CELL: A DISTRIBUTED COMPUTING
MODULARIZATION CONCEPT

Abraham Silberschatz
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-155 May, 1983

CELL: A DISTRIBUTED COMPUTING MODULARIZATION CONCEPT!

Abraham Silberschatz
Department of Computer Sciences
The University of Texas
Austin, Texas 78712
512-471-4353

Abstract
This paper presents a new language construct for distributed computing. This
construct, called cell, allows one to simulate a variety of language constructs. Its
salient features provide the programmer with:

a) an effective communication and synchronization scheme,

b) a mechanism to control the order in which various activities within a cell
should be executed.

We demonstrate the usefulness of our concepts by providing solutions to a variety of

programining exercises.

Index Terms -- communication, distributed systems, programming languages,

scheduling, synchronization.

1‘This research was supported in part by the National Science Foundations under Grant MCS
8104017, and in part by the Office of Naval Research under Contract N§0014-80-K-0887

1. Introduction

Recent advances in technology have made the construction of general purpose
systems out of many small independent micro-processors feasible. One of the issues
concerning distributed systems is the question of appropriate language constructs.
When the functions of a system are distributed over many independent micro-
processors, many of the well established ideas in system design, language
specification, synchronization and communication do not directly apply to such
systems. As a result several new language concepts have been recently proposed to
overcome these difficulties. A partial list includes Ada [1], Communicating
Sequential Processes [2], Distributed Processes [3], E-Clu [4], Gypsy [5], *MOD [6],
PLITS [7], and Synchronizing Resources [8].

The cell concept presented in this paper is yet another entry to this list. It
was developed because of the shortcomings of the various language constructs
mentioned above. The cell construct provides a programmer with an effective and
efficient synchronization scheme. It also provides the programmer with a
mechanism to control the order in which various activities within a cell should be

executed. This is of the utmost importance when one writes distributed programs.

No claim is made that the cell concept does not overlap ideas with other
similar previously developed concepts. While presenting our results we do however
argue, that it possesses most of the good features of the other similar concepts, few
of the bad features, and some advantages of its own. Illustrative examples to

demonstrate the versatility of the cell concept will also be presented.

The remainder of the paper is organized as follows. Section 2 presents the
basic structure of the cell construct. In Section 3 we describe two new language
features that allow one to efficiently and effectively implement a variety of
synchronization schemes. Finally, Section 4 presents the overall structure of our
scheme, illustrating how a distributed program can be constructed out of a number

of individual cells.

2. The Cell Construct

A distributed program consists of a finite number of modules, called cells, that
are executed concurrently. In this section we present the basic structure of the cell
construct. Since we are not interested in presenting a complete language we
illustrate our concepts using a Pascal-like notation [9]. Thus a distributed program

may be viewed as a program written in a Pascal based language augmented by the

cell construct. The cell module has the following form?:

<identifier>: cell [<permanent parameters>]
[<declaration>]
begin <statement> end.

A cell can only access its own variables; that is, the permanent parameters, and
those variables defined in the declaration part. The permanent parameters are
passed during the initialization and termination phase of a cell. We shall return to

the question of how permanent parameters are handled in our scheme in Section 4.

Cells communicate and synchronize with each other via a variant of the accept

and select statements of Ada [1]. The accept statement has the following form:

accept <entry-name> [<formal parameter list>]
[do <statements> end;]

The <statements> of an accept statement can be executed only if another task
invokes the entry-name. Invoking an entry-name is syntactically the same as a
procedure call. At this point, parameters are also passed. After the end statement
has been reached, parameters may be passed back, and both tasks are free to
continue. Either the calling task or the called task may be suspended until the other
task is ready with its corresponding communication. Thus the facility serves both as

a communication mechanism and a synchronization tool.

In order to make communication between the calling and called cells
symmetric with respect to naming, a mechanism is provided to allow the cell to
selectively choose among those cells with whom communication is to take place.
This is done by extending the syntax of the accept statement to include an optional

clause,

from <cell>

where <cell> is either a name of a cell, or a variable of type identity -- an
enumeration type which consists of all possible cell names. The from clause may
appear after the formal parameter list of an accept statement. In order for our
scheme to work, a mechanism must exist to allow the programmer to dynamically
determine the identity of various cells. For this purpose we postulate a language
defined function, caller, which can be used only in an accept statement, and which

returns the name of the calling cell.

2Square brackets ®[|* denote an optional part, while braces ®{ }* denote a repetition of zero or
more times.

