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ABSTRACT

Semijoin strategies are a technique for query processing in distributed
database systems. In the past, methodologies for constructing minimum
communication-cost strategies for solving tree queries have been developed.
These assume point-to-point communication and ignore local processing costs
and the limited communication capacity of the system. In this paper,
query processing in bus or loop systems is considered. The definition
of strategy is extended to allow for broadcast mode of communication. We
then address the problem of finding the minimum response-time schedule
for executing a given strategy in an m~bus system taking into account
local processing and system capacity. It is shown that the problem is
computationally intractable for general tree queries, even in a l-bus
system, and for special classes of tree queries in an m-bus system. However,

there is a polynomial~time algorithm for simple queries in a 1-bus system.






1. INTRODUCTION

Semijoin strategies were introduced as a technique for query processing
in general distributed database systems [Wo 79, HY 79, He 80, BC 81]. A
semijoin strategy is a partially-ordered set of data moves between the
different sites in the system to solve a given query. So far, most of the

work in this area has been devoted to minimizing total communication cost

assuming that local processing costs are negligible.

For this objective, the model of semijoin strategies is appropriate. How-
ever, in any specific system with limited communication capacity, parallel
data moves in a strategy have to compete for that limited capacity. Con-

sequently, the response time for solving the query is a function of the

way these parallel moves are scheduled on the available communication links.
Moreover, local processing costs can also affect response time.

This paper addresses the problem of scheduling a given strategy to
minimize response time in a local distributed database system. The system
architecture is shown in figure 1. Tt consists of a set of database
processors and a front-end processor, connnected via a number of buses or
loops*, e.g. ETHERNET [Me 76], MININET [MP 77].

The following assumptions are made:

(i) There is no data redundancy and each site stores one relation.

(i1) The system supports broadcast. Therefore, the same data can be

sent Lo several sites without additional cost.

(iid) At any site, local processing can proceed in parallel with

shipment of dat» ro or from the site.

(iv) Communication on one bus is independent of communication om any

other bus.

*From now on, we use the term "bus' to indicate either a bus or a loop.
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In Section 2 we modify the definition of a semijoin strategy to
take into account broadcast capability, and we introduce the concept
of a schedule for a semijoin strategy. We also define the m-bus
Semijoin Scheduling Problem. 1In Section 3 this problem is shown to be
computationally intractable for tree queries in a l-bus system. In
Section 4, we give a polynomial-time algorithm for a special class of
tree queries, viz. simple queries. Finally, in Section 5, we consider
systems with m buses and show that the problem is intractable even for

the special classes of simple and chain queries.

2. SEMIJOIN STRATEGIES AND SCHEDULES

A query is an undirected graph Q = (V,E}, where V is a set of re-
lation names taken from the set {Ri[liijp}; E is a set of labelled edges
such that an edge {Ri,Rj} is labelled A = B,where A is an attribute of

Ri’ and B an attribute of Rj. A and B are called joining attributes of

Ri and Rj respectively. One relation, Rt’ in the query is designated

the target relation.

In this paper, we consider only queries that are trees. Examples of
tree queries are shown in Fig.2. Consider the query of Fig.2(a). This
can be interpreted as a conjunctive relational query whose target-list
is in relation RZ and whose qualification is given by

A=R,.BAR,.C=R_.DAR,.E=R,.FAR,.G=R_.H.

Ry- 2 2 3 3 4 3 5

(See [BC 8l] for details on tree queries and their interpretations.)
Two special classes of tree queries are of interest, viz. simple

queries and chain queries. 1In a simple query the labels of all the edges

incident on node Ri have the same joining attribute of Ri; for example,

in the simple query of Fig.2(b), C is the joining attribute of R In a chain

3°

query, each node Ri has at most 2 edges incident on it and the labels of these
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Figure 2. T.amples of tree queries.



edges have different joining attributes of Ri; for example,
in the chain query of Fig.2(c¢), B and C are the two joining attributes

of RZ'

Two relations Ri and R, are joined in query q iff there is an edge

{Ri,Rj} in q or a path R, R "Rk’ Rk+1’ such that R, = Ri’

0’ 0
Rk+1 = Rj’ and for every p, 1l<p<k+l, the labels of the edges {r

1 RZ"'
p_l,Rp}
and {Rp,Rp+1} have the same joining attribute of Rp' Intuitively,
Ri and Rj are joined in q iff there is a join between Ri and Rj when the
qualification of q is closed under transitivity of =. For example, in
Fig.2(b), any two relations are joined in 9y

In [BC 81] it is shown that tree queries with one target relation
can be completely solved by a sequence of semijoin operations. A semijoin
of Rj by Ri on attributes A and B, denoted Ri{A=B>Rj, is defined to be
the set of Rj—tuples

{rj € ijCSri € Ri)(ri{A} = rj{B])}.

