A Refinement Algorithm and Dynamic Data Structure

for Finite Element Meshes!

Randolph E. Bank?

Aandrew H. Sherman?®

-
7
3
prAl

! Work supported in part by NASA under grant NSG-1632 and

by The Office of Naval Research under grant N00014-80-C-0645.

? DpDepartment of Mathematics, University of Texas at Austin,
Austin, TX 78712. Currently on leave at Department of Computer
Sciences, Yale University, New Haven, CT 06520.

} Department of Computer Sciences, University of Texas at

Austin, Austin, TX 78712.

1. Introduction

PLTMG [5] is a prototype finite element program designed to

solve elliptic boundary wvalue problems of the form

~Y+(avVu) + b*Vu + cu = £ in QCRZ
u =g, on 891 (1.1)
= - 30
u = g, on 90-3%;
an
where § is a general region of Rz. The program is bkased on a

Galerkin procedure using CD piecewise-linear triangular finite
elements and has several interesting features. First, PLTMG
allows either user-controlled or automatic triangulation. The user
must specify a crude initial triangulation of Q. He can then either
specify how this initial triangulation should be refined by assign-
ing weights to the vertices or allow PLTMG to adaptively refine the
triangulation. The adaptive procedure interleaves triangulation
with generation and solution of the associated discrete problem.

At each triangulation step it estimates the error in all current
unrefined triangles and refines only those triangles in which the
error is large. {Our error estimation procedure draws on the ideas
of Babuska and Rheinboldt [1].)

Second, PLTMG uses a multi-level iterative method to solve the
resulting linear equations [2-5]. This is an iterative procedure
in which iterations are carried out on several triangulations of Q
of differing degrees of refinement. The abstract computational

complexity of this algorithm is of optimal order; that is, 0(nv)

operations are required to solve a problem with nv unknowns to a
level of accuracy commensurate with the discretization error.

We will not discuss here the details of either of these fea-
tures but rather refer the reader to [4, 5]. What is important to
note is that implementation of either of these features on a prac-
tical level requires one to have the ability to generate, store,
and modify several triangulations. Since the multi-level iterative
method is extremely efficient, it cannot be assumed that the cost
of solving linear systems dominates the costs of other operations
such as mesh manipulation and discretization. For this reason, it
is essential to have methods for generating, modifying and using
triangulations which are as efficient as possible.

To meet these demands, we have developed a general mesh refine-
ment procedure for triangular elements - general in the sense that
it can accomodate an essentially arbitrary refinement rule specified
through an external Fortran function. This allows us to use the
same algorithm (indeed the same code) for both user-specified and
adaptive grid generation by simply changing the function. We view
the refinement procedure as generation of a "triangle tree" in
which the nodes correspond to triangles, and branches extend down-
ward from the root "triangle" @ to the user-specified triangles, to
their refinements, etc. The leaf nodes correspond to unrefined
triangles in the finest mesh generated so far. Our data structures
correspond closely to this interpretation of the refinement process.

We have experimented with several data structures in various

versions of PLTMG over the past several years and feel that the one
we describe here is the best we have yet found. Other approaches
to the problem are described by Simpson [7].

PLTMG is designed to run as a self contained in-core program,
and the data structure we describe thus reflects our view of an
appropriate compromise between space and time. For a finest mesh
containing nv vertices, the version of PLTMG using this data struc-
ture requires about 30 nv storage locaticns: 16 nv for sparse
matrices, right hand sides, and the solution, 11 nv for the triangle-
tree data structure, and 3 nv temporary work space. As a rule the
algorithms we use for computing the necessary "standard" information
about triangles on the tree or vertices in the grid run in constant
time; that is, worse than table-look-up by at most a constant factor.
Earlier versions of PLTMG used more table lookup and storage but ran
somewhat faster (approximately 15%). At this writing, we have not
found a way to significantly reduce the current storage requirements
for the triangle-tree (short of "programming tricks" such as packing
more than one integer to a word) without sacrificing at least some
of our time-efficient algorithms.

The remainder of this paper is organized into four sections.

In Section 2, we discuss mesh refinement in general and present the
particular algorithm used in PLTMG. In Section 3 we define the

triangle-tree data structure that we have devised, and in Section 4
we describe the accompanying algorithms for generating the standard

information about triangles and vertices. Finally, in Section 5,

we describe how the refinement procedure can be extended to the
case of C° piecewise-bilinear rectangular finite elements. In
some respects, the rectangular refinement procedure is less com-
plicated, and this is reflected in some minor simplifications
which occur in the corresponding "rectangle tree" data structure.
As in the case of triangles, the algorithms for computing the
standard information run in constant time. A different refine-

ment procedure for rectangles and a correspondingly different

data structure are described by Rheinboldt and Mesztenyi [6].