Since cells are completely disjoint in logical address space, parameters may be
passed either by value (in parameters), or by result (out parameters). Call by
reference is disallowed since we do not assume a shared memory architecture. For
the same reason pointer-type variables may not be passed as actual parameters.
Note that our in/out parameters are semantically different from those of Ada since

we specify precisely how they are to be passed (implemented).

Choices among several entry calls is accomplished by the select statement,
which is based on Dijkstra’s guarded command concept [10]. The select statement

has the form:

select
when <boolean-expression> =>]
<accept-statement>
[<statements>]
{or [when <boolean-expressions> =>]
<accept-statement>}
[<statements>]
[else <statements>]
end select;

Execution of a select statement proceeds as follows:

1. All the boolean-expressions appearing in the select statement are
evaluated. Each accept statement whose corresponding boolean
expression is evaluated to be true is tagged as ready. An accept
statement that is not preceded by a when clause is always tagged as
ready.

2. A ready accept statement may be selected for execution only if another
cell has invoked an entry corresponding to that accept statement. If
several ready statements may be selected, an arbitrary one will be
chosen for execution. If none can be selected and there is an else part,
the else part is executed. If there is no else part, then the cell waits until
a ready statement can be selected.

3. If no accept statement is ready, and there is an else part, the else part is
executed. Otherwise an exception condition is raised.

The accept statement provides a task with a mechanism to wait for a
predetermined event in another task. On the other hand, the select statement
provides a task with a mechanism to wait for a set of events whose order cannot be

predicted in advance.

These concepts can be best illustrated by sketching out a simple Printer cell,
whose function is to control a single physical printing device. A user who wishes to
output a sequence of lines to the printer simply sends these lines to the Printer cell,
terminating this sequence with the character string "EOL®. Obviously lines from

several different users should not be mixed.

Printer: cell,
var Buffer: Line;
Current: identity;

begin
repeat
accept Put_line (L: Line) do
Buffer: = L;
Current: = caller;
PRINT (Buffer),
end
while (Buffer<> *EOL’) do
begin
accept Put_line (L: Line) from Current do
Buffer: = L;
end;
PRINT (Buffer);
end;
until false;

PRINT is an unspecified program segment corresponding to the actual printing of 3

line.

3. Scheduling

A major area of application where the cell construct can be utilized is resource
scheduling. In such a scheme a scheduler cell must be provided whose function is to
coordinate orderly access to a resource. Such a scheduler accepts calls from
customer cells and processes them in some fashion. Although it is possible to
implement such a scheme using the basic cell construct, it cannot be accomplished in
a straightforward, concise and efficient manner. In this section we propose two new
language constructs that can be effectively used in implementing a variety of

resource scheduling schemes.

3.1. The Await Statement

In order to implement resource scheduling schemes, a mechanism must be
available to delay a customer process before an access permission can be granted.
The vast majority of standard resource scheduling examples in the literature can be
cleanly implemented by delaying a customer cell just once in a static priority-
ordered queue. Moreover, some code may have to be executed before the scheduler
knows which queue and what priority is appropriate. In order to effectively deal
with this issue, we propose a new queuing mechanism, that allows cells to delay calls
after they have been accepted. This mechanism is a variant of Kessels conditional

wait construct [11]. Central to this mechanism is the command:

await (<boolean-expression>)

The await statement can appear only in an entry operation associated with a select

statement.

With each await statement a list (called an await-list) is associated consisting

of entries (activation records) each of which contains:
a. the local variables of the accept statement, where the await is defined.
b. information concerning the calling cell.
c¢. address of the statement following the await statement.

An activation record is used to save a partial state of a computation so that this

state can be restored at a later point in time.

When a cell encounters an await statement it evaluates the boolean-expression
associated with this statement. If true, the cell continues with its execution. If

false, the cell obeys the following:

1. it creates a new activation record, initializes it, and adds it to the
appropriate await-list.

ii. it proceeds with its execution at the first statement following the select
statement in which the await is defined.

Thus an await statement provides the programmer with a mechanism to switch

between various distinct computations.

With this new mechanism we have to redefine the manner in which the
execution of a select statement proceeds. As before, all the boolean expressions
within the select statements are first evaluated. This time however, the boolean
expressions of the await statements defined within the select statement, are also
included. Each statement and activation record whose associated boolean expression
is evaluated to be true is tagged as open. If no statement or record is open, the
execution proceeds as before. If several statements or records are open, an arbitrary
single one is selected. If it is a statement then it is simply executed. If it is record,
then it is removed from the associated await-list and the state of the cell is restored
using the information from the removed record. Note that if a state restoration

occurs, the value of the program counter is also being affected.