If Ri and Rj are stored at different sites i and j of a distributed
database system, the semijoin Ri[A=B>Rj is performed in two steps. First,

the projection of Ri on A is moved from site 1 to site j on an available

bus. This move step is denoted Ri{A} > Rj. Ri is called the source,

R.[{A] the source attribute, and Rj the destination of this move step.
1 gestination

Then, the semijoin is constructed at site j by restricting relation Rj.

This local processing step is denoted also by Ri[A=B>Rj. Before performing
the move and local processing steps to construct the semijoin, some

preprocessing (e.g.. selections and projections) may be done at sites i and j.

These preprocessing steps are denoted PREPi and PREPj.

In a bus system, data can be broadcast from one site to several different
sites without dincurring extra cost. Such a move step is denoted by
Ri[A] +-Rj15...,Rjr, where Ri is the source and le,...,Rjr are the

destinations of the move step.




Informally, a semijoin strategy for a given tree query q is a sequence
of move steps (corresponding to semijoins) that completely solves q. Some
of the move steps can be performed in parallel, provided that enough buses

are available. Formally, a semijoin strategy ST(q) for a tree query q

with target relation Rt consists of a strategy graph, SG(g), and a set

of functions associated with each node of S5G(q). The strategy graph

SG(q) is a directed acyclic graph, each node of which is labelled by a
move step R,.[A] - R,..,...,R, , where R, and each of the relations
i il ir i

leg..g,Rjr are joined in g with A being the joining attribute of Ri.

SG(q) satisfies the following six conditions:
$G1l. Every relation in ¢, except possibly Rt, is a source of
some move step in SG(q).
SG2. Every terminal node (i.e., a node with no successors) has
exactly one destination, which is the target relationm, Rt, of q.
SG3. TFor every directed edge (Vi’VE)’ the source of v, is one of the
destinations of vy.

§G4. TFor every non-terminal node, labelled Ri[A] -+ R, ,R and

TERREEL
for every Rj, j1 < j < jr, which is not the target relaiion,
there is a descendant node whose source is Rj,

$G5. There is a directed path between any pair of nodes with the
same source attribute.

SG6. TFor every pair of nodes such that the source of one is a

destination of the other, there is a directed path between

the two nodes. U
The justification for SG1 and SG2 is straightforward: every relation
in q has to participate in producing the result and the result is produced
at the site of Rthﬁ 80]. To justify conditions SG3-8G6, refer to the
examples in Fig.3. Fig. 3(a) shows that if there were two successive
nodes v, and v, such that the source of v, is not a destination of v_,

1 2 2 1

violating SG3, we could break the directed edge between them without
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Figure 3. Justification of strategy graph conditions



altering the result of executing the semijoin operations in the strategy.
Figure 3(b) shows that if some destination Yr of node v is not a source

of any successor of v, then we need not move X[A] to Yr' Figure 3(c) shows
that if there were two parallel nodes Al and v, with the same source attribute
X[A], then we could merge these into a single node. Figure 3(d) shows that

if there were two parallel nodes vy and 2 with the source of Vo being

a destination of v then the strategy is ambiguous; it can be made un-

1°
ambiguous by forcing one node to precede the other.

The functions associated with each node are cost functions and selectivity
functions. The cost functions define the preprocessing costs, move costs,
and local processing costs for constructing the semijoins. These costs are
dependent on the current sizes of the relations, which may change after
each semijcin operation. Hence, we need the selectivity functions of the
joining attributes to compute the new size of a relation after a semijoin
[He 791. We assume that all of these functions monotonically increase
with the sizes of the relations involved.