2. Mesh Refinement

In the context of finite element methods, the basic idea of
any mesh refinement algorithm is to generate a set of triangles
that covers (and can be used to generate a discrete represen-
tation of the differential eguation (1.1). Ideally, the total
error in the solution to the discrete equation should meet some
user-specified tolerance (as measured in an appropriate norm) and
should be distributed equally over the triangles. This means that
there will usually be a large number of triangles (to meet the
tolerance) whose sizes vary depending in some way on the local
smoothness of the solution to the continuous differential equation
(to equi~distribute the error). It is unrealistic to expect a user
to specify by hand the vertices of what may turn out to be thous-
ands of triangles - hence the need for automatic mesh generation
algorithms.

For use in PLTMG, autcmatically generated triangulations must
satisfy two important properties:

(i) The size of each interior angle of each triangle must

be bounded away from zero.

(ii) The transition from large to small triangles in the

mesh must be "smooth". (That is, the size difference

between adjacent triangles must be bounded.)

Both of these properties are motivated by finite element theory;
they basically disallow long thin triangles. In addition, they
simplify the overall triangulation process.

A number of schemes could be used to actually carry out the
construction of a sufficiently-refined triangulation from a limited
amount of user input data (see Simpson [7] for a survey). In PLTMG
we have adopted an approach that allows for either user-controlled
refinement or adaptive refinement. This is accomplished by viewing
triangulation as a process in which one examines triangles in a
mesh and occasionally asks: "Should this triangle be refined?"

By allowing a logical-valued function to answer the question and
simply changing the actual function supplied as an argument to the
triangulation subprogram, either form of refinement can be accomo-
dated. 1In PLTMG, we refer to the logical function as DVTEST.

We now describe the mesh refinement algorithm used in PLTMG,
and for which our data structure was designed. For convenience we
assume § is a polygon, although PLTMG makes provision for triangles
on the boundary of @ to have one curved boundary edge.

Initially, the user supplies a coarse triangulation:}fO of O

consisting of a small number of triangles ti' 1 <i <nt that we

OI

call macro triangles (cf. Figure 2.la). Each triangle t, contains

1
three vertices vg, 1 <3 < 3, and three edges eg, 1 <3 <3, with
eg opposite vg (cf. Figure 2.1b). It is convenient to assign global

numbers to the wvertices and edges inzfo, denoted by Vk’ 1 <k < nvO,

< ne, respectively. Thus for 1 < i < ntO and
for some k, 1 < k < nvo, and 7 = e, for some

k 1 2

k
1 <3 <3, vi = v
e Throughout this paper, we will view local desig-
nations (e.g. vi) and global designations (e.g. vk) as interchange-
able names for a unique entity, and we will use whichever designa-
tion makes more sense in context.
To ensure that condition (i) above is met, we allow only two
types of triangle subdivision: regular and "green". In regular
subdivision (cf. Figure 2.2a) a triangle ti is divided into four

smaller triangles, denoted ts + 0 <3 < 3, by joining the mid-

L+
points of its edges. (Here si is one larger than the highest-
numbered triangle currently in the mesh.) Each of the four new
triangles (called "sons of ti") is geometrically similar to ti (its
"father"), so that regular subdivision never reduces the size of
the interior angles.
In green subdivision a triangle ti is divided into two smaller
"green triangles", denoted tsi and ts.+l (si as above), by inserting
. i

a "green edge" joining a vertex vg to the midpoint of the opposite

s

edge 83 (cf. Figure 2.2b). Green subdivision may reduce the size

of the smallest interior angle, so repeated use could violate (i).
Hence we only use it to "clean up" the grid by removing degenerate
quadrilaterals which remain after all regular subdivision has been
completed. In Figure 2.2b, if it should later become desirable to
refine ti further (in adaptive refinement), the two green triangles

are ignored and regular refinement is applied directly to ti'

Each edge of a triangle ti elther is a boundary edge (of) or
is part of the perimeter of one or more other triangles in the grid.
If ti contains a boundary edge, it is called a boundary triangle. We
J

define the neighbor of ti across edge €7, denoted Ti,* as the small-

est regular triangle with one edge which completely overlavs 62. If
ei is a boundary edge, we define Tg as a negative value depending
on the boundary conditions. Note that the neighbor relation need
not be symmetric and is time-dependent.

To ensure that condition (il) above is met and that the "clean
up" will involve only degenerate guadrilaterals, we force a regular
division of a triangle ti whenever two of its neighbors have been
divided once or one of its neighbors has been divided twice (cf.
Figure 2.3). This guarantees that triangle sizes change by at most
a factor of four between adjacent triangles (allowing for green
triangles) and that at most one vertex can exist along the interior
of any edge of an unrefined triangle.