In order to give the programmer a closer control over scheduling, we extend

the await statement to allow the inclusion of priority information [12]:

await (<boolean expression>) [by (<priority-expression>)|

The by clause is optional. When a cell encounters an await statement with a false
boolean-expression, then the priority-expression is evaluated to produce an integer
priority value. This priority value is also stored in the activation record added to

the await-list. When an activation record is picked during the execution of a select

statement, the activation record with the smallest priority value is removed. If no
priority value is present an arbitrary record is removed. This new feature allows the
coding of many common synchronization problems (e.g. shortest-job-next, alarm
clock, disk schedulers) with the boolean expression restricted to range only over the

cell’s own variables.

Let us illustrate these concepts by considering a simple resource scheduling
scheme. Suppose that one wishes to define a cell whose function is to allocate a

resource among a number of cells in the shortest job next order:

SJN: cell
var Free: boolean;
begin
Free:= true;
repeat
select
accept Acquire (Time: in integer) do
await (Free) by (Time);
Free:= false;
end;
or
accept Release;
Free:= true;
end;
until false;

Let us consider now a more complicated example of an interprocess
communication (IPC) scheme [13]. Suppose many cells must occasionally
communicate via message buffers, where the messages are addressed by a
rendezvous code. Since the producer-consumer dialogs are infrequent, dynamic
allocation of message buffers from a pool is therefore appropriate. A cell needing to
communicate calls the IPC allocator cell with a rendezvous code to obtain a message
buffer (Open), writes one or more messages to the buffer (Send), and releases the
buffer (Close). Another cell capable of handling messages with that rendezvous code
would call the allocator with the same rendezvous code (Open), read messages
(Receive), and then release the buffer (Close).

We assume that there are 10 message buffers to be allocated among customer

cells. For brevity we only present those program segments that illustrate our
concepts. The main data structures needed are:
Resource: array [1..10] of record
Rendezvous code: integer;
Hold_count: integer;

end
Count, Last index, Last_channel: integer;

Central to the IPC allocator is the select statement described below whose function

is to accept two types of calls with formal parameters: Channel id -- the

rendezvous code supplied by the caller, and Buffer _id -- the index corresponding to

the allocated message-buffer.

select
accept Open(Channel id: integer; Buffer_id: out integer) do
var Index: 1..10;
for Index:= 1 to 10 do with Resource[Index] do
if Rendezvous code = Channel id then
begin
Hold count:= succ(Hold count);
Buffer id:= Index; -
return;
end
await(Count < 10 or Channel id = Last_channel);
if Count < 10 then
for Index:= 1 to 10 do with Resource[Index] do
if Hold count = 0 then
begin
Rendezvous code:= Channel id;
Hold count:= 1; -
Buffer_id:= Index;
Last index:= Index;
Last channel:= Channel id;
Count:= succ(Count);

return;
end
else

begin
with Resource[Last index] do
Hold count:= succ(Hold count);
Buffer id:= Last index;

end; -

end;
or

accept Close(Buffer id: integer) do
with Resource[Buffer id] do
" Hold count:= pred(Hold_count);
if Hold count = 0 then

begin
Rendezvous code := 0;
Count:= Count-i;
end;
end;
end;

Note that a considerable amount of code needs to be executed before the await
statement is encountered. Again, we encourage the interested readers to try and
code this scheme; this time however, in either Ada or SR. We also note that in the
above example our program does not ensure that a cell waiting to open an IPC
channel will not be overtaken by a newly arriving cell. This deficiency could be
remedied by incorporating appropriate boolean expressions (using the when clause)

within the select statement. More on this subject in the next section.

The above two examples were specifically chosen to illustrate the versatility of
our construct, and to allow us to compare our proposal with some of the other

proposed languages. We contend that the shortest job next scheme could not be

coded in a straightforward and concise manner in either Ada or DP. This is because
neither one of the languages provide an effective queuing mechanism. We also
contend that the IPC scheme could not be simply coded in either ADA or SR. This
is due to the fact that in these languages a process (task) can be effectively delayed

only at its initial entry to another module.