An example of a strategy graph for the query of Fig.2(b) is shown in
Fig 4(a). For convenience, nodes are identified by unique numbers. Notice
that both node 1 and node 3 represent the same move step. This implies a
redundancy in the strategy [CH 80]. WNode 1 must be excised to obtain the
non-redundant strategy graph in Fig.4(b). Recall that strategies ignore
local processing and the number of buses available in the system. For
instance, the strategy in Fig.4(b) tacitly assumes the availability of
two buses. In prac.ice, however, the number of buses available is determined
a priori. Thus, there is a need to construct a schedule, describing the
exact sequence of move steps on each bus and local processing and preprocessing
steps on each processor. For example, Fig.4(c) shows one possible Z~bus

schedule for the strategy graph in Fig.4(b).
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PREP% and PREP; are the preprocessing steps at site 3 preceding

the local processing steps Rl{ >R3 and RZ[ >R3, respectively.

FPigure 4. An example of a strategy graph and a 2-bus
schedule for it.



Formally, an m-bus schedule SC(ST(q).,m) for a given strategy ST(g) is

a directed acyclic graph constructed from ST(q) as follows:

SCl. Change the label of each node v in $G{(q), the strategy graph of
B
ST(q), from Ri[A] -+ leg...,Rjr to Ri[A] > le,...,Rjr,
where 1 < B < m. This assigns a bus to each move step. v is called
a move node, and B is called the bus of wv.
SC2. TFor each move node v, labelled Ri[A] - Rj1’°°°’Rjr’ add (see Fig.5):

(1) preprocessing nodes u, Ujs..., u_ Lo represent preprocessing

at the sites of Ri, leg..., Rjr;

(ii) immediate successor nodes, vl,...,vr, called local processing
nodes, to represent the local processing steps at the sites
of 31,...,3r following the move step.

SC3. Add directed edges to satisfy the following conditions:
(i) for every pair of move nodes with the same bus B, there

is a directed path from one to the other;

(i1) let Vs Yy be preprocessing or local processing nodes for the
same site, such that vy corresponds to a move node uy and

v, corresponds to a move node Up 3 then

ay if u

(a) if u

from vy to Vo3

(b) 4if there is no directed path between Uy and Uy s then

2
precedes u then there is a directed path

27
there is a directed path from vy to v, or from v, to vy

For any query, there may be more than one strategy that solves it. In

[CE 80] the problem of constructing the minimum communication-cost strategy

for solving a given tree query is addressed, and a dynamic programming

algorithm is presented. But, for any strategy, there may be more than one

schedule on a given number of buses. Our objective is to find a minimum~cost

schedule SC(ST(q),m) given a strategy ST(q) and a pre-defined number m

of buses. We call this the m-bus Semijoin Scheduling Problem. The cost

measure that we adopt is response time. Each node v in a schedule has an

execution time, c{v), derived from the functions associated with the

corresponding node of the strategy graph.
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Figure 5. Transforming a strategy graph node to
schedule nodes.



The response time of a schedule S is defined as:

c(8) =max { ¥ c(v) ] P is a path in S}.
P wvin P

3. OPTIMAL 1-BUS SCHEDULES FOR TREE QUERIES

In this section, we prove the surprising result that even for a l-bus
system, the problem of constructing the optimal schedule for a given

strategy is computationally complex, viz, NP-hard.

Theorem 1: Given a strategy ST(q) for solving the tree query g, the
problem of constructing the minimum response-time 1-bus schedule SC(ST{(q),1)
is NP-hard.

Proof: We show a polynomial-time reduction from the Job~-Shop
Scheduling problem which is known to be NP-hard [GS 78, GJ 79]. An in-
stance of the Job-Shop Scheduling problem is the following:

Given - two processocrs;

a set J={1,...,n} of jobs;

!

1

each j €J consisting of an ordered sequence of tasks tk{j], 1<k<3;

+
for each such task t an execution time c(t)s;ZO and a processor p(t),

[31) for all j € J and 1<k<3.

!

where p(t, [31) # p(t,

Find the minimum response-time schedule for J.

Construct an instance of the l1-bus Semijoin Scheduling problem as follows:
TLet the two processors be a bus B and a processor P. The sequence of
processors required for the sequence of tasks in any jeJ is one of the
following [B], [P}, [BP], [PR], [BPB], [PBP}]. Each jeJ is mapped into a
sequence of move, preprocessing, and local processing steps to solve a
tree query q of the form shown in Fig.6 where the target relation R is
stored at processor P; each of the other relations is stored at a different

processor; and the processors are connected by bus B.



Figure 6. A tree query for the proof of Theorem 1.



