TR-161

An Interactive Data Dictionary System

to Support Logical Database Design

by

Piyush Gupta
Umeshwar Davyal

A. G. Dale

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

October 1980

An Interactive Data Dictionary System to Support
Logical Database Design
Piyush Gupta, Umeshwar Dayal and A. G. Dale

The University of Texas at Austin

1. Overview

This paper describes the structure of a language interface
to an interactive data dictionary system to support a methodology
for logical database design. The system is being implemented in
the Department of Computer Sciences at The University of Texas at
Austin.

The system fits the proposed ANSI/SPARC architecture [ANSI 77]
by providing a capability for supporting conceptual schema design,
storage of a global conceptual schema, and description of external
views of the global database. Many of the ideas incorporated in the
system implementation, and assumptions regarding the design method-
ology it will support, are based on recent work of A. P. Buchmann
[BUCH 80] who has proposed a methodology for database design to
support engineering design applications, and who used a binary asso-
ciative system, CS-4 [BN 77], as a prototype environment to support
data dictionary applications necessary to create a conceptual schema.
The system described.in this paper, however, uses a different data
model (third normal form relations [CODD 76]) for the conceptual
schema than the binary association model proposed by Buchmann, and
incorporates a different algorithm for generating conceptual schema

structures.

Design Methodology

The data dictionary system provides a software environment to
support the following steps in the logical design of a database:

l. Generation of Local Views

Users (here, users refer to the end users of the database)
express their }views' of the applications of interest in terms of
data objects and associations between data objects. If there are
numerous data objects and associations in a user view, it is advis-
able to provide the database designer with system aids for generating
consistent descriptions of data objects and associations. The
techniques for requirements analysis are not of concern here. We
assume the existence of a front-end analysis technique that permits
the identification of data objects and relationships, as a preliminary
to initial input to the data dictionary.

2. Generation of the Global View

The database designer uses the system interactively to integrate
the various local views into a global, logical view of the database.
This involves the resolution of homonyms and synonyms as the data
objects are defined, resolution of homonyms and synonyms as the associ-
ations (dependencies) are being defined and, finally, the use of
Bernstein's algorithm [Bern 76] to eliminate redundant and transitive
associations and produce a set of Third Normal Form (3NF) relations. The
conceptual schema data model in our system is thus a 3NF relational

model. This normalization technique is described in Section 3.

3. Accommodation

This step deals with the transformation of the 3NF relations
to a set of binary logical associations, as a preliminary to mapping
the conceptual schema description into the data definition language,
and data model, of a specific database management system.

Accommodation packages are specific to the target system, and
so are not described in this paper. A subsequent paper will describe
one package, now under development, to map from the data dictionary
to System 2000 DDL statements to produce S2K database schemas con-
sistent with a particular global schema in the data dictionary model.

Figure 1 summarizes the methodology. Sections 2 and 3 describe
the Definition Phase and Normalization Phase in detail. It is impor-
tant to note that the design proceeds interactively and iteratively:
modelling errors discovered during the Normalization phase may entail
a return to the Definition phase to change some of the data object or
association definitions stored in the data dictionary. The language
interface to the system is described in Appendix I. Appendix IT
illustrates the methodology with an example of the interaction between

the designer and the system.

User 1

|

local view 1
(data objects,
associations,
etc.)

USEI 2 UseI N
Lv? LVN

Integrated global view
(set of n-ary relations
in 3NF)

Integrated global
view as a set of
BLA's

Conceptual schema
in DDL of
specific DBMS

Fig. 1

3a

Interactive
Data Dictionary
Environment

Accommodation
Package

2. The Definition Phase

2.1 Information Specification

As stated in Section 1, the user views are modelled in terms of
data objects (entities) and their associations (relationships or
dependencies). We now describe exactly how the data objects and

associations are specified:

Object Definition

A data object is the smallest unit of interest in the data base.
It could represent a physical object that we're interested in model-
ling or properties thereof, e.g. EMPLOYEE SS#, INCOME etc.

A data object is specified in terms of its name (a string of
characters, e.g. employee), the application or view in which the
data object is being defined (e.g. payroll), the source (which user
is primarily responsible for input of instances of the data object),
an abstract object type or generalization of the data object, and a
brief description of the data object. Thus, each data object speci-
fication consists of a 5-tuple.

An essential element during data object and association defini-
tion is the identification of homonyms and synonyms and the resolution
of such naming conflicts. The specification of data objects in the
dictionary system lends itself to the identification of such conflicts.

In some applications, information on the 'source' of a data

object helps reduce the search space during synonym detection (if

every data object has a unique source). We provide the designers with
the option of specifying the 'source' in data object definitions to
assist the system in synonym detection.