We conclude this section by pointing out that the await statement was
specifically designed so that it can be implemented efficiently. If the boolean
expressions range only over the cell’'s own variables then the number of evaluations
needed to perform a specific task is minimal. We have introduced the by clause as
an extension to the await statement so that a larger number of synchronization
schemes could be coded with the boolean expression restricted to own variables only.
Additional saving can be obtained by resorting to various optimization techniques
(e.g. Schmid [14]). For example, in the SIN cell described above the await

statement needs to be evaluated only after a Release cell has been accepted.

3.2. Ordering Specification

At any given instant there may be a number of activities ready to execute
within a cell. These include the various statements within a select statement, as
well as older activities ready to be dequeued from await statements. Different
scheduling constructs allow different possibilities, but in all cases there can be many
ready activities. Although nondeterminacy is both desirable and inevitable, the
language designer must be careful to allow the programmer enough control to

implement his own scheduling policies.

One way to achieve such a control is to add more information in the various
boolean expressions of the select and await statements. For this purpose the count
attribute of Ada is very useful. The count attribute allows the programmer to
specify priorities among the various activities. However, when such a selection is
required, it becomes very tedious and cumbersome to state such priorities. This is
because the number of components (and count attributes) in each boolean expression
increases proportionally to the number of activities among which selection is

required.

Let us thus propose another approach for specifying priorities among the
various ready to run activities. We provide the programmer with a specification
notation to define a partial order among such possible activities. The syntax we

have chosen is:

order (L1 < L2; L3 < L4; ... ; Lm-1 < Lm)

where each Li is a label attached to either an accept statement {or its associated

when statement), or an await statement.

The order list specifies an order in which activities should be processed. For

example, consider the following statement:

order (A < B; A < C);

suppose that at some point in time the boolean expression associated with the
statements labeled A)B and C are all evaluated to be true. Since A < Band A < C
the statement labeled A will be executed first. If at some later time, the statements
labeled B and C can be executed, either one of them can be selected; the choice is up

to the implementation.

We note that the order list concept can be effectively and efficiently
implemented. The compiler needs to first verify that the partial order among the
various activities (labels) indeed holds (if not a syntax error will be recorded); this
can be checked in polynomial time. Once this has been verified the compiler simply

generates code to evaluate the various boolean expressions in the proper order.
With this new mechanism one could rewrite the SJN cell as follows:
SJIN: cell;

order (L3 < L2; L2 < L1);
var Free: boolean;

begin
Free:= true;
repeat
select
L1: accept Acquire (Time: in integer) do
L2: await (Free) by (Time);
Free.= false;
end;
or
L3: accept Release;
Free:= true;
end;
until false;
end”

This version of the SJN cell is potentially more efficient than its predecessor because
the compiler is provided with information concerning the proper order of evaluation

of the various alternatives within the select statement.

As a final example, consider the IPC scheme presented in the previous section.
As noted, the program does not ensure that the IPC channels are allocated in a
fair manner. This could be easily taken care off using our order list concept, by
giving the "close® guard priority over the await statement, and the await statement

priority over the "open" guard.

10

4. Overall Structure
Up to now we have only presented the central features of the cell construct.
We wish to shift our attention now and present the overall structure of the cell, as

well as the overall structure of a distributed program.

A programmer may define a single instance of a cell type (as has been done in
the previous section), or, a general type of which several copies may exist. The

latter can be accomplished through a definition of the form:

type <identifier> = cell[<permanent parameters>]
[<declarations>]
begin <statements> end.

The permanent-parameters are the usual in/out parameters, as defined in Section 2.
A programmer may declare an instance of a previously defined cell type using the

syntax:

var <identifier> : <cell _type>;

This declaration does not result in the allocation of space for the cell's own
variables. This function is only accomplished during the initialization phase through

the init statement which has the form:

init <identifier>|<actual-permanent-parameters>|

The init statement allocates space for the cell's own variables, passes the actual in
parameters, and starts the execution of the named cell instance. At this point in
time, execution also proceeds at the statement following the init statement. When a
cell reaches its last statement, its out permanent parameters are copied back to the
address space of the father, and it then terminates. A cell can exit a block, in which
a number of cells have been declared, only when all these declared cells have

terminated.

For convenience, we add one more feature to the language to allow a cell to
initialize another cell and to immediately wait for that cell to terminate. This can

be accomplished through the call statement which has the form:

call <identifier>|<actual-permanent-parameters>]

Thus the "caller® is delayed until the newly created cell reaches its last statement

and copies the out parameters (if any) back.