Case 1 (j is of type [B]): j is mapped to the sequence®:

1. move: Rj[Aj} ji R
2. local processing: R,[A,=D,>R
J 1 1]
Choose the size of Rj[Aj] such that the cost of step 1 is the given
c(tlfj]), and choose the size of R{Dj] such that the cost of step 2 is

less than 1-.
1

Case 2 (j is of type [P]): j is mapped to the same sequence as in

Case 1. Choose the size of ijAj] such that the cost of step 1 is less
than %~; and choose the size of R[Dj] such that the cost of step 2 is the

given c(tlij])-

Case 3 (j is of type [BP]): j is mapped to the same sequence as in Case 1.

Choose the size of Rj[Aj] such that the cost of step 1 is the given
c(tl[j}); and choose the size of R[Aj} such that the cost of step 2 is the

given c(tz[j}>a

Case & (3 is of type [PB]): j is mapped to the sequence:

1. move: R.TA.] §+ R
J ]
2. local processing: Rj{Aj=Dj>R

B
3. move: R[Dn+j} = Rn+j

4, local processing: R[Dn+j=An+j>Rn+j
B

® v e
5. move: Rn+j[An+j] -+ R

1 © ¥ =
6. local processing: Rn+j{An+j Dn+j>R

where R' . is R ., ~fter the reduction in step 4. Choose the sizes of
nt+i n+i

, , _
Rj[Aj}, Rn+j{An+j]’ Rn+jIAn+j} such that the sum of the costs of steps

1,4,5,6 is less than %-; and choose the sizes of R[Dj] and R{Dn+j} such

*TIn this construction, all the preprocessing steps which are not mentioned
explicitly are assumed zero, for example, in Case 1, the preprocessing

to get Rj[Aj} and R[Bj] is assumed to be zero.



that the costs of steps 2 and 3 are the given costs c(tl[j]) and c(tz[j])

respectively.

Case 5 (j is of type [BPB1): J is mapped to the same sequence as in

A .1, R

Case 4, Choose the sizes of Rn+3 i i

[A .1 such that the sum of
n+j
the costs of steps 4,5,6 is less than-% ;: choose the sizes of Rj[Aj},

R{Dj} and R[Dn+j] such that the costs of steps 1,2, and 3 are the given

C(tl[j])a C(tz{j]), and c(t3[j]), respectively.

Case 6 (i is of type [PBP]): j is mapped to the sequence:

1. preprocessing to get R[Dj]
2. move: R[D.] §+ R.
3 J

3. local processing: R{Dj=Aj>Rj

4. move: R'[A,] B, R
J 3

5. local processing: R![A.=D >R
J 3 13

]

B

7. move: R[Dn+j} = R

6. preprocessing to get R[Dn+j

8. local processing: R{Dn+j=An+j>Rn+j

B

9. move: R' . [A 1 =>R

n+i " ntj

I . ¥ -
10. local processing: Rn+j{An+j Dn+j>R

i A,T, RI[A, .1 .
Choose the sizes of Rj[ 3] J[AJ], R[Dn+3] Rn+ [A ]

?
3 n+j]’ and Rn+j{A

n+j
such that the sum of the costs of steps 3,4,5,7,8,9, and 10 is less than
%‘. Choose the cost of the preprocessing in step 1 to be c(tl[j]), and
the size of R{Dj] such that the cost of step 2 is c(tz{j]), and the cost
of the preprocessing in step 6 to be c(t3[j]).

Notice that in this reduction, we constructed an '"augmented" strategy
consisting of move, preprocessing and local processing steps. The implied

strategy ST(q) can be obtained by deleting all the preprocessing and

local processing steps. To make the construction valid, we must ensure that
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the size of R[Di] is unaffected by the semijoin Rj[Aj=Dj>R for all 1,j, i#j.
This can be achieved by assuming that relation R is the Cartesian product
of its projections.

Suppose we can find a minimal response-time 1l-bus schedule S = SC(ST(q),1)
for the strategy constructed above. Then the solution to the Job Shop
Scheduling problem is obtained as follows. Construct one-processor
schedules for bus B and processor P. From each of these schedules delete
all steps of cost less than %'. The resulting schedules constitute the
minimal response~time Job Shop Schedule, because the total cost of the
deleted steps is less than 1, and the costs of the tasks in the given
instance of the Job Shop Scheduling problem are all non-negative integers.

This proves that l-bus Semijoin Scheduling is NP-hard. J

Having shown that l-bus Semijoin Scheduling is computationally
intractable, we are faced with two alternatives. One is to look for
approximate solutions to the problem for tree queries in general. (This
is a subject for future research.) The other is to comsider special classes
of tree queries and special classes of strategies for which the Scheduling
problem is tractable, i.e. of polynomial-time complexity. 1In the next section,
we consider simple queries and linear strategies (to be defined precisely)

for solving them.