Algorithm 2.1 is a high-level version of ocur refinement pro-
cedure.** If we view §} itself as a "pseudo-triangle" tO that is
the father of each of the triangles in /., then the structure of

the triangulation of { can be represented as a "triangle tree" in

which the root is tO’ other vertices correspond toc macro-triangles

* To simplify our notation, we sometimes let Ti stand for
the global triangle number of the neighbor of t across edge .
However, this will be clear from context. *

** Tn Algorithm 2.1, maxt is assumed to be an integer whose value
bounds the maximum number of triangles of any type that may be
created by REFINE. Although it is not explicitly indicated, DIVIDE
and GREEN terminate in an error condition if too many triangles
would be created.

or to triangles created during refinement, and edges lead down-
ward from a triangle to its sons. All internal nodes of +the tree
have exactly four sons, except that tO has nto sons, and fathers

of green triangles have two sons. Leaves of the tree correspond

to unrefined triangles. The level of a triangle ti’ denoted Ri,
is defined to be the distance from t, to ty in the tree: that is,
the length of a shortest path from ti to tO in the tree.

For any given triangle ti’ certain standard information rela-
ting to its status on the triangle tree must be obtainable during
the refinement process. This information is described below in
the form of definitions of functions whose values are the standard
information.

(i) knots:

knots (j,i) = k where vg_ = v, 1l <3 <3
(ii) neighbors:

n(j,i) = Tg, 1 <3 < 3*
{(iii) father:

£(i) = k, where tk is the father of ti in the tr=e
(iv) son:

S, if t. is normally refined|
s(i) = Ol othe;wise

* If t, is a green triangle, then n(j,i) is defined only if ed
is a boﬁndary edge. *

10

(vi) macrofather/macrofather edge:

mf (i) = k where tk is a user specified triangle and tigtk
: J o J _m ‘
nfe(3,i) = m if €7 1s a boundary edge and CiEEmf(i)
0 ctherwise

For a given vertex v we must be able to generate the standard

kl
information described below:
(vii) vertex fathers:

k if k < nv

0
vE(j, k) = mj if k > nv, and vy was obtained as the
midpoint of the edge with endpoints v »J=1,2
J
{(viii) vertex type
ibe (k) < 0 if vy is on ERY)
>0 otherwise
(ix) coordinates:
vx (k) = x—-coordinate of Vk
vy (k) = y-coordinate of Vi
If (i)-(ix) above are known, one may carry out the standard compu-

tations required of a finite element program (e.g. determine the
graph of the matrix, assemble the element stiffness matrices and
right hand sides), as well as some of the more unusual computations
in PLTMG (e.g. multi-level iteration, and procedure REFINE itself).
Details will be provided elsewhere.

In early versions of PLTMG, knots, n, £, s, &, mf, vf, and ibc
were realized as integer arrays and vx and vy as real arrays, so
that most of the standard information was simply looked up. Since

the ratio of triangles on the tree to vertices is asymptotically

11

about 8/3, this meant that about 29 2/3 nv* integer and 2 nv
real storage words were reguired in addition to the storage
necessary for matrices, right hand sides and the solution.

In our current data structure this has been reduced to about
11 nv, all integer. The penalty associated with this reduction
is that almost all the guantities must be computed as required.
Our data structure is designed to allow the standard information
to be computed in constant time (i.e., at worst, only a constant
factor more costly than table look-up). In particular, we avoid
extensive searching in the triangle tree, since a search from ti
to to would run in time proportional to 2(i).

To conclude this section we discuss the way that Algorithm 2.1
fits into the multi-level solution scheme. Applying the algorithm
to the initial triangulation causes a sequence of regular triangle
subdivisions to occur, eventually leading to a fully refined grid.
However, we can stop the process early by limiting the maximum
allowable triangle level number (through DVTEST) and, after adding
necessary green edges, obtain a partially refined triangulation
suitable for use with the multi-level scheme. To cbtain the neces-
sary sequence of such triangulations, we simply make use of an
increasing sequence of limits of the triangle level numbers. At
each step we must logically remove any green edges in thé current
triangulation before invoking REFINE, but this is accomplished

automatically because the structure of REFINE itself causes existing

* nv denotes the total number of vertices in the mesh.

green triangles to be ignored during regular refinement. The
result is an efficient procedure that generates a sequence of
triangulations of © which are nested (except for a few green
triangles) and which satisfy the other constraints requisite

to their use with the multi-level solution scheme (cf. Bank and

pupont [3]).

13

Algorithm 2.1

Rrocednrs REFINE
{%é this is first call to REFINE %Q%Q {nt+nt0; ng+maxt + 1]:

i+l;
fhide (L <o) g
[Fex 3«1 &R 3 &R
[%{ Tg is undivided Then
[%E Tg has two divided neighbors %Q%Q DIVIDE (13);
BLe B 73 > fod + 1 BRER DIVIDE (1)),
%{ DVTEST (ti) EQ%Q DIVIDE (ti);
i«i + 11;
imax+nt;
Eop i1 ke imax do
[Xf t, is undivided Then
[1f t, has a divided neighbor Then GREEN (ti)]]}i
REReginxg PIVIDE (%)
{si«nt + 1;
nt+nt + 4;

Create t_ , 0 < j < 3, along with associated vertices};