The 'abstract object type' is a generalization in the sense
introduced by Smith & Smith [SS77]. It is also, like the source
data, useful during synonym detection. The 'description' is a
brief elaboration of the meaning of the data object and can assist

the designer in confirming and resolving naming conflicts.

2.2 Association Definition

We are considering associations that are functional in nature [BBG
787. An association consists of a name and two sets of functionally
related data objects and may be represented as follows.

Association Name: Set of data objects (Subject)—r

Set of data objects (Predicate)

The predicate is functionally dependent on the subject i.e. each sub-
ject value in the association has associated with it precisely one
value of the predicate.

e.g. EMPLOYEE RECORD: EMP#-—— EMPNAME, SALARY, AGE. Data
objects EMPNAME, SALARY & AGE are each functionally dependent on
the data object EMP# i.e. given a particular value of EMP#, there
exists exactly one corresponding value of EMPNAME, SALARY & AGE.

e.g. ENROLLMENT: STUDENT#, COURSE# GRADE. Here, there

exists a unique grade corresponding to each unique pair of values

of STUDENT# & COURSE# and GRADE is functionally dependent on the
STUDENT#, COURSE# pair.

In other words, the subject forms a key [CODD 76] of an
association.

Fach association is, therefore, specified in the form of a
3-tuple viz, <association name, set of data objects in the subject
(Left Hand Side), set of data objects in the predicate (Right Hand
Side)>. The data objects in the LHS & RHS are those that have been
specified earlier during the data object specification phase. Also

specified is the view in which the association is being defined.

2.2 System support during the definition phase

Data Object Specification

Data object 5-tuples from user views are entered into the system
sequentially. It is possible that different end users could be refer-
ring to different data objects by the same name (homonyms) or the same
data object by different names (synonyms). It is necessary, there-
fore, that as a data object is entered into the system, it be checked
against the existing data objects for naming conflicts.

(i) Homonvm Resolution

If the system finds an existing data object with the same name
as that of the object being entered it informs the user (user, in
this report, refers to the Data Base Administrator and not to an end

user of the data base unless stated otherwise. The end users only

provide input at the requirements gathering stage) and displays a
description of the existing data object. The user can, then, change
the name of the data object being entered if the two are supposed to

be different. These changes are recorded in the data dictionary.

(ii) Synonym Resolution
This is the more difficult task. In cases where every data
object has a unique 'source', the system compares the 'source' and

'generalization' fields of the data object being defined with those
of the existing data objects. If a match is found, the data objects
for which the match occurred are potential synonyms and the user

is informed. If the user responds (perhaps after reading their
descriptions and conferring with the application administrator) by
confirming that they are synonyms, this fact is recorded in the data
dictionary.

In the more general case where a data object does not have a
unique source, synonym detection is based on inspection of the
'generalization' field alone, and the display of objects with iden-
tical generalizations.

Association Specification

Next, the database designer enters the various associations
(dependencies) into the system. Again, it is possible that different
end users employ the same name for different associations or dif-
ferent names for the same association. Hence, the system helps

resclve these naming conflicts in the following manner:

(i) Same Association Name

If another association with the same name is found to exist,
the two are potential homonyms or synonyms. The system examines
the subjects and predicates of these associations. If the data
objects constituting the subjects and predicates are found to be
identical (or synonymous) the two associations are identical (or
synonymous) and the user is informed. If he agrees, the 'new'
association he defined is just stored in his view. The other associ-
ation (which was defined earlier) is retained in the central global
schema and will be used for normalization purposes. If the user
wants the two associations to be different and distinct, there has
been an error in the understanding and definition of one of them.
Accordingly, the user must change the name of one of the associa-
tions and update its subject and/or its predicate as well. (Could
add more data objects and/or delete data objects and/or change the
existing data objects).

If the subjects and predicates of the two associations (which
have the same name) are neither identical nor synonymous, the two
associations are homonymous and the user is asked to rename the
association he is currently defining.

(ii) Different Association Name

Different association names do not guarantee that the associa-
tions are different. A search is conducted on the subject and pre-
dicate fields. 1If an association with subject and predicate identi-
cal or synonymous to those of the association being defined is found,

the new association could be synonymous to it. Accordingly, the

user is notified. He will then inform the system whether they are
synonymous or different. If different, again, there has been an
error in the understanding and definition of one of them. According-
ly, the user is asked to update the subject and/or the predicate of
one of them.

If the user agrees that they are synonymous, this fact is re-
corded in the dictionary and the association being defined is stored

only in his view.