4. THE SPECIAL CASE OF SIMPLE QUERIES

Recall, from Section 2, that a simple query is a tree query all
of whose relations are joined on a single common attribute. A simple
query can be solved by intersecting the joining columns of all of its
relations, and then joining this intersection with the target relation.
We consider a special class of semijoin strategies, called linear strategies,

for solving simple queries.
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A linear strategy ST(q) for solving a simple query q with target

relation Rt is defined as follows.

1LS1. 1Its strategy graph is a chain of the form shown in Figure 7, where

Rl’ RZ""’Rn is a permutation of the relations in q.

1.82. The functions associated with each node, labelled R.[A,J> R, ,,,...,R ,
iti i+l n

in the strategy graph, are defined as follows.
*
Communication cost of the move step = cllRi{Ai]] .

R .

There 1s no preprocessing at the sites of Ri’ Ri+1"" 0

Local processing cost at the site of Rj is
clei[Ai]I[Rj[Aj}], i+l < j < n.
. IR 14,11
dom(A.) |
i

Hence, after the semijoin Ri{Ai=Aj>Rj, the cardinality of Rj[Aj]
R 1831 IR 18,]]

Selectivity of the joining attribute A, i

becomes —————"m i+l <J<m.
}dom(Ai)[

Iinear strategies appear to have some merit. For example, referring
to non-linear strategy graph in Figure 8(a), we note that by broadcasting
W[A! to Y as well, the cardinality of Y[B] can be reduced before it is
1,,..,Zn, thus reducing communication cost.

Given a linear strategy ST{(q) for solving a simple query q, the problem

shipped to Z

of finding the minimum response~time l-bus schedule for ST(q) is trivial:
there is exactly one 1-bus schedule SC(ST(q),1). (Figure 9 shows an

example of this.) Hence, in this section, we consider the following

problem: given a simple query q, find, of the 1l-bus schedules for all linear
strategies that solve ¢, the schedule S with minimum response-time, i.e.,

min {c(8) ] 3 linear strategy ST(q) such that S = SC(ST(q),1)} We call this

S
the minimum response~time linear schedule for q.

*# |X| denotes the cardinality of X.



If Rn= Rts this node can be

dropped from the strategy.

Figure 7. A linear strategy graph for a simple query with
relations R1’°"’Rr’ of which Rt is the target relation



ww»x X'Yz %)

Figure 8. Strategy graph linearization for simple queries



Q{A] > X,Y,7 j
i
CX[B] Y,Zj

Figure 9. Schedule for a linear strategy that ‘solves a
simple query with relations W,X,Y,Z, where X is
the target relation.
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Theorem 2. Let ¢ be a simple query with target relation Rt' Arrange
the relations in ascending order w.r.t. the cardinalities of their joining

attributes. Let this order be Rl’R .,Rn; i.e.,

90"
lRl[Al]{ < !R2{A2][ <o..< ]Rn[An]I. Then, the 1-bus schedule, S, for
the linear strategy whose graph is shown in Figure 7 is a minimum response-time
linear schedule for q.

Proof: Let S be a minimum response-time linear schedule for q.
Suppose S is not SO’ the 1-bus schedule for the linear strategy in Figure 7.
Then there must be two relations X,Y in q such that !X[B]] f.lY[C}f , where
B and C are the joining attributes of X,Y, respectively, and Y[C] is moved
over the bus immediately before X[B] is. We show in the Appendix that
the Schedule S§' obtained by exchanging these move steps has a response time
less than or equal to that of S. This argument can be repeated a finite
number of times to show that SD is a minimum response~time linear schedule
for q. O

As an example, for the schedule of Fig.9(b) to be a minimum response-time

linear schedule, we must have fw[A}]_i [X{B}] ﬁ‘[Y[C]’ j_iZ[D]!.

5. OPTIMAL M-BUS SCHEDULES

In Section 3 we showed that the l-bus Semijoin Scheduling Problem for
tree queries is NP-hard. We now show that when there are several buses
in the system, the problem is NP-hard even for the special cases of simple
queries and chain queries.