;T3
RERCednrs GREEN (t,)
{si+ng - 2;
ng«s,;j

Create t_ and t b
i

Legical Turckion DVTEST (t.)
feer);

s.+1
i

14

Vi v K
Y
s
4 v
t3 5
t4
tZ
v, Ve
(a) Global Notation {b) Ldéal Notation

Figure 2.1: Triangle Notation

s.+1 N
1 A
Ay
1 3 ; N3
{by "Green" Subdivision

(a) Regular Subdivision
(one of three possibilities

(Vertex labels refer to the superscript in v? notation.)
i

Figure 2.2: Types of Subdivision

(a) Two neighbors divided once (b) One neighbor divided twice

Figure 2.3: Situations requiring regular subdivisions of ti

ot
921

3. Definition of the Data Structure

The principal structure information describing the triangle
tree in PLTMG is contained in two integer arrays: ITRI, of dimen-
sion 3 x maxt, and IVERT, of dimension 3 x maxv.* (Asymptotically,
we expect nt ¢ 8/3 nv, and choosing maxt = 8/3 maxv yields a total
storage requirement of about 11 maxv). In this section we define
the entries of these arravs.

The columns of ITRI are partitioned into five blocks, as

illustrated in Fig. 3.1.

Figure 3.1: Partitioning of ITRI

The partitioning pointers nu, nr, ne, ng and maxt satisfy

nu > 4 (3.1a)
nr - nu = nto {3.1b)
nr = 0 mod 4 (3.1c)
ne = 0 mod 2 (3.14)
ng = 0 mod 2 (3.1e)
maxt = 1 mod 2 (3.1£)
Columns 1 - (nu-1) are not used except as convenient storage for
some constants (e.g. nu, nr, etc.). For convenience no triangles

* maxv 1s an integer variable whose value bounds the total number
of vertices in the mesh.

on the tree are given numbers 1 -~ (nu-1l). Columns nu - (nr-1) store
information about user triangles with triangle ti+QU“l correspond-
ing to the ith user triangle. Columns nr - (ne-1l) correspond to

triangles obtained by regular subdivision, generated in groups of
four during the refinement process, with column numbers in ITRI
ceorresponding to triangle number. Using Fig. 2.3a and (3.1), note
that 1 mod 4 can be used to determine the geometric relation of ti
to its father. If i mod 4 = 3 # 0 then ti shares node v%(i) with
£(i)~

Columns ng - maxt correspond to green triangles. Because of
(3.1), the value of i1 mod 2 can be used to find the relation of ti
to its father. Columns ne - (ng-1l) form the pool of space available
to store information about newly created triangles. When new regular
triangles are added, ne is increased by 4; when green triangles are
added, ng is reduced by 2. When ne > ng, no further triangles may be
created. Initially nr = ne and ng = maxt + 1.

The information stored in ITRI for a triangle ti differs
depending on whether ti is one of the user-specified macro triangles,
one of a quartet of regular triangles, or one of a pair of green
triangles. If ti is a macro triangle, then the contents of the ith

colurn of ITRI are as shown in Fig., 3.2.%

i

mf (i)

son{i}

W b

Figure 3.2

* Blank fields are unused.

17

Due to our relabeling of usexr triangles, mf{i) # i. The son field
contains the value s(i), unless ti has been refined into a pair of
green triangles, in which case it contains the number of the first
triangle in the pair. Since, in general, there need be no additional
structure to a user defined mesh, we augment ITRI with two small

integer arrays ITNODE and ITEDGE, each of dimension 3 x ntO. These

arrays satisfy ITNODE(j,i) = knots(j,i) and ITEDGE(j,i) = n(j,i),
respectively.

If ti+j' 0 <3 < 3, form a quartet of regular triangles, then
columns i -~ (i+3) of ITRI contain the information shown in Figure
3.3.

i i+l i+2 i+3
1 £(1) knots(1l,1) knots(2,1) knots (3,1i) |
2 mf (i) /% (1) knots (1,£f{(1)) knots{(2,£f{(i)) knots(3,£(1))
3 son (i) son (i+1) son(i+2) son (i+3)

Figure 3.3

In the 12 available locations, we store the six relevant global
vertex numbers, four son pointers (whose interpretation is the same
as in the case of macro triangles), a father pointer, and either the
macrofather or level. (During the refinement process, the level is
stored; during element assembly, egquation solution, and subseguent
phases of computation, the macrofather is stored.)

If ti+j' 0 <3 <1, form a pair of green triangles, then

columns i - (i+l) of ITRI contain the information shown in Figure

3.4.

fnd
0

i i+1

1 f(1i) knots (3,1)
2 knots(2,1) knots{(1,1)
3 s(f{i)) knots (3,i+1)

Figure 3.4
Five of the six entries are the four relevant global vertex numbers
{(column i+l contains the vertices of tf(i} in permuted order) and
f(i). The entry in location (3,1) requires some explanation. Be-
cause of the multi-level iterative method used in PLTMG, and the
resulting necessity of having a sequence of triangulations, it is

possible that in one triangulation, t) has two green sons (ti and

f{i

ti+l)’ while in a subsequent refinement tf(i) is refined regularly.
(The triangulations will not be nested.) In this event the son field
of

tf(i} points to ti, the first green son in the coarser triangula-
tion, and the son field of the green triangle t, points to ts(f(J))’
A 4

the first regular son of t in the finer triangulation.