Thus, we have established here a dynamic hierarchical structure, where the
root of the hierarchy is the main program, and the rest of the hierarchy consists of

active cells.

i1

The above described facility allows one to simulate a variety of language
features. For example, a Pascal procedure that finds the largest integer in an array

of 100 elements can be simply constructed as follows:

Max: cell(A: in Int_Array type; Large: out integer);
12..100;

<
©
Lo]
[

Large:= A[1];
for I:= 2 to 100 do
if Large < A[I] then Large:= A[I];

A user can determine the largest number in an array B via,
call MAX(BL);
Note that the "caller® cell is delayed until MAX terminates.

Recursive procedures can also be simply handled via our constructs using the

scheme sketched below.

type Rec Proc = cell(...);
var R: Rec_Proc;

begin
call R(...);

end.'

A user can invoke the above "procedure® by declaring
var P : Rec_Proc;

and "calling®” P via

call P(...);

Note that our scheme works, since the declaration "var R: Rec_ Proc® (within
the Rec__proc type), does not create a new cell; this occurs only when the statement

"call R(...)" is executed.

One nice consequence of the hierarchical structure of our scheme is that in
situations where one cell requires the service of another (e.g. procedures, monitors),
the actual service may be either performed solely by the service cell, or in parallel
by several other cells defined within the service cell. The details of implementation
are hidden from the customer cell. For example, one may design a service cell, Sort,
whose function is to sort an array of 100 elements. The Sort cell may either use a
sequential algorithm (e.g., bubble sort), or, a parallel algorithm (e.g., a parallel
bucket sort [15]). A cell requiring the service of the Sort cell need not be aware

which algorithm is used.

12

To illustrate this point, consider the sort cell described below, whose function
is to sort an array of N integers in time O(N). The sort cell uses an array of N cells

to perform its function. Each of these cells is an instance of a type,

type Min = cell (M: in Min; Count: in integer;
Small: out integer),;
var T,Temp: integer;
begin
accept Put (C: integer) do Small:= C end;
while (Count > 0) do
begin
accept Put (C: integer) do Temp:= C end;
if Temp < Small then
begin
T:= Small;
Small:= Temp;
Temp:= T
end;
M.Put (Temp);
Count:= Count - 1;
end;
end.

The Sort cell can now be described.

Sort: cell (A: in out Int_array_type);
type Min= cell).
const N = 100;
var Mn: array [0..N-1] of Min;

begin
for i:= N-1 downto 0 do
begin
"‘g'i‘n‘it Mn[i] (Mn[i+1 mod NI, (N-i-1),A[i]);
end;
for i:= 0 to N-1 do
begin
Mn[0] .Put(Alil);
end;
end.

Note that when Sort terminates the array A is sorted and is copied back to the

address space of the "caller®.

Interested readers should compare our solution with the one presented in [3].
They will find our solution to be more efficient. This is due to the fact that
communication between cells can occur not only during the normal course of

execution but also at initialization/termination time.

As a final example, we present a solution to the dining philosopher problem [2].
This will allow us to illustrate how a complete distributed program can be developed
using our proposed scheme. FEach philosopher must enter a room before he is
allowed to pick up the needed forks. In order to prevent deadlocks only N-1

philosophers are allowed to be in the room at the same time.

13

type Room = cell (N: in integer);
var Count: integer;
begin
Count:= 0;
repeat
select
when (Count < N) => accept Enter;
Count:= Count + 1;
or
accept Exit;
Count:= Count - 1;
end;
until false;
end.

Each fork is picked up and put down by a philosopher sitting on either side of
it.
type Fork = cell;
begin
Tepeab
accept Pickup;
accept Putdown;

until false;
end.

Each Philosopher eats only after he has successfully entered the room and has
picked up the left and right forks (in that order). After eating, the left and right

forks are put down and the philosopher exits the room.

type Phil = cell (Left,Right: Fork; R: Room);
begin

repeat
THINK;
R.Enter;
Left.Pickup; Right.Pickup;
EAT;
Left.Putdown; Right.Putdown;
R.Exit;

until false;

Finally, the entire scheme could be put together,

Dining Phil : program;
type Room .
Fork .
Phil
const N = 5O,
var Rm: Room;
Fk: array [0..N-1] of Fork;

Ph: array [0..N-1] of Phil;
begin
init Rm;

for i:= 0 to N-1 do;
init Fk(1);

end;

for i:= 0 1o N-1 do;

init Ph{Fk(1), Fk(i+1 mod N),Rm);

|

end

14

Note that in the above example a Phil cell (e.g., Ph[|) gets to know the identity of
the left and right fork handler cells only at initialization time. Thus our permanent
parameter facility also provides the needed mechanism for establishing static access

binding. Also note that these bindings cannot be modified by the Phil cell.