Theorem 3. Given a strategy ST{(q) for solving a query q and a fixed
number m of buses, the problem of constructing the minimum response~time
m~bus schedule SC(ST(q),m) is NP-hard when

(i) q is a simple query
(ii) q is a chain query

(iii) q is an arbitrary tree query
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Proof: First, observe that if we prove the problem NP-hard for (i)
or (ii), this will dimply that it is NP-hard for (iii).

To prove (i) and (i1i) we show a polynomial-time reduction from the
Multiprocessor Scheduling problem, which is known to be NP-hard [GJ 79].

An instance of the multiprocessor scheduling problem is the following.
Given a set T={1,2,...,n} of tasks, a number m of processors, and an
execution time c(t) e Z+ for each t € T, find the minimum m-processor
schedule for T.

(i) g is a simple query:

Construct an instance of the m~bus Semijoin Scheduling problem as

follows. Let the m processors be buses B .,Bm. Let g be the simple

100
query of Figure 10(a), and ST(g) the strategy of Figure 10(b). For each
i, 1 < i < n, choose the size of Ri{Ai} such that the cost of the move
step Ri{Ai}-+ R is the given c¢(i). Choose the size of R[A] such that the
cost of the local processing Ri[Ai=A>R is less than % s for each i, 1 < i < n.
Note that since the cnst of local processing monotonically decreases as
the sizes of the relations being semijoined decreases, we are guaranteed
that the cost of each local processing step Ri[Ai=A>R will always be less
than %~, even after R has been reduced by previous semijoins.

Suppose we can find a minimum response-time m-bus schedule for ST(q).
Deleting the steps of cost less than %~yields the minimum m-processor
schedule for the given instance of the Multiprocessor Scheduling problem.

This proves that m~bus Semijoin Scheduling is NP-hard for simple queries.

(ii) q is a chain query:

Construct an instance of the m~bus Semijoin Scheduling problem as

follows. Let the m processors be buses B .,Bm. Let g be the chain

100
query of Figure 11(a), and ST(q) the strategy of Figure 11(b). For each



a. Simple query g

b. Strategy ST(g)

Figure 10. A simple query and strategy for the proof
of Theorem 3(i).
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Figure 11.

b.

Strategy ST(q)

A chain query and strategy for the proof of
Theorem 3(ii).
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i, 1 <4 < n-1, choose the initial size of Ri[Ai] such that the cost of

the move step Ri[Ai] > R is the given c¢(i). Choose the size of

i+l

[An+l] such that the cost of the move step R ,.[A is the given

Rn+1 n+l n+1} M Rn

c{n). Choose the sizes of Rn[Dn] and Rn[An] such that the cost of each

[A

f the 1 1 i t R
0 e local processing steps e 1

= > = > i
1 Dn Rn and Rn+l[Dn+l An Rn is less

Choose the selectivity of Ri[Ai], 1 <1 < n-1, such that the

than =
+_L

. - N .
size of Ri[Ai Di+l Ri+l is small enough to make the cost of each move

step Ri+1[Di+1] -+ Ri and each local processing step Ri+1[Di+1=Ai>Ri’

i1 <1i<n-1 ss than
I <1 <n-1, 1le ha ey

Now suppose that we can find a minimum response~time m-bus schedule

for 8T(q). Deleting the steps of cost less than nil yields the minimum
m-processor schedule for the given instance of the Multiprocessor Scheduling
problem. This proves that m-bus Semijoin Scheduling is NP-hard for chain

queries. [J

6. CONCLUSIONS

We have suggested a two-step technique to process queries in distributed
database systems. First, a semijoin strategy to solve the query is constructed
based on some criterion,e.g. minimizing the total communication cost. Then,

a schedule for that strategy is constructed to minimize its response time.
In this paper, we have investigated the second problem in some detail for
bus or loop systems. We have shown that the problem of constructing
minimum response-time schedules for a given strategy is computationally
intractable, even in a l-bus system. For the case of m buses the problem
is NP-hard even for special classes of tree queries, viz. simple and chain
queries. This suggests that exact optimization is very hard. A pragmatic

approach, then, would be to develop heuristics that yield good approximate
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solutions to this problem. This is a subject for future research. Another
issue that merits investigation is the use of "mixed" strategies, i.e.,
strategies involving both semijoins and joins; these are appropriate when

queries are permitted to have more than one target relation.
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APPENDIX

Proof of Theorem 2

Let S be a minimum response-~time linear schedule for g. Suppose S
is not SO. Then, there must be two relations X, Y in g such that
]X{B]!4i IY[C]i, where B and C are the joining attributes of X, Y, respectively,
and Y[{C] is moved over the bus immediately before X[B] is. We show here
that the schedule S' obtained by exchanging these move steps has a response
time less than or equal to that of S.

