concurrent process that can begin
execution when a functional component completes. Each FORK begins
another concurrent chain. Similarly, a JOIN link is specified from
each component that terminates a concurrent chain.

Figure 4.1 depicts a software system with internal
concurrency and synchronization inherent in the design: the Harris
scenarioc. A remote terminal user sends a request for data which
causes asynchronous (concurrent) processing to begin to satisfy the
request. The user is not required to block to wait for a reply; any
user processing can be done at this time. When the user desires the
reply from the asynchronous process, the request reply is sent. BRoth
of the concurrent chains must complete before the results are
returned to the user.

The actual user processing that occurs between the "send
request” and the “request reply” is unpredictable. This is another
example of data dependency that must be resolved by introducing a
conditional performance goal. To simplify this discussion, the
assumption is made that no additional processing will occur and the

model is evaluated to determine the response time conditioned on this
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event. The evaluation of the model with additional processing
included is easily derived from the one presented.
The response time effects are two-fold:

1. Additiomal competition for shared resources is introduced
thus potentially increasing the elapsed time of each
concurrent chain.

2. The concurrent chain with the longest elapsed time

determines the overall response time.

These effects are quantified by first partitioning the graph into
concurrent chains. The primary chain is that with the longest
expected elapsed time. Other concurrent chains are secondary.
Figure 4.2 illustrates the partitioning of the Harris scenario.

The primary concurrent chain is usually easily identified
from the specifications and execution graphs. Generally, one chain
clearly dominates the others in terms of resource requirements. If
not, it is initially determined by formulating an elementary model
with existing competitive work and one additional job type
representing one of the concurrent chains. An elementary model is
solved for each possible chain and the chain with the longest elapsed
time is selected.

Next, queueing network model parameters are derived for each
chain independent of the others. Each chain is a distinct job type
in the synchronization model shown in Figure 4.3. The primary chain
cycles through the network as before. The secondary chains begin at
the wait queue, WQ. The length of time they remain there is, on the
average, equal to the elapsed execution time of the primary chain
from the beginning of execution until the FORK. They enter the
SYSTEM and cycle through it (competing with the primary chain for
resources) until their actual processing ié complete, then return to
the WQ. They then remain at the WQ for the remainder of the elapsed

time of the primary concurrent chain.
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The degree of multiprogramming for each of these chains is
equal. The WQ is modeled as an infinite server since the time spent
there does not directly depend on the number of other jobs of that
type at the WQ. (The indirect effect is the effect on the total
elapsed time of the primary chain due to the competitive effects of
the secondary chains). The WQ service time is first estimated from
the results of the elementary model with the primary chain. This
will be a lower bound for the elapsed time of the primary chain since
the competitive effects are minimal in that model. The WQ time is
obtained by computing the estimated elapsed time of each secondary
chain using the queue time from the elementary model and the elapsed
time algorithm in Chapter 3. Subtracting this figure from the
response time of the primary chain gives the estimated total time to
be spent at the WQ for each secondary chain.

The resulting synchronization model is then solved. The
response time of each chain should be equal (or within some
tolerance, say 10%Z). If so, the synchronization model is an adequate
representation of the concurrency and synchronization and the design
and configuration analysis proceed as in the elementary model. This
will occur when the internal competitive effects are minimal or when
the response time is dominated by the other, serial processing in the
scenario.

When a particular resource 1is saturated (utilization >90%)
and one concurrent chain requests service from that resource many
more times than the other chains, the original estimate of the
elapsed time of a chain is not adequate. In this situation, an
evaluation of alternate designs or host system configuration upgrades
should be pursued rather than a more accurate synchronization model.
The competition for the resource is increased by the concurrency,
which degrades the response time. It may be that serial processing
would result in better overall response time. Nevertheless, a
procedure is described next for iteratively adjusting the WQ service

time to achieve a more accurate synchronization model.
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The primary chain usually requests service from the saturated
resource more than the others. This is because, by definition, the
primary chain has the longest elapsed time, and queueing for
bottleneck devices usually dominates the response time. Note that it
may be determined at this point that an incorrect selection of the
primary chain was made initially; if so, appropriate modifications
are made before proceeding.