£(1i)
We now describe the array IVERT. Column k of IVERT corresponds
to vertex Vi in the grid. There are four different classes of ver-
tices: user, green, regular, and boundary.* The first class contains
the user-specified vertices, while the members of the other three
classes are created by the regular refinement process. The entries

of IVERT differ depending on the nature of Vs as shown in Figure

3.5. If Vi is a user vertex, the first two entries of column k of

* User vertices on the boundary of { are classified as user
vertices.

19

user green normal boundary

1 IVF1 IVF1l IVF1l
2 13 IVF2 MFE
3 \Y/ Y v Y

Figure 3.5
IVERT are unused; the third contains ibc (k). Additionally we require
two short real arrays, VX and VY, of length NV, containing the x-
and y- coordinates of the user vertices.
When a new vertex Vi is created in the interior of i, the situ-
ation is typically one of those shown in Figure 3.6. In both cases,

the creation of Vi is required by the creation of the quartet of

regular triangles tL s

, 0 <3 < 3.
J)=

Figure 3.6a Figure 3.6b

In Figure 3.6a the creation of v, will cause the eventual refinement

k

of tm’ but in either case Vi is referred to as a green vertex. The

TVFl field is set to i+j where 1 < j < 3 and i mod 4 = 0. Note that

. . . 3 . n Fl .
v, is the midpoint of edge Ef(i) of triangle ﬁf(i}' The F field is
set to -m, and the V field is set to %, where Vi lies on edge g; of

triangle tm' If the situation is as in Figure 3.6a, the F and V

o
o

fields must be updated when tm is refined, but Vi will still be a green

vertex at that point. Eventually, if the refinement process is contin-
ued, v, may become a vertex of the center triangle in a second quartet
of regular triangles {e.g. if triangle tm in Figure 3.6b is refined
regularly). Then Vi becomes a normal vertex, and the IVF2 field is

set in the same way as the IVF1l field, but for the second quartet.
4

A vertex v, created on a boundary edge of 80 is called a bound-

k
ary vertex. The IVFl field is set as described for green vertices,

the V field contains a value indicating the type of boundary conditions

J

that apply to v and MFE is set to j where v, is on edge € of macro

k’ k
triangle tm’

The actual refinement process consists of filling in the entries
of ITRI and IVERT. When a triangle is refined regularly, all of the
information for ITRI, with the exception of the global vertex numbers
of the center triangle, is trivially known. For the center triangle,
one must either create new green or boundary vertices or change current

reen vertices into normal ones. To do this one must have the ability
to compute knots(j,i), n{(j,i) (for 1 < j < 3), £(i), s{(i), and 2 (1)

for any triangle ti currently on the tree. When a vertex is created

or changes status, all the necessary information for IVERT is on hand,
having been generated in the process of determining whether or not

the vertex existed as a green vertex.

When the regular refinement process stops, each remaining
green vertex requires the creation of two green triangles. Since the

F field of a green vertex points to the father of the green triangles,

all of the necessary information for ITRI is immediately available.

4. Algorithms for Computing the Standard Information

In this section we describe the algorithms which we use to
compute the standard information about the grid.

4.1 knots(j,i)

If ti is a macro triangle then knots(j,i) is found by table
look-up in the array ITNODE. If ti is a regular triangle then the
value k © 1 mod 4 can be used to determine the position of ti relative

to t Once this is known, the appropriate subset of global

£(1)°
vertex numbers stored in columns i~k to i-k+3 of ITRI can be deter-

mined.* If ti is a green triangle one computes the value k = i mod 2,
and the appropriate subset of global vertex numbers stored in columns

i-k to i-k+1l of ITRI can be determined.*

4.2 n(j,i) and mfe(j,i)

If s is a macro triangle, n(j,i) is found by table look-up in
the array ITEDGE. If ti is a regular triangle and i mod 4 = 0, then
n(j,i) = i+73, as is evident in Figure 2.3. If ti is a regular trian-
gle and k = 1 mod 4 # 0, then n(k,i) = i~k (i.e. the center triangle).
The other two values of n(j,i) are found by considering the two ver-

K°
vertex, then the corresponding ¥ field in IVERT points to n (]

If a vertex vim is a regular vertex, then either the IVF1l or IVFZ

tices (vg% viz) which t; shares with s If a vertex vim is a green

3-m’ i).

field in IVERT points back to one of the quartet of triangles containing

* It is easy to see that t
pair containing ti'

ik is the first triangle of the quartet or

ti; the other field points to the second quartet of triangles whose

center triangle contains the given vertex; n(j, i) can then immedi-
g

mm;
ately be determined. If a vertex vim is a boundary vertex, then

n(j3_m,i) is set to the appropriate boundary information.
If ti is a green triangle, then we need only compute n if ti
has a boundary edge. From Figure 2.3 it is clear that the only possi-

ble boundary edge of a green triangle is edge ei (green knots cannot

2 .
f(i). If c,i 15,

indeed, a boundary edge, then n(2,i) is set to the appropriate boundary

occur on the boundary), and this edge is shared with t

information.