Without loss of generality, assume that W is the relation whose
joining attribute W[A] is moved on the bus immediately before X[B] and
YIC] are in S and S'; and that Z is the relation whose joining attribute
Z[D], is moved on the bus immediately after X[B] and Y[C] are in S and S'.
Referring to Fig. 12, T', the response~time of 8', is given by:

T' = K' + LP}’{ + MOVE;{ + LP; + MOVE; + ALP; + 1’
where:

K is the cost of all steps in S8' upto and including the move of W[A]:

LP% is the local processing at the site of X from the time that X

receives W{A] until the move of X[B]; LP' = ALP' + c¢_.w.x, where*
x X

2
ALP; is the remaining local processing at the site of X

resulting from the move steps preceding the move of W[A]; and

czwx is the local processing cost of W[A=B>X;
MOVE; is the cost of the move step X[B] - Y,Z,...
MOVE' = Cp°¥-X :
£ D

*w denotes !W{A]I, x denotes §X[B]!, etc. D denotes the cardinality of the
domain of the joiming attributes.
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LP; is the local processing at the site of Y from the time that Y

receives X[B] until the move of Y{(]
WXy
D

ALP; is the remaining local processing at the site of Y

LP' = ALP' + ©2 , where
y y
resulting from the move steps preceding the move of X[B];
and CZ%XY is the local processing cost of X[B=C>Y;
MOVE' is the cost of the move step Y[C] -~ Z,...
y C. WXy
MOVE' = "1°%7
y

.

D
ALP; is the remaining local processing at the site of Z resulting from
the move steps preceding the move of Y[C]
T LI o
ALPZ maX(Lz Kl,O)
where Lz is the total local processing at the site of Z
resulting from all move steps preceding the moves of X[B]
and Y[C];
K. =K' + LP' + MOVE' + LP' + MOVE' ;
1 X X v v

L' is the cost of all the steps in S' from the local processing of

Y[C=D>Z to the end.

Symmetrically, T, the response time of S, is given by:

il

T K+ 1P + MOVE + LP + MOVE + ALP + L
y v X X z
But,
K = K', because the move steps preceding the move of W[A] are the
same in S and §°;
L > L' because the local processing of X[B=D>Z in S' is the same
as the local processing of Y[C=D>Z in S, and all subsequent steps
cost at least as much in S as they do in S (since the former use
y and the latter use %, and y > x);
LP = ALP + c wy
y y 2
= ALP' 4+ ALP' + A + c,wy where > 0
b4 v 2 -

This is because y > x (see Figure 12).
Move = 1%
y D

LPX= CZ%yX since X would certainly have finished all local processing

resulting from preceding move steps before Y has finished all its

local processing resulting from the same move steps.
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MOVE = S19%
x D2

ALP = max{(L - K, ,0)
Z Z 2

where L is as before, and

K,= K + LP_ + MOVE_ + LP_ + MOVE
2 v vy X X
Thus,
K, = K+ ALP! + c wx + C1¥2 4 arp! + 2 4 G ¥
1 ® 2 D v D D2
and oy o R4 ALP! £ ALP! + A+ cowy + C1EY 4 Co¥Y 4 WXV
2 X y 2 D D 02
K1 < KZ since x <y and 4 > 0

There are now three cases to consider:

1 < 0 and hence L -K, < 0):

This implies ALP; = ALPZ

Case 1 (LZ - K

il
ew]

Hence, T' = K +0+ L' < K, +0+L =0T

< 0):

Case 2 (I, — K, >0 and L - K
z z 2 -

1
This implies ALP' = L - K., ALP =0
z z 1 z

Hence, T' =K, + L - K +L1' =1 + L' <K, +L-=T
1 z 1 z - 2

Case 3 (Lz - K, > 0 and LZ - K.,> 0):

1 2

This implies ALP' =1L - K , ALP =1 =K
z z z z

13
Hence, T' = L+ L' <L +L=T.

2

Thus, we have shown that the response time T' of 8' is less than or
equal to the response time T of S. This argument can be repeated a finite
number of times to show that SO is a minimal response-~time linear schedule
for q. 1
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Figure 12,

¢
Proof of Theorem 2. L