Recall that the elapsed time of the primary chain is greater
than that of the secondary. A new WQ service time is computed from
the previous model results using the elapsed time algorithm. The
result is a higher WQ service time which, when used to re-solve the
model, reduces the competitive effects and results in a lower
response time for the primary chain. The response times for the
concurrent chains are more nearly equal in the revised solution.

This adjustment is repeated until the resulting response times are
within an acceptable bound.

If the WQ service time is inadvertently reduced too much, the
resulting model solution will result in a response time for the
primary chain that is lower than that of the secondary chain. At
that point an upper and lower bound for the actual response time are
known. It is likely that the range of response times is small enough
that one of the previous solutions is within an acceptable bound of
the response times. In fact, the first synchronization model

solution is usually adequate.
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4.2 Mutual Exclusion and Blocking

There are two primary effects of blocking on the performance
of software:
1. The response time is increased by the amount of time that a
job must wait before acquiring exclusive access to an object
2. The processing time (and resource utilization) is reduced

due to decreased competitive effects while jobs are waiting.

The interaction of the two and the resulting performance metrics are
quantified by a queueing network model. It is best explained with an
example.

Suppose that the blocking is due to a specific part of a data
base index structure. Jobs process normally until exclusive access
to this data object is required. At that time, if the object is free
(not held by another job), the job obtains a lock and continues
processing. If another job has the data object locked, the job
desiring the lock must wait until it has been freed. The data object
is freed by the job holding the lock when it no longer needs
exclusive access.

The software execution graph in Figure 4.4 illustrates this
type of processing. The elementary queueing network model is
augmented in Figure 4.5 to represent this added complication. A
node, WQ, is added to the model to represent a wait queue. When the
lock is desired by a job, it proceeds either to the CPU (if no other
job holds the lock) or to the wait queue (if the object is already
locked).

Dependent job typing is used to reflect locked and unlocked
stages. Each stage in the processing is considered a distinct job
type as shown in Figure 4.4. The CPU service rate for each job type
is once again derived from the graphs in a straightforward manner.
The branching probabilities are more complicated. They must reflect

the probability that the job changes type as well as the probability
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that it branches to a particular node.

A job enters the CPU from the TERM node as a type 1 job (with
probability 1). A type 1 job branches from the CPU to the DISK as a
type 1 job (probability 1) since it does not access the potentially
locked data object in this stage of processing. A type 1 job
completes processing and changes to a type 2 job after two I/07s. If
no other type 2 jobs are in the system, it can branch back to the
CPU, otherwise it must branch to the wait queue and stay there until
the other type 2 job has changed to type 3.

The mean service time of the wait queue is the mean residual
life of a type 2 job. It is derived from the elapsed processing time
of a type 2 job, which depends on the number of other type 1,2, and 3
jobs in the system. An iterative solution technique is used to
derive the elapsed time. It is described in detail later. - It is
assumed in this example that the distribution of the elapsed time is
exponential so that the mean residual life of a type 2 job is eqﬁal
to the mean elapsed time. Other distributions that have a computable
mean residual life can also be easily handled [DRA67].

The probability that a type 1 job branches back to the CPU as
a type 2 job (obtains the lock) is the probability that all other
jobs in the SYSTEM are either type 1 or type 3 jobs. The formula for
computing this probability is:

ET(1) + ET(3)
P =
(1-DISK,2-CPU)

ET(TOT)N"1

where: ET(i) is the elapsed time for job type i
ET(TOT) is the total elapsed time:
ET(1) + ET(2) + ET(3)
N is the total number of jobs

in the SYSTEM (CPU and DISK nodes).
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The probability that a type 1 job changes to a type 2 job and
branches to the wait queue is:

P = 1 -7P
(1-DISK,2-WQ) (1-DISK,2-CPU)

The other model parameters are easily derived from the
specifications and are shown in Table 4.2.

Since the above branching probability and the elapsed
processing time depend on the state of the SYSTEM and thus are not
known a priori, an iterative solution approach is used. First, the
probability that a new type 2 job branches to the wait queue is set
to O and the model is solved, This solution reflects the maximum
concurrency in the SYSTEM and thus will give an upper bound for the
elapsed processing time (excluding the WQ time). An upper bound is
obtained for N, the number of jobs in the SYSTEM.