In the course of computing n{j,i), it is determined whether

or not eg is on the boundary. With this information the computa-

tion of mfe(j,i) is trivial. If ti is a macro triangle mfe(j,i) = 7.
If ti is a regular triangle, then mfe(j,i) is found in the MFE field

of the appropriate boundary vertex. If ti is a green triangle, then
mfe(2,1) can be found by examining tf(i)’ In any event, the algorithms
for computing n and mfe are so closely related, a single routine in

PLTMG is used to compute both of them.

4.3 £(1)

If ti is a macro triangle, then f(i) = 0. If ti is a regular
triangle and k¥ £ i mod 4, then f{i) = ITRI(1,i~k).
4.4 s(i)

If tj is a macro or regular triangle without a pair of green
sons, then s(i) = ITRI(3,i). On the other hand, if ti does have green

sons, then s(i) is found in the son field for the pair of green trianglec

23

4.5 2(i)/mf(i)

The refinement procedure in Section 2 reguires (i), but not

mf(i). All of the procedures in PLTMG applied subsequent to refine-
ment do not require L(i), but several require mf(i). This is the
reason that (i) and mf (i) can share the same entry in ITRI. In this

subsection, we discuss the conversion of that entry from level data

to macro father data.

If ti is a macro triangle, then 2(i) = 1 and mf(i) = i-nu+l
(cf. Pig. 3.1). If ti is a regular triangle and k = i mod 4, then
ITRI(2,i-k) contains either mf (i) or £(i). If = is a green triangle,

then (i) = 2(£(i))+1 and mf(i) = mE(£(i)).
To convert ITRI from storage of level data to storage of macro

father data, or vice-versa, is guite simple. £&{(i) and mf (i) are both

trivially known for macro triangles. Then it is simple to compute
£(i) = 2(f(1))+1 or mf(i) = mf{£f{i)) for the center triangle of each

gquartet of regular triangles, in the order in which the gquartets were
created. (The indices of the appropriate columns of ITRI run from nr
to ne in steps of four; cf. Fig. 3.1.)
4.6 vE(j,k)

If v

k

not a user vertex then the IVF1 field of IVERT for Vi points to a

quartet of triangles, among whose vertices are Vi and the two vertex

is a user vertex then vf(j,k) =k, 1 < 3 < 2. If v, is

fathers of v By examining the value (mod 4) of this pointer, it

k*
is possible to deduce the vertex fathers. (The order of the vertex

fathers is unimportant since they are always used in pairs.)

4.7 ibc(k)

ibc (k) is always found as IVERT(3,k). The precise values
stored for ibc(k) are irrelevant here, but they are described in
the users' guide for PLTMG [5 1.

4.8 wvx(k), vy(k)

In PLTMG the only times that the x- and y- coordinates of a
given vertex are actually needed are when it is necessary to evaluate
the coefficient functions of the partial differential equation at a
particular value of (x,y) (e.g., in assembling the stiffness matrix
and right hand side). 1In such situations we take two temporary stor-
age arrays of length nv and compute vx(k) and vy(k) for each value of

k. For 1 <k < nv these values are looked up in the arrays VX and

Ol

VY. For nv, < k < nv (increasing order), we compute vE£(j,k), 1 < 3 <

Since vif(j,k)< k, and k > nv the x- and y- coordinates of the vertex

0’
fathers have previously been computed. Hence it is easy to compute
vx (k) and vy (k) since Vi is the midpoint of the edge between its ver-
tex fathers.

The time spent computing all of the x- and y- coordinates be-

fore assembling a stiffness matrix is a very small fraction of the

time spent in such a routine. By recomputing vx(k) and vy(k) whenever

they are needed, we save storage since the temporary storage used can
be shared with several other routines in which such storage is also

required.

2.

2]
621

4.9 Running Times

The algorithms for knots, n, £, s, &, mf, vf, and ibc all run
in constant time. The procedures for converting ITRI from level data
to macro father data and back run in time proportional to the number
of triangles; but they are used only as post- or pre- processing steps
to Algorithm 2.1, which itself runs in time proportional to the num-
ber of triangles {(with a much larger constant). The algorithms used
to compute vx(k) and vy (k) run in time proportional to nv, but they
are always used as pre-processing steps to procedures that run in time
proportional to nv with much larger constants. The net result is that
at the cost of only a little extra time (over that required by table
look-up techniques), it is possible to save a lot of storage, thereby

allowing the solution of larger problems in core.*

* To balance the slight increase in time noted here, we remark that
an efficient depth-first search procedure for the triangle tree can
be carried out using s(i) and f£(i).