10

3. The Normalization Phase

At the end of the definition phase, the collection of data
objects and dependencies of interest to the enterprise have been
identified. As an initial approximation, then, we may consider
the global conceptual schema to be a single ("universal") relation
(in First Normal Form) with the data objects as its attributes and
the dependencies as constraints. First Normal Form relations, how-
ever, exhibit certain undesirable properties ("anomalies"). A series
of "higher" Normal Forms that eliminate these anomalies have been
proposed. Of these, the most popular is Codd's Third Normal Form
[CODD76], which attempts to embody each independent relationship in
a separate relation. Normalization, then, is a technique for improv-
ing an initial schema design by transforming the given First Normal
Form relation into a set of relations in Third Normal Form that
represent the same data objects and relationships. (The reader is
referred to [CODD76, DATE77, BERN76, BBG78] for detailed discussions
of normalization.) Our database design system uses Bernstein's syn-
thesis algorithm for this purpose [BERN76]. 1In the sequel, we outline
the various steps involved in this algorithm.

Let F be the given set of functional dependencies. Let F+ denote
the closure of F i.e. the set of all functional dependencies that are
implied by F. Let LHS(f) denote the set of data objects on the left
hand side of a particular association feF. Let A represent a partic-

ular data object or attribute.

11

A functional dependency (FD), therefore, is of the form
f:LHS (f)--->RHS (f) .

Several steps of the synthesis algorithm require checking whether
anFD f is in the closure of F, i.e., whether f is implied by F. A
fast algorithm for this membership test is described in [BB79] and
is repeatedly called as a subroutine by the synthesis algorithm.

Synthesis algorithm:

(i) Elimination of redundant attributes:

An attribute A is redundant in LHS(f) if LHS(f)-A--->RHS(f) is
in P+ i.e. all the dependencies that can be inferred from LHS(f) can
also be inferred from LHS(f)-A.

The following procedure implements this step:

do for each feF

do for each AeLHS(f)
if (LHS(f)=-A)~--=->RHS(f)cF+
then LHS(f)=LHS (f)-a
enddo

enddo

This procedure takes time O([Fiz) where [F|is the total number of
attributes on the left hand sides of all the associations in F.

(ii) Elimination of Transitive dependencies (redundant

associations):

Here we are trying to construct a non-redundant covering G of

F. The procedure is:

12

G:=F
do for each feF
if fe(G-f)+ then G:=G~f
enddo
This procedure takes time O(n|F|) where n is the number of
associations in F.

(iii) ©Partitioning of G:

Partition the nonredundant covering of F constructed in step (ii)
into groups such that each group has associations with identical left
hand sides. This step takes O([F]z) time.

(iv) Merging equivalent keys:

Suppose G includes FDs of the form X-->Y and U-->W; at the end of
step (iii) these will be contained in different groups. However, if
U-->X and X-->U are in F+, U and X are functionally equivalent and
these two groups should be merged. The following procedure implements
this step:

J=0

do for each pair of groups Hi, Hj with LHS's Xi and Xj

if Xi-->Xj and Xj-->X1ieG+

then
begin
merge Hi and Hj
J:=J+[Xi-->Xj, Xj-->Xi]
G:=G-[Xi-->Xj, Xj-->Xi]
end

enddo

13

This procedure runs in O(n|F|) time.

(v) Elimination of transitive dependencies generated during (iv):

The merging of groups might generate new transitive dependencies.
Hence, another step is required to eliminate these transitive depen-
dencies. Find a G'¢G such that (G'+J)+=(G+J)+ and no proper subset
of G' has this property.

do for each Xi-->XjeJ

add it to the corresponding group in G'

enddo
This runs in O(n|F|) time.
(vi) Construction of 3NF relations:

For each group construct a relation consisting of all the data
objects appearing in that group. The LHS of a group is the key of
the corresponding relation. If a group was formed by merging equiv-
alent keys in step (iv), the corresponding relation will have several
keys. The user is asked to designate one of these as the primary
key for the relation. This set of 3NF relations represents the global
view of the database.

(vii) To guarantee that each view is constructable as a set
of relations from the conceptual schema generated, we add the
following step to the synthesis algorithm:

(see [BDB79, 0SBO78, LOZI80] for details).

For each association f(x) in each view check whether there is
some relation R(y) in the conceptual schema generated with the property

4
that y-->xeF (here, x and y are the set of attributes in f and R

14

respectively); if there is no such relation then add a relation R{(k)
(to the conceptual schema) where k is a minimal subset of x with the
property that k-->x.

This step takes O(n]FQZ) time, where n is the number of relations
synthesized,.

Normalization is a purely syntactic procedure. It works under
the assumption that the initial definition of the data objects (attri-

butes) and dependencies is correct, and guarantees that all the

associations specified by the users are represented in the synthesized
conceptual schema, and also that each user view is constructable from
the conceptual schema relations. This implies that testing or authen-
tication is needed only at the requirements gathering and definition
phases to ensure that the correct data objects and associations were
specified. This can be done outside the system.