Next, the probability that a new type 2 job branches to the
wait queue is set to l. The mean service time of the wait queue is
the mean elapsed time of a type 2 job running in isolation (the lower
bound). The solution to this model gives a lower bound for the
elapsed time for each job type (excluding WQ time) since the
concurrency in the SYSTEM is minimized. It also gives a lower bound
for N.

These two steps yield bounds for the model parameters that
depend on the system state. The appropriate selection of parameter
values depends on the impact of the blocking on the system. If the
arrival rate of blocking jobs is high and/or the duration of the lock
is long, the utilization of the wait queue will be high and there
will be a type 2 job in the SYSTEM node most of the time. The
solution to the model without the wait queue will have the mean queue
length of type 2 jobs in the SYSTEM greater than one. The goal of
the following model parameter selection is to gradually reduce this

queue length until it is 1.
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Initially, the probability P (in Table 4.2) 1s computed using
the average of the probabilities derived from the upper bound and
lower bounds for elapsed times from the two previous solutions.
Similarly, the average of the number of jobs in the system is used.
The lower bound is used for the wait queue service time and the model
is solved. 1If the mean queue length of type 2 jobs in the SYSTEM is
still high, the service time of the wait queue is increased and the
new model is solved, until the appropriate queue length is obtained.

Minor contention due to blocking is indicated by almost equal
values for the upper and lower bounds for N and one or fewer type 2
jobs in the SYSTEM. In this case, the lower bounds for ET and N are
used to compute the branching probabilities and for the wait queue
service times. The model is solved iteratively with the wait queue
service time gradually increased, using the results of the previous
model solutions, until the mean queue length of type 2 jobs is less
than one and the service rate obtained for the wait queue stabilizes.

The preceding model can be used when several execution graphs
are to be evaluated. Distinct job types are used for each possible
lock that can be held.

The models can be extended to include resource sharing
combined with resource locking. This occurs when:

1. Only one job is allowed exclusive access to a particular
resource.

2. Any number of jobs may share the resource on a non-exclusive
basis.

3. Jobs desiring exclusive access to a resource must wait until
no other job has the lock and no other job is sharing the
resource.

4, Jobs desiring shared access must wait until no locks are
held.
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This case can be i1llustrated by two execution graphs: the
locking graph previously described and the sharing graph in Figure
4.6,

JOB TYPE
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FIGURE 4,6. GRAPH B WITH SHARING

The queueing network model remains the same as in Figure 4.5 with
most model parameters the same. The mean service time of the wait
queue for type 3 (sharing) jobs will be the mean residual life of
type 2 (locking) jobs. For type 2 jobs it is a weighted average of
the mean residual life of type 2 and 5 jobs.

The branching probabilities will be slightly different. A
type 4 job will change to a type 5 job and branch to the CPU (begin
sharing the resource) if all other jobs in the system are not type 2.
This is the probability previously calculated for type 1 jobs
changing to type 2 and branching to the CPU. 1If one (or more) of the
jobs are type 2 jobs, a type 4 job will change to type 5 and branch

to the wait queue. This probability was also previously calculated.
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The probability that a type 1 job will change to a type 2 job and
branch to the CPU will change in this model. It becomes the
probability that there are no type 2 jobs in the system and there are

no type 5 jobs in the system. That is,

ET(1) + ET(3) ET(4) + ET(6)
P =
(1-DISK,2-CPU)

ET (ToTA) VA~ ET(TOTB) B

A similar iterative technique is used to solve this model.
Note that external competitive effects can be included in both of
these models by adding job types to reflect the competing work.

The preceding model was used to amalyze the ensuing software
system to verify that it accurately represents blocking. The host
computer system is an IBM 3032 running MVS. The workload consists of
a transaction processing system (INTERCOMM), time-sharing jobs (SPF
and TSO), and batch jobs. The software 1s a subset of an accounts
payable system consisting of four types of transactions that require
exclusive use of multiple index records within a file.