5. Conclusion

We have presented a new language construct called cell, that can be used as a
building block in a high level language for distributed computing. The cell construct
was developed because of the shortcomings of the various language constructs
recently proposed in the literature. In particular, the await statement was proposed
in order to provide the programmer with an effective and efficient synchronization
scheme; the order list was introduced to allow the programmer to specify priorities
among the various ready to runm activities within a single cell; the permanent-
parameter passing facility was introduced to allow cells to communicate during
normal execution time as well as during initialization and termination. We have
shown how these constructs could be utilized in the writing of various programming
exercises. These exercises were specifically chosen to illustrate the differences
between the cell constructs and other previously proposed languages. Hopefully we
have convinced the readers that the aforementioned languages indeed have some

severe shortcomings some of which were taken care of by our proposed construct.

We have not however shown that the cell construct does not introduce new
problems, nor have we shown that it is not inferior (in some other problem domains)
to some of the constructs we have criticized. These two questions cannot be easily
answered. We have coded a variety of programming exercises using our language as
well as some other languages and have found the cell to perform as well (or better)
than the other constructs. This obviously does not establish the superiority of the
cell construct but this has convinced us that in many circumstances this is indeed

the case.

We have shown, through examples, that the cell construct allows one to
simulate a variety of language features (e.g., procedures, recursive procedures,
monitors). It can be easily shown that other language constructs (e.g., coroutines,

classes, path expressions, semaphores) can also be simulated.

The work we have presented is only a first step toward the development of a
complete distributed programming language. Further work needs to be done on

such important issues as proof rules, implementation, exception handling, etc.

15

References

[1] "Reference Manual for the Ada Programming Language,® United States
Department of Defense, July 1980.

[2] C.AR. Hoare, "Communicating Sequential Processes,* CACM, vol. 21, no. 9,
pp. 666-677, August 1978.

[3] P. Brinch Hansen, "Distributed Process: A Concurrent Programming Concept,®
CACM, vol. 21, no. 11, pp. 934-941, November 1978.

[4] B. Liskov, "Primitives for Distributed Computing," in Proc. Seventh Symp. on
OS Principles, December 1979, pp. 33-42.

[5] A.L. Ambler, et al., "Gypsy: a Language for Specification and Implementation of
Verifiable Programs,” ACM SIGPLAN Notices, vol. 12, no. 3, pp. 1-10, March
1977.

[6] RP. Cook, "*MOD - A Language for Distributed Computing,* IEEE
Transactions on Software Engineering, vol. 6, no. 6, pp. 563-571, Nov. 1980.

[7] J.A. Feldman, "High Level Programming for Distributed Computing,® CACM,
vol. 22, no. 6, pp. 353-368, June 1979,

[8] G.R. Andrews, "Synchronizing Resources,” ACM Transactions on Programming
Languages and Systems, vol. 3, no. 4, pp. 405-430, October 1981.

[9] K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag, 1976.

[10] E.W. Dijkstra, "Guarded Commands, Non-Determinacy and Formal Derivation
of Programs,” CACM, vol. 18, no. 8, pp. 453-457, August 1975.

[11] JL.W. Kessels, "An Alternative to Event Queues for Synchronization in
Monitors,” CACM, vol. 20, no. 7, pp. 500-503, July 1977.

[12] C.A.R. Hoare, "Monitors: An Operating System Structuring Concept,” CACM,
vol. 17, no. 10, pp. 549-557, October 1974.

[13] A. Silberschatz, R.B. Kieburtz, and A.J. Bernstein, "Extending Concurrent
~ Pascal to Allow Dynamic Resource Management," IEEE Transactions on
Software Engineering, vol. 3, no. 3, pp. 210-217, May 1977.

[14] H.A. Schmid, *On the Efficient Implementation of Conditional Critical Regions
and the Construction of Monitors,® Acta Informatica, vol. 6, pp. 227-279,
1976.

[15] D.S. Hirshberg, "Fast Parallel Sorting Algorithms," CACM, vol. 21, no. 8, pp.
657-661, August 1978.