In our system, the normalization phase is not purely mechanistic.
Rather, it proceeds interactively, and, hence, assists in catching
some semantic errors, such as those pointed out in [BERN76]. 1In steps
(i), (ii), and (iv), whenever a potentially extraneous attribute or
redundant dependency is discovered, the user is asked to confirm that

this is indeed the case; otherwise, a semantic error has occurred.

For example, consider the FD's ff EMP#-->COMPANY, f2: COMPANY ~~>
ADDRESS, and f3: EMP#-->ADDRESS. Syntactically, it appears as if
f3 is redundant, since it is implied by the composition of fl and fz.

However, the composition of fl and f2 might actually give the corporate

address of the company that an employee works in, whereas f3 gives

15

the employee's address. If these are different, then the FD
inferred from fl and f2 is different from f3. This semantic dis-
tinction must be reflected as a syntactic distinction in the defin-
itions of f2 and f,. The system then reverts to the definition

3

phase, instructing the user to redefine the RHS's of f2 and £ for

3;
example, thus:

£ COMPANY-->CORPORATE~ADDRESS,

2:
f3: EMP#-~>ADDRESS-OF-EMPLOYEE.

An analogous situation might arise during the detection of extraneous

attributes in step (i) of the synthesis algorithm (see [BERN76] for

examples) .

In conclusion, we make a passing reference to the ubiquitous
"universal relation assumption". Normalization and data dependency
theory is built on the assumption that at all points in time, all
the relations in the database are projections of a single (universal)
relation. The validity of this assumption in practice has been
challenged [BBG78, BG80]. Yet, empirical evidence suggests that,
even if the assumption is violated in practice during operational
use of the database, schemas designed using the normalization tech-
nique are "good" (i.e., free of the update anomalies described in
[CODD 76]). We reconcile ourselves to this seemingly paradoxical
situation by suggesting that the theory be modified to drop the
universal relation assumption. Since the normalization technique
produces good schema designs, it must be more "robust" than the present

theory suggests. 1In a forthcoming paper we describe how to modify the

theory to accurately reflect the practice of normalization.

16

Conclusions

The commercial use of data bases has increased tremendously in
the last few years with the result that databases have grown in size
and complexity. Logical database design, therefore, is no longer a
trivial problem that can be easily done by a designer using a paper
and a pencil! 1In this paper we have described an interactive data
dictionary system to support incremental logical database design.
This system is designed to satisfactorily handle applications where
the associations between the various data objects of interest are
functional in nature.

However, not all associations in the world are functional!

Consider the association between

SUPPLIERS<-—-->PARTS.

A supplier could supply many different parts and a particular part
could be stored by more than one supplier. Clearly, this is not a func-
tional association. As a matter of fact, it is an m:n association.

Our system will handle such non-functional associations satisfac-
torily as long as the data objects involved in these associations are
also involved in some functional associations. e.g. consider an
application where a construction project is being modelled. The user
could specify the following associations:

SUPPLIES: SUPPLIER, PART —---~>QUANTITY
with the obvious meaning that QUANTITY stands for the quantity of a

particular part supplied by a particular supplier. Thus, although

17

there is an m:n relationship between SUPPLIER and PART, it will be
correctly modelled because SUPPLIER and PART are also involved in a
functional association, viz. SUPPLIES.

However, the system is not designed to handle "pure" non-
functional associations where the data objects are not involved
in other functional associations. e.g. let the m:n association

STOCK: SUPPLIER<-=-->PART
be the only association between the data objects SUPPLIER and PART.
The system is incapable, at present, to handle such applications.

There exist techniques by which it can be extended to handle
such applications. 1In particular, there is a technique involving
the introduction of auxiliary variables [BERN 76] which can be
used. We will consider this extension as a goal in the future.

We would like to add at this point that we have not considered
multivalued dependencies [BBG 78] at all. This is primarily because
experience has shown us that even highly technical users find it
very difficult to identify and express their requirements in terms

of MVD's.

18

Appendix A

Note:

In the following, system prompts and responses are enclosed
within single quotes while user responses are enclosed within

double quotes.

19

1.0 View Definition

The user initiates view definition by typing:

"DEFINE VIEW <viewname> *"

The system will respond with:

'READY'
All object and association definitions hereafter will be considered
to belong to <viewname> until another view definition command is

encountered.