The transactions were analyzed to derive the execution graphs
shown in Figure 4.7 One particular index record was isolated as the
primary area of contention. It was chosen because of the lohg
duration of the lock in LA and LB and the volume of transactions
desiring access to the data object. Other secondary areas of
contention are present but should not cause significant degradation
in response time. Note that LD and LF require exclusive access to
the index record, but once it is obtained it is held for an
insignificant amount of time. Therefore, these transactions can be
locked out by LA and LB but, since they are unlikely to lock out
other jobs, they are always type 1 jobs. In this system index
records can be shared (read) at any time regardless of their lock

status.
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A model similar to that in Figure 4.5 is used. It is shown
in Figure 4.8. The transaction processing system runs at the highest
priority so the external competitive effects of the other
(timesharing and batch) work are minimal and are not considered. The
L transactions have the highest priority in the tranmsaction
processing system. This means that when several transactions are
ready for processing, an L transaction will be selected. But there
is no preemption. Therefore, an L transaction will wait on at most
one of the other Intercomm transactions: the competitive
transactions. This is represented by always having one competitive
transaction in the SYSTEM.

L transactions are single-threaded. That is, there can only
be one active job for each particular type of transaction in the
SYSTEM at a time. Other jobs of the same type must wait at the S$SQ.
Once a job begins processing it is first loaded (at DLOAD). After
the load, the L transactions cycle through the CPU, DISK, and WQ
until completion. Competitive transactions use different disks,
DISKC. The utilization of the channels is low, so they are not
included in the model.

The results of each iteration of the model solution are shown
in Table 4.3. The model is first solved with the probability that a
job branches to the WQ set to 0. This reflects the maximum
concurrency in the SYSTEM and gives an upper bound for the WQ service
time. It also gives the minimum total response time for a
transaction.

The model is then solved with the probability that a new type
2 job branches to the WQ set to 1. This gives a lower bound for the
WQ service time and the maximum total response time.

In this case there is minor contention for exclusive access.
The lower bound is chosen for the wait queue service time and the

number of jobs in the system. The branching probability is derived
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from the number of transactions of each type in the system and from
(one minus) the ratioc of the elapsed time of type 2 jobs to the
elapsed time of the transaction.

The model is then solved using these derived parameters. The
elapsed time of type 2 jobs is calculated and found to be equal to
the upper bound. The calculated branching probability is equal to
the model parameter used and thus has stabilized.

The model is solved again using the revised wait queue
service time (the upper bound). The solution yields an elapsed time
for type 2 jobs equal to the service time for the WQ. Therefore the
model solution has stabilized and no further iterations are
necessary. The resulting response times aré very close to the
measured response times of the system, which indicates that the model
is representative of the actual system. Thus, the queueing network
model of blocking can be used to obtain suitable values for response
time and other performance indicators.

Further research in this area may lead to a refined iterative
solution technique to include heuristics to hasten convergence. It
may be possible to reformulate the model to use state dependent
branching [TOW75] to the wait queue and CPU. However, further
research is needed to expand the scope of models of this type that
satisfy local balance. 1In this blocking model a job always enters
the SYSTEM when it leaves the walt queue. In Towsley”s local balance
model, the queue dependent probability of branching to the SYSTEM

would also apply to jobs leaving the wait queue.
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4,3 Summary

Queueing network models have been described that successfully
represent concurrency, synchronization, mutual exclusion, and
blocking in software systems. Previously, simulation or hybrid
models have been required to analyze the effects of these design
decisions on the resulting performance. Approximation techniques are
used to obtain performance metrics interactively. These techniques
were developed using an example-driven approach. They have produced
satisfactory approximations for the representative examples studied.
They are applicable to many, typical software designs; however, there
may be some unusual types of designs that do not yield to this type
of iterative analysis. |

The successful use of queueing network models allows quick
and easy solutionms which are necessary for interactive performance
prediction tools. The parameters for the models can easily be
derived from the performance specifications. It is possible to
automate the procedure to obtain the model parameters from the
software execution graphs. The implementation of a comprehensive
performance prediction tool that includes the model parameter

derivation is discussed next.



CHAPTER 5
IMPLEMENTATION OF THE METHODOLOGY

5.0 Overview

The three previous chapters define the essential data and
solution techniques for a performance analyst to predict and evaluate
performance characteristics of most general software systems. The
requirement stated in the introductory chapter was, however, that the
methodology "...be used to quickly and easily predict performance..."
and that it be suitable for use by software designers as well as
performance analysts. These requirements necessitate an automated
tool that encompasses the analysis techniques. This chapter contains
functional specifications for such a comprehensive tool. The
essential features required for the performance analyses are defined.
Additional desirable features are also included.