26

5. Rectangular Elements

Most, but not all, of the ideas presented in sections 2-4
generalize immediately to the case of@érpiecewise bilinear rectan-—
gular elements. We believe that the result is somewhat cleaner and
simpler than similar data structures proposed elsewhere (e.g. [6]).

For a given rectangle ti’ we can define local labels for the sides

and vertices as indicated in Figure 5.1.

EO
0 i 1
V., v
i i
3 N
ei v a%

i i
v v
1 2 1

o

i

Figure 5.1
If 0 is composed of the union of rectangular elements, we can give
meaning to the terms "top", "bottom", "leftside" and "rightside" and
thus label all elements to be consistant with each other as well as
consistant internally. This simplifies greatly the neighbor relation

in comparison with the case of triangular elements. For example,

0 . 2, . . 0
rectangle T, will have edge ETO in common with £y
X :
When a rectangle ti is refined, its four sons ts Ay 0 <3 < 3,
i o

are labeled consistantly as shown in Figure 5.2.

0 175 i
ts t$.+l
1 1
3 213 2
0) T
s 43 s 42
1
3 213 2

Figure 5.2%

Note that t . shares vertex vj .
si+j Si+3

of a rectangle always requires the creation of at least one new vertex

with its father ti' The refinement

(the center), although the four edge midpoints may have been created by
the refinement of the neighbors of ti. We will reguire the center
vertex to have the highest global vertex number of any of the nine ver-
tices shared by the quartet of socns of ti'

There 1is no obvious analogue of green triangles in the case of
rectangles. We cannot clean up exposed green knots by just adding
edges since that would only lead to new green knots. Rather, we must
require green knots to satisfy interpclation conditions which will
guarantee the conformity of the finite element subspace. For piece-
wise bilinear elements, a green knot will not introduce a new degree
of freedom; instead we require the solution at a green knot to be the
average of the solution at its two vertex fathers, i.e.,

u(vg) = l/2(u(vf)+ u(vf))

1 2
(cf. Figure 5.3).

1
* Here we use the vertex label k as shorthand for v. in rectangle
t , 8, < p < s,+3. p
p i - - 71

28

A¥4

o]

Ve
1
Figure 5.3

. . 0 L C \ .
This insures C~ continuity of the finite element subspace. The net

result is that the problem of dealing with green knots is transferr

=

o

d
from the refinement procedure to the matrix and right hand side assem-
bly procedures.*

In analogy with Figure 2.3b, we reguire the refinement of tj

whenever any son of a neighbor of t, has been refined, as illustrated

i

in Figure 5.4.

(a) {(b)

Figure 5.4
This rule insures that if Vi is a green knot, then neither of its

two vertex fathers i1s also green. This effectively limits the search
which is required to determine the {at most five) nonzero bkasis

functions in a given element. {They will be associated with the four

vertices or their vertex fathers.) Since the center vertex and the

* This approach could also have been taken for green knots in the case
of triangular elements. However, in that case, the creation of green
triangles is more satisfactory since it maintains the number of degrees
of freedom without any increase in the number of knots.

[\
it

vertex a given rectangle shares with its father cannot be green, a
given rectangle can have at most two green vertices, at opposing
corners.

The analogue of procedure refine could now be formulated
without the analogue of the refinement rule depicted in Figure 2.3a.
However, it is advantageous to refine ti whenever at least three of

its neighbors have been refined (cf. Figure 5.5).

Pigure 5.5
If three neighbors have been refined, adding only two new knotsadds
four degrees of freedom; if all four neighbors have been refined
adding one new knot adds five degrees of freedom.

The analogue of Algorithm 2.1 can now be formulated as in
Section 2. The resulting algorithm is actually somewhat simpler
than Algorithm 2.1 since the sections dealing with green triangles
will be deleted. (We do not present the algorithm here.)

In terms of data structures, we will require a 4 x maxt
integer array IRCT, and a 2 x maxv array IKNOT.* IRCT will be parti-

tioned in a similar fashion to ITRI, as shown in Ficure 5.6.

* maxt and maxv have the same role here as for the arrays ITRI and
IVERT.

30

1 nu nr ne maxt
¥ ¥ ¥ ¥

e

Figure 5.6: Partitioning of IRCT

As before, we require certain properties of the partitioning para-

meters:
nu > 4 (5.1a)
nr - nu = nt@ (5.1b}
nr = 0 mod 4 (5.1¢)
ne = 0 mod 4 (5.1d)
maxt = 3 mod 4 {5.1e)

For a user-specified macro rectangle, with internal rectangle number
i, nu < i < nr-1, we would store s{i) and mf({i) in two of the four
locations of column i of IRCT (cf. Figure 5.7). Once again, mf (1) #1,

in general.