2.0 Object Definition

To initiate object definition the user types:

"DEFINE OBJECT*"

The system responds with:

'NAME?'
in response to which the user should type in the name of the data
object he is defining.
1. If the system detects a homonym, it responds with:

'DATA OBJECT ALREADY EXISTS WITH FOLLOWING PARAMETERS'

‘PLEASE CHANGE DATA OBJECT NAME IF DIFFERENT'

20

If the system does not spot a homonym it asks for the rest of
the information on the data object:

'SOURCE?' "<user responds>*"

'"GENERALIZATION?' "<user responds>*"

'DESCRIPTION?' "<user responds>*"
2. If the system spots synonyms it responds with:

'POTENTIAL SYNONYMS FOUND'
and lists the synonyms (one representative element from each synonym
class) in the following format:

'NAME' '"VIEW' 'DESCRIPTION'

'PLEASE CONFIRM'
The user can then respond with "NO*" in which case the object is

stored uniquely or "YES <name>*" in which case the object is stored

as a synonym of <name> in the alias table.

Object definition is terminated by typing "END*" in response

to 'NAME?'.

3.0 Object Retrieval

The user may ask for the display of information on a particular

data object, all objects in a particular view or all the objects in

the entire system.

21

3.1 Particular Object
The user types
"SHOW OBJECT NAMED <name>*"
The system will output the corresponding tuple in the following

form:

3.2 Objects in a view

The user types "SHOW OBJECT IN VIEW <view>*"_, The system re-
sponds asking the user about the output format desired 'OUTPUT
FORMAT?'. If the user types "BRIEF*" only the object names are
listed. If the user types "DETAIL*" information is listed in the

following format

3.3 Objects in the system
The user types "SHOW OBJECT IN WHOLE DATABASE*" in response to
which the system asks for the output format as before 'OUTPUT FORMAT?'.
If the user responds with "BRIEF*" the system lists the names
of data objects in each view:
'VIEW <viewl>'

‘<data objectl>, <data object2r-=——mmw——- '

22

'VIEW <view2>'

'<data objectl>,~—~—-mm———a !

If the user responds with "DETAIL*" the system asks for recon-
firmation 'MASSIVE OUTPUT OK?'.

The user can now type "YES*" or "NO*" in response to which the
system will output detailed information on all data objects in every

view or abort the command.

4.0 Object update

The user types "UPDATE OBJECT<name>*", Thereafter, he could
modify any part of the information on the specified object by typing
one or more of the following:

"NEWNAME= == — e e e Ll

"NEWSOURCE==m==—— e &0

"NEWGENERALI ZATION=—= == m = e e — *n

"NEWVIEWS = e e e e e %0

Note:
Object updating may result in homonyms or synonyms again and
the system could generate messages similar to those described in

section 2.

23

5.0 Association Definition

The user types "DEFINE ASSOCIATION*",

The system responds with:

'NAME?' "<user response>*"

'LHS?' "<user response>*"

'RHS?'" '"<user response>*"

The system will then respond in one of the following ways:

1. If the association name already exists with different LHS and

RHS the system will respond with:

'NAME ALREADY USED PLEASE CHANGE'

'NEWNAME?' "<user response>*"

2. If the association appears to be synonymous to some other asso-
ciation defined earlier i.e. they have the same or synonymous
LHS and RHS, the system responds with:
'POTENTIALLY SYNONYMOUS ASSOCIATION FOUND'
It displays the synonymous association (the representative
element of the synonym class detected) and seeks user

confirmation.

'PLEASE CONFIRM'
If the user responds with "YES*", the association is appropriately
stored in the association alias table, whereas if he responds with a

"NO*" the system informs him that there is an inconsistency in one of

24

the two definitions and requests him to modify one of them:

'SEMANTIC INCONSISTENCY. UPDATE ONE OF THE ASSOCTIATIONS'

The user should then update the subject and/or the predicate of one

of the associations. If the associations have the same name, one

of the association names must be changed too.

Association definition is terminated by typing "END*" in

response to 'NAME?',

6.0

6.1

Association Retrieval

Named Association

The user types "SHOW ASSOCIATION NAMED <name>*" in response to

which the user lists out all the information it has on that partic-

ular association in the following format:

asks

Association in a view
The user types "SHOW ASSOCIATION IN VIEW <view>*", The system
for the output format desired:

'"OUTPUT FORMAT?'

If the user responds with "BRIEF*" the system just lists the names

of all the associations in the specified view. If the user responds

with

"DETAIL*" the system lists each association in detail:

25

6.3 Associations in the system

The user types "SHOW ASSOCIATION IN WHOLE DATABASE*" in response
to which the system asks for the output format desired:

'OUTPUT FORMAT?'

If the user types "BRIEF*"
the system lists the associations in each view by name:

'"VIEW <viewl>'

'<associationl name><association2 name>-——-—=———- !

'VIEW <view2>'

If the user types "DETAIL*" the system asks for reconfirmation:

'MASSIVE OUTPUT OK?'

The user can now type "YES*" in which case detailed information
on all the associations in every view will be output or "NO*" in which

case the command will be aborted.