A Design Evaluation Prototype Tool, ADEPT, was developed to
demonstrate the feasibility of building and using an automated
performance prediction and evaluation tool. A detailed description
of ADEPT is provided which includes:

1. The performance data base design
2. The program specifications
3. The performance reports

4, Sample results

ADEPT was developed to aid in the analysis of the performance of a
large data base management system, IPIP, through several design

iterations [BOE80]. Examples of its use are shown in this chapter.
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Some results of the analysis are in the Appendix.

5.1 Functional Specifications

The tool is to be used primarily for the interactive
evaluation of the software and its environment. Therefore, the
implementation must be efficient to assure satisfactory respounse
times. It must also be flexible so that new solution techniques can
be incorporated as additional performance prediction problems are
encountered. It consists of three main components:

1. A data management system
2. A queueing network model solver

3. An interface to the user and the above components.

The data management system must provide easy and efficient
data entry, retrieval, and modification of the performance data. It
must be easy to represent hierarchical structures and the incremental
resolution of processing details.

For example, the first (top—down) design definition includes
each major component of the software and an estimate for the
performance specifications. The next design definition includes more
processing details for the major components. The revised performance
specifications may involve data dependency. It must be easy to
include processing details as they are available and to change
performance specifications of components. Data dependency must be
supported by providing the capability to specify (and store) either
constant values or variables.

Easy and efficient data modifications are essential.
Extensive modifications may be required throughout implementation to

reflect design alterations. There is often a rippling effect when a
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design modification is made to a component that is called by many
other components. The evaluation of conditional performance goals
often involves changing the value assigned to many variables. This
and the evaluation of alternative design strategies requires
retention 6f data for several versions of the software. Each must be
easily identified for later comparison of alternatives. Finally, the
data derived from performance measurements must be easily added to
the data base.

A data management system interface must have an on-~line query
language as well as an interface to standard programming languages.
The tool can then easily support general performance queries and
smooth communication between performance tool components.

The queueing network model solver must provide standard
performance metrics for a wide range of general models. It must
handle multiple job types, dependent job typing, and hierarchical
collapsing. It must support interactive interrogation of model
results. The evaluation of both configuration and workload changes
must be easy. It needs the memory model extension to calculate the
probability of occurrences of various job mixes. The iterative
solution capability is necessary and should be as automatic as
possible. It should be easily parameteriged and incorporate default
model parameters where feasible.

The interface component is an important part of the tool
since it is visible to the analysts and thus determines the usability
and acceptability of the entire tool. The interactions must be
smooth and require little effort from the analyst. It is essential
that it be friendly and tolerant of errors. Error corrections should
be as automatic as possible. For example, specified device service
rates should be checked against typical acceptable ranges. When an
out-of-range condition is detected, the specifications should be
checked for obvious mistakes, and revised specifications suggested to

the user.
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Flexibility in the input of performance specifications is
desirable. The analyst should be able to provide information in a
natural format. The interface component should be able to trauslate
it into an appropriate format for storage in the data base. For
example, CPU time specifications can be in milliseconds, seconds, or
even lines of code.

Reasonable default values for performance specifications are
beneficial. Graphical input (and output) of the software structure
is highly desirable. The evaluation of design alternatives must be
easy. The results of each solution must be identified as to the
version of the design and the implementation status of the
components. Reports on the actual resource requirements and
performance versus the specifications and estimates should be
prepared for the analyst automatically.

Bottlenecks should be detected and the appropriate
performance reports produced automatically. Automatic design and
configuration optimizations should be detected and the performance
comparisons produced where feasible.

A tool that incorporates all of these features has a high
probability of acceptance and use in data processing installationms.
A prototype system is presented next that demonstrates the

feasibility of developing such a tool.

5.2 Prototype Tool

A modular approach is used in the development of the
comprehensive tool. ADEPT is the first version of the tool. It is
specifically designed to enable the evaluation of a test case: a
large data base management software system, IPIP. Most of the

essential functions of the comprehensive tool are provided as well as
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a straight forward means of gradually (modularly) expanding it to
incorporate the other desirable functions.

In order to concentrate design and implementation efforts on
the newly proposed functions, ADEPT uses commercially available
software for the data management and queueing network model solver
components. It is argued that if a successful prototype is produced
with these components, a fully integrated, special-purpose tool is
certainly feasible and will be more suited to the specific task.