[S

fla
[63]
o
[N
R

knots (j,i) and n{j,i), 0 < j < 3, nu < i < nr-1.
For a quartet of four rectangles obtaines

the 16 available locations in IRCT will con

]
s
0
l,.-..‘
ot
jox
1)
i
i,.J -
)
D
i1
ot
O
oy
¢}
% anik

vertex numbers, f(i), mf(i), 2(i) and s(i+j), 0 < 3j < 3, as depicted
in Figure 5.8. The mf and 9 fields need not be shared as in the case

of triangles.

fO eq Il
—
£y tiv1
v Ve Ve
3 : 1
ti43 Ci42
v v v
f3 e, fz
i i+l i+2 i+3
1 £(1) f e £
O O 1 i
2 i e
2 (1) e, o 1
i £
3 mf (i) f3 e, £,
4 s (i) s{i+1) s{i+2) s (1i+3)
Figure 5.8
As in the case of triangles, i mod 4 = 0.
Tn the IKNOT array there are five classes of vertices - user,

green, normal, boundary, and center. The fields for the various

types of vertices are illustrated in Figure 5.9.

user green normal boundary center
: | |
1 0 ~IVFl IVF1 IVF1 . 1vFl i
2 ibe (1) F TVE2 ibe(i) | 0
| |
! L

Figure 5.9

[0
)

All the fields for green, regular, and boundary vertices are filled
in just as for the array IVERT for triangular meshes. A boundary
vertex can be distinguished because ibc{i} < 0§ for boundary Vertices,
while IVF2 and F are larger than four by (5.1). If Vi is a center
vertex its IVF1l field points to ti, the upper left rectancgle of the
quartet, so that IVFl = 0 mod 4 for a center knot. To distinguilsh

a center knot, IKNOT(2,k) = 0, since 0 cannct be the second entry

for any other vertex class.

The algorithms for computing knots(j,i) and n(j,i), O

|
S

32 3.
f(i), s(i), (i), mf(i) are the obvious generalizations, or, in some
cases, simplifications, of the corresponding algorithms for triangular
elements. The computation of mfe(j,i) is trivial since all rectangles
are consistantly labeled. The computation of ibc (i) is similar to the
triangle case.

vi(j,k) is defined and generated as in the triangle case for
all vertices except center vertices. 1In some sense, such a vertex
really has four vertex fathers, but in almost all situations the two
vertex fathers of a center vertex of rectangle ti can be taken as
either pair of edge midpecints (top and bottom or left and right) in
ti' Since we have required the center vertex to have the largest of

the nine global vertex numbers, the center vertex will have a larger

-

vertex number than either of its vertex fathers. Thus all the usua

W
jo

applications of vi(j,k) (e.g. computing vx(k) and vy(k)) will work

exactly as in the case of triangles.

Finally, it is worth remarking that the ratioc of rectangles
on the rectangle tree to vertices is about 4/3 as opposed to 8/3 for
the case of triangles. Thus the storage reguired for IRCT and IKNOT
is about 7 1/3 nv as opposed to 11 nv for ITRI and IVERT. This
demonstrates that rectangles are asymptotically more storage efficient
than triangles if the measure of efficiency is words of storage per
knot. Note, however, that for finite element work, the number of
degrees of freedom is a more important parameter than the number of
knots, and rectangles may not be more storage efficient if the measure
of efficiency is words of storage per degree of freedom (since green

knots reduce the number of degrees of freedom).

Acknowledgement

We are pleased to acknowledge the contribution of Alan Welser to
our understanding of the application of odr ideas to rectangular

elements.

References

I. Babuska and W. C. Rheinboldt. Error estimates for ad ve
finite element computations. SIAM J. Numer. Anal. 15 (1

pp. 736-754.

SREEG

=

T
8

7

R. E. Bank. A comparison of two multi-level iterative methods
for nonsymmetric and indefinite finite element equations. SIAM
J. Numer. Anal., to appear.

R. E. Bank and T. Dupont. 2n optimal order process for solving
finite element equations. Manuscript, Department of Mathematics,
University of Texas at Austin, August 1979.

R. E. Bank and A. H. Sherman. Algorithmic aspects of the
multi-level solution of finite element equations. Sparse
Matrix Proceedings 1978, I. S. Duff and G. W. Stewart,
editors, SIAM Press, Philadelphia, 1979, pp. 62-89.

R. E. Bank and A. H. Sherman. PLTMG user's guide. Report
152, Center for Numerical Analysis, University of Texas at
Austin, September 1979.

W. C. Rheinboldt and C. K. Mesztenyi. On a data structure
for adaptive finite element mesh refinements. Trans. Math.
Soft. 6 (1980), pp. 166-187.

R. B. Simpson. A survey of two-dimensional finite element
mesh generation. Manuscript, Department of Computer Science,
University of Waterloo, December 1579.