7.0 Association Update

The user types "UPDATE ASSOCIATION*" and the system asks for its

name and the view in which it has been defined:

26

'NAME? ' "<user responds>*"
'VIEW?' "<user responds>*"
Thereafter, the user can make the desired modifications by

typing one or more of the following:

"NEWNAME= == = e o e o e * 0
"NEWLHS = = = e e e e e *n
"NEWRHS ==~ e e e * 0
Note:

Association updating may result in new homonyms and synonyms due
to which the system could generate messages similar to those generated

during association definition.

8.0 Object Deletion

The user can delete a data object from the system by typing:
"DELETE OBJECT <name>?*" in response to which the system will delete
the named data object from the data dictionary and issue the following

message: '<name> DELETED'

Note:
It is the user's responsibility to ensure that associations

using the deleted data object are modified or deleted.

27

9.0 Association Deletion

The user may delete an association from the system by specifying
its name and the view in which it is defined in the following format:

YDELETE ASSOCIATION <name> FROM VIEW <view>*"

10.0 Miscellaneous

If the user types "NORMALIZE*" it will result in the execution
of Bernstein's 3NF synthesis algorithm. During this execution, user
intervention could be sought for primary key resolution:

'SPECIFY KEY IN ASSOCIATION'

'KEY?' "<user responds>*"

Also, whenever a redundant object or association is eliminated,
the user will be informed and his confirmation sought:

'REDUNDANT OBJECT <name>'

'IN ASSOCIATION <assocliation name>'

"IN VIEW <view>'

'PLEASE CONFIRM'

28

If the user types "REMOVE*" the object is eliminated, whereas
if he types "RETAIN*" the system recognizes that there has been a
mistake in defining the semantics of some associations and informs
the user with an error message:

'SEMANTIC ERROR'

'"PLEASE CHECK ASSOCIATIONS AND UPDATE APPROPRIATELY'

The user must then examine his associations, trace the error, make
the necessary updates and restart the normalization process.

Redundant associations are treated in a similar manner. The
system outputs the following messages:

'REDUNDANT ASSOCIATION <name>'

"IN VIEW <view>'

'PLEASE CONFIRM'

If the user responds with "REMOVE*" the association is deleted
from the data dictionary. If he responds with "RETAIN*" the system
detects that there are semantic errors in association definition. It
informs the user and also suggests recovery techniques, e.g. suppose
there are three associations:

1. DEPT OF EMPLOYEE: EMP--->DEPT

2. MANAGER OF EMPLOYEE: EMP--->MGR

3. DEPT OF MANAGER: MGR--->DEPT

modelling an enterprise where an employee may be managed by a manager
from a different department. From associations 2 and 3 the system

infers association 1 (transitive dependency) and requests permission

29

to delete it:

'REDUNDANT ASSOCIATION NAMED DEPT OF EMPLOYEE'

"IN VIEW <view>'

The user, naturally, will type "RETAIN*". Now, the system realizes
that the data objects DEPT in associations (1) and (3) should be
distinct and issues appropriate error messages suggesting recovery
techniques:

'"SEMANTIC ERROR IN ASSOCIATION DEPT OF EMPLOYEE'

"IN VIEW <view>'

'DISTINCT DATA OBJECT DEPT REQUIRED'

The user can now define a new data object EMPDEPT and modify the
association DEPT OF EMPLOYEE so that it looks like:

DEPT OF EMPLOYEE: EMP--->EMPDEPT
and issue the normalization command again.

During the last stages of normalization, all the associations
with the same LHS are merged to form a single association. The
system will inform the user of this merger and ask him to name
this association:

'"ASSOCIATIONS BEING MERGED'

‘Al IN VIEW V1'

‘A2 IN VIEW Vv2'

'"NEWNAME?' "A3%*"

The user can ask for a display of the final conceptual schema
by typing "SHOW DESIGN*". The system will ask for 'OUTPUT FORMAT?'.

If the user responds with "BRIEF*", only the names of the associations

30

in the conceptual schema designed are listed, whereas if he
responds with detail, the data objects forming the left and
right hand sides of the associations are also listed.

An interactive design session is ended by typing in a period.

31

APPENDIX B

Here, we give an example of a logical database design, for a
commercial organization, using our system. To keep the design
simple and illustrative, we model only the Personnel, Accounting and
Administration divisions of the organization.

The personnel division stores the names and addresses of all
the employees in the organization. It also stores the name of an
employee's manager and information on his insurance policy.

To focus attention on the system features and not burden the
reader with unnecessary details of the model, we make some simpli-
fications in it viz. every employee has exactly one insurance
policy and can work in exactly one department. A department can
have only one manager.