ADEPT uses SYSTEM 2000 for the data management component and
the Computer Analysis and Design System, CADS, for the queueing
network model solver [MRI73,IRA75]. The functionality of these
components is important: they must satisfy enough of the functional
requirements previously defined to successfully evaluate software
systems. This functionality is demonstrated in the examples
presented here and in the Appendix; therefore, a detailed discussion
of these software products is not included.

An integral part of ADEPT is the performance data base
design. It is illustrated in Figure 5.1. The test case, IPIP,
consists of a number of standard data base functions such as FIND,
RETRIEVE, ADD, and MODIFY that are called many times in user
scenarios. There is a data base of these fundamental operatioms,
FUN. FEach one has minimum resource requirements (overhead) that are
consumed when it is called. This overhead is contained in the MIN
schema. Some of them also have variable resource requirements. The
PARMWT schema contains the data dependent parameters and the resource
requirements associated with each occurrence of the parameters.

There may be multiple parameters for each fundamental operation.
Design versions are supported by allowing multiple occurrences of the
MIN schema and attaching an identifier to distinguish them. Each MIN
occurrence has its own (optional) PARMWT schemas.

The descriptor data base, SDESC, contains information about
each user scenario. There is a schema for each software component of

the scenario, SCREC. Each component has assoclated descriptive
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information, INFO, and linkage with other components, LINK. A
performance specification schema, PSPEC, contains the resource
requirements of the component. There may be multiple versions of the
PSPEC schema.

Software components can represent calls to fundamental
operations. The resource requirements of the fundamental operatiouns
are then retrieved from the FUN data base. This precludes redundant
performance specifications for operations called many times. The
parameter value schema, PVAL, is used to assign values to the data
dependent parameters of the fundamental operations. There may be
multiple versions of the parameter values. This structure controls
the "rippling effect"”: <changes in the resource requirements of
fundamental operations are isolated and a re-evaluation of software
scenarios automatically includes the revised resource requirements.

Since the IPIP system evaluation concerns both the design of
the fundamental operations and the user scenarios, the software
components of each fundamental operation are defined in the
descriptor data base. Design modifications are easily evaluated in
this framework. Revised resource requirements are automatically
derived by the analysis program and used to update the FUN data base.
The dependent specification, DEPSP, is used to define the data
dependent parameters for the fundamental operatioms. With this
strategy, the fundamental operations can easily call other
fundamental operations. There is no limit to the nesting of
fundamental operations. This framework supports the incremental
resolution of processing details and also controls the rippling
effect of design changes.

The ADEPT data base design is specifically tailored to the
IPIP system evaluation, but it is generally applicable to most
software systems. Fundamental operations can represent a standard
operating system function, such as a data translation routine, for
which actual resource requirements can be obtained. They can also be

functions developed along with the new software such as table
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maintenance routines.

The SYSTEM 2000 Immediate Access Feature is used for general
queries against and modifications to the performance data base.
There are two interface programs: the first, FUNA, computes the
_resource requirements of the fundamental operations from the DESCR
data base and updates the FUN data base. The second, GENREP,
analyzes the software scenarios in SDESC and produces the queueing
network model parameters, a workload characterization report and the
frequency of the average elapsed time of the components. The

specifications for these programs follow.
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FUNA Design Specifications

Analysis of Fundamental Operations

Purpose:
To derive the resource requirements for the basic system (IPIP)
functions.

General Description

The analysis begins with the independent functions (those that do not
call other functions). Dependent functions are analyzed as the
dependencies are resolved. The minimum resource requirements are
computed and placed in the MIN schema. The dependent parameters and
parameter weights are calculated and put in the PARMWT schema.

Input

Functions to be analyzed in order of evaluation.

FUN Data Base, schemas:
1. FUNOP Fundamental operations
2. MIN Resource requirements

3. PARMWT Dependent parameter weights

SDESC Data Base, schemas:
1. SDESC Scenario Description
2. SCREC Software Components
3. PSPEC Performance Specifications
4, PVAL Parameter Values

5. DEPSP Dependent Parameter Specifications

Update

FUN Data Base, schemas:
1. MIN
2. PARMWT