After the requirements analysis phase, the DBA has identified
the following views of interest:

(i) Personnel

Data objects: Emp#, Empname, Address, Mgr#, Policy#,

coverage
Associations:
Empname&address: Emp#--->name, address
Empinsurance: Emp#--->policy#, coverage

Mgr of emp: Emnp#--->mgr#

32

(ii) Accounting

Dataobjects: employee#, salary, policy#, coverage
premium, department, budget
Associations:
Payroll: Enmp#--->salary
Empinsurance: policy#--->coverage, premium
Deptbudget: department--->budget

(iii) Administration

Dataobjects: department, manager#, emp#
Associations:
mgr of dept: department--->mgr#
Dept of emp: emp#-—-->department

The interactive design now proceeds as follows:

Note:

System prompts and responses are in upper case letters while

user responses are in lower case.

define view personnel¥*
READY

define object¥*

NAME? emp#¥*

SOURCE? personnel*
GENERALIZATION? id*

DESCRIPTION? social security number of the employee*

NAME? empname¥*
SOURCE? personnel¥*
GENERALIZATION? name*

DESCRIPTION? name of the employee*

NAME? address¥*
SOURCE? personnel¥*
GENERALIZATION? address*

DESCRIPTION? permanent address of the employee¥*

NAME? mgr#*
SOURCE? administration*
GENERALIZATION? id¥*

DESCRIPTION? ss# of the manager of an employee¥*

33

NAME? policy#¥*
SOURCE? accounting¥*
GENERALIZATION? id¥*

DESCRIPTION? insurance policy number*

NAME? coverage¥*
SOURCE? accounting*
GENERALIZATION? cash amount®*

DESCRIPTION? amount of policy coverage in dollars*

NAME? end*

define association¥*
NAME? empname & addr*
LHS? emp#*

RHS? name, address¥*

NAME? empinsurance¥*
LHS? emp#*

RHS? policy#, coverage*
NAME? mgr of emp¥*
LHS? emp#*

RHS? mgr#*

NAME? end*

34

define view accounting¥*
READY

define object*

NAME? employee#*

SOURCE? personnel¥*

GENERALIZATION? id*

DESCRIPTION? social security# of employee*

POTENTIAL SYNONYMS FOUND

NAME: EMP#

VIEW: PERSONNEL

DESCRIPTION: SOCIAL SECURITY NUMBER OF THE EMPLOYEE
PLEASE CONFIRM

yes¥*

NAME? salary*
SOURCE? accounting*
GENERALIZATION? income¥*

DESCRIPTION? monthly income of the employee?*

NAME? p#*

SOURCE? accounting*
GENERALIZATION? id#*
DESCRIPTION? insurance policy#¥*

POTENTIAL SYNONYMS FOUND

35

NAME: POLICY#

VIEW: PERSONNEL

DESCRIPTION: INSURANCE POLICY NUMBER
PLEASE CONFIRM

yes¥*

NAME? coverage¥*

DATAOBJECT ALREADY EXISTS WITH FOLLOWING PARAMETERS
VIEW: PERSONNEL

SOURCE: ACCOUNTING

GENERALIZATION: CASH AMOUNT

DESCRIPTION: AMOUNT OF POLICY COVERAGE IN DOLLARS
PLEASE CHANGE DATAOBJECT NAME IF DIFFERENT

same*

NAME? premium#*

SOURCE? accounting*

GENERALIZATION? cash amount#*

DESCRIPTION? total premium on insurance policy?*
POTENTIAL SYNONYMS FQUND

NAME: COVERAGE

VIEW: PERSONNEL

DESCRIPTION: AMOUNT OF POLICY COVERAGE IN DOLLARS
PLEASE CONFIRM

no*

36

NAME? department*
SOURCE? administration¥*
GENERALIZATION? department*

DESCRIPTION? department in which the employee works*

NAME? budget*
SOURCE? planning¥*
GENERALIZATION? cash amount*

DESCRIPTION? annual budget of the department#?

NAME? end?*

define association®*
NAME? payroll®*
LHS? emp#*

RHS? salary¥*

NAME? emp insurance¥*
LHS? policy#*
RHS? coverage, premium¥*

NAME ALREADY USED PLEASE CHANGE

NEWNAME? insurance*

NAME? dept. budget*

LHS? department*®

RHS? budget*

37

NAME? end*

define view administration%*

READY

define object¥®

NAME? department*

DATAOBJECT ALREADY EXISTS WITH FOLLOWING PARAMETERS
VIEW: ACCOUNTING

SOURCE: ADMINISTRATION

GENERALIZATION: DEPARTMENT

DESCRIPTION: DEPARTMENT IN WHICH THE EMPLOYEE WORKS
PLEASE CHANGE DATA OBJECT NAME IF DIFFERENT

same®*

NAME? manager#*

SOURCE? administration*

GENERALIZATION? id*

DESCRIPTION? ss# of the manager*

POTENTIAL SYNONYMS FOUND

NAME: MGR#

VIEW: PERSONNEL

DESCRIPTION: SS# OF THE MANAGER OF AN EMPLOYEE
PLEASE CONFIRM

yes¥*

38

NAME? emp#*

DATAOBJECT ALREADY EXISTS WITH FOLLOWING PARAMETERS
VIEW: PERSONNEL

SOURCE: PERSONNEL

GENERALIZATION: ID

DESCRIPTION: SOCIAL SECURITY NUMBER OF THE EMPLOYEE
PLEASE CHANGE DATA OBJECT NAME IF DIFFERENT

same¥*

NAME? end*

define association*
NAME? mgr of dept*
LHS? department*

RHS? mgr#*

NAME? dept of emp*
LHS? emp#*

RHS? department*

NAME? end*

normalize*

REDUNDANT ASSOCIATION MGR OF EMP
IN VIEW PERSONNEL

PLEASE CONFIRM

remove¥*

39

REDUNDANT OBJECT COVERAGE
IN ASSOCIATION EMPINSURANCE
IN VIEW PERSONNEL

PLEASE CONFIRM

remove*

ASSOCIATIONS BEING MERGED
EMPINSURANCE IN VIEW PERSONNEL
EMPNAME&ADDR IN VIEW PERSONNEL
PAYROLL IN VIEW ACCOUNTING

DEPT OF EMP IN VIEW ADMINISTRATION

NEWNAME? employee info*

show design*
OUTPUT FORMAT? detail*
EMPLOYEEINFO

LHS: EMP#

RHS: NAME, ADDRESS, POLICY#, SALARY, DEPARTMENT
INSURANCE

LHS: POLICY#

RHS: COVERAGE, PREMIUM
DEPTBUDGET

LHS: DEPARTMENT

RHS: BUDGET

MGROFDEPT

LHS: DEPT

RHS: MGR#

40

41

REFERENCES

[ANSI 77] Tsichritzis, D. and A. C. Klug, "ANSI/X3/SPARC DBMS
Framework. Report of the Study Group on Data Base
Management Systems." AFIPS Press, Montvale, NJ, 1977.

[BB 79] Beeri, C. and P. A. Bernstein, "Computational Problems
Related to the Design of Third Normal Form Relational
Schemas," ACM trans. on Database Systems 4:1, March
1979, pp. 30-59.

[BBG 78] Beeri, C., P. A. Bernstein and N. Goodman, "A Sophisticate's
Introduction to Database Normalization Theory," Proc.
Fourth Intl. Conf. on Very Large Data Bases, Berlin,
Sept. 1978, pp. 113-124.

[BDB 79] Biskup, J., U. Dayal and P. A. Bernstein, "Synthesizing
Independent Database Schemas," Proc. ACM-SIGMOD Intl.
Conf. on Management of Data, Boston, May-June 1979,
pp. 143-151.

[BERN 76] Bernstein, P. A., "Synthesizing Third Normal Form Relations
From Functional Dependencies,"” ACM Trans. on Database
Systems 1l:4, Dec. 1976, pp. 277-298.

[BG 80] Bernstein, P. A. and N. Goodman, "What Does Boyce-Codd
Normal Form Do?", Proc. VLDB Conf., Oct. 1980, pp. 245-
259.

[BN 77] Berild, S. and S. Wachmans, "Some Practical Applications
of CsSA - A DBMS for Associative Databases," in Architecture
and Models in Data Base Management Systems, G. M. Nijssen,
(ed.) North Holland Publishing Co., 1977.

[BUCH 80] Buchmann, A. P., "A Methodology for Logical Design of
Databases for Project Engineering," Ph.D. Dissertation,
Dept. of Chem. Engr., UT Austin, May 1980.

[CODD 72] Codd, E. F., "Further Normalization of the Database
Relational Model," in Database Systems, Courant Comp.
Sci. Symp. 6, (R. Rushi, ed.), Prentice-Hall, Englewood
Cliffs, NJ, 1972, pp. 33-64.

[DATE 77] Date, C. J., "An Introduction to Database Systems,
Addison-Wesley Pub. Co., Reading, MA, 1977.

[LOZTI 80]

[OSBO 78]

42

Lozinskii, E. L., "Construction of Relations in Relational
Databases," ACM TODS, Vol. 5, No. 2, June 1980, pp. 208-
224.

Osborn, S. L., "Normal Forms for Relational Databases,"
Ph.D. Diss., Research Rep. CS-78-06, Dept. of CS, Univ.
of Waterloo, Jan. 1978.

