rd

LIVENESS OF MARKED GRAPHS AND COMMUNICATION

AND VLSI SYSTEMS REPRESENTED BY THEM

Mohamed G. Gouda

Department of Computer Sciences
The University of Texas at Austin

TR-163 December 1980






ABSTRACT

Marked graphs are a graph model to represent and study systems of parallel
computations and communicating processes. Live marked graphs correspond
to systems without deadlocks. An O{ng)—time algorithm to examine the
liveness of a marked graph with n nodes is presented. The algorithm is
based on a set of reduction rules which can be applied repeatedly to a

live marked graph to reduce it to an empty graph.

A subclass of marked graphs called connection graphs is identified to
represent the relationships between communicating processes. A reduction
algorithm to examine liveness of connection graphs is presented; its time

ig 0(n) where n is the number of nodes in the given connection graph.

A subclass of connection graphs, called array graphs, is identified to
represent the relationships between communicating cells in a VLSI array.
The array cells in an array graph are identical; and two arrays graphs
with identical array cells are said to belong to the same array graph
family. We prove that any array graph with arbitrary shape and size is
live iff a minimal array graph of the same array graph family is live.
This yields an O(n)~-time algorithm to examine the liveness of all members
of an array graph family, where n is the number of nodes in a single

array cell.

Keywords: Communicating processes, deadlock-free communication, marked
graphs, liveness, parallel computation models, polynomial-time algorithms,

VLSI arrays.






I. INTRODUCTION

Petri nets and related graph models have been proposed to represent [1],
[2], analyze [3], [4], and synthesize [5], [6] systems of paralliel com~
putations and communicating processes. For a comprehensive presentation
cf Petri nets and their use in system modelling, analysis, and synthesis,
the reader is referred to [7]. A subclass of Petri nets called marked
graphs has been shown sufficient [8] to represent a variety of such sys-
tems; e€.g., binary communication protocols, pipelined operations, and
parallel CPU and disk activities. Later in this paper we discuss two
other examples where sets of communicating processes and arrays of VLSI

are represented as marked graphs.

Live marked graphs represent systems which are free of deadlocks. There-
fore, to examine whether or not a given system is deadlock~ifree is equiv-
alent to examining whether or not its markea graph representation is live.
1f the marked grapn is large; i.e., has a large number of nodes, it 1is
important to use an efficient algorithm to examine its liveness. Such

an aigoritnm is especially important during tne design stages or the given

system to explore the effects of many design decisions on system liveness.

In this paper, we present three polynomial~time algorithms to examine the
liveness of marked graphs and two interesting subclasses of marked graphs
cailled connection and array graphs. A connection graph models a set of
communicating processes, while an array graph models a set of identical
communicating cells in a VLSI array. The algorithm for marked graphs,
discussed in sections TI and III, requires a time of 0(n3) where n is the
number of nodes in the graph. The algorithm for connection graphs, dis-

cussed in sections IV and V, requires a time of O(n) where n is the number



of nodes in the graph. The algorithm for array graphs, discussed in sec-
tions VI and VII, requires a time of O(n) where n is the number of nodes

in a single cell in the graph regardless of the graph's size or shape.



II. LIVENESS OF MARKED GRAPHS

A marked graph is a directed graph with a nonnegative number of tokens

assigned to each directed edge. A node in a marked graph is said to be
enabled if each of its input edges has at least one token. A node with-
out input edges is always enabled. An enabled node may fire; the firing
of an enabled node consists of removing one token from each of its input

edges and addiﬁg one token to each of its output edges.

Let M be a marked graph. A state s (or an initial state so) of M is de-

fined by the number (or the initial number, respectively) of tokens on
each directed edge in M. A state s is reachable if there exists a node
firing sequence which transforms the initial state 8 to s. A gtate s
of M is live if every transition in M is enabled at s or can be enabled
through some sequence of firings starting from s. M is live if each of

its reachable states is live. The following theorem is proved in [9].

Thegrem 1:

A marked graph M is live iff every directed cycle in M has at least one

token.

Based on this theorem, the liveness of a marked graph M can be examined
by generating all the directed cycles in M and counting the number of
tokens on each of them. Since the number of directed cycles in M is
exponential in n [10], where n is the number of nodes in M, the execution
time of this algorithm is exponential in n. In the next section, we pre-
sent a polynomial-time algorithm to examine liveness of marked graphs.

It is based on a set of four reduction rules which can reduce a live

marked graph to an empty graph; i.e., one with no nodes and no edges.



I¥I. A POLYNOMIAL~TIME ALGORITHM FOR LIVENESS OF MARKED GRAPHS

Consider the four reduction rules in Figure 1; each of them can be applied
to remove one node from a marked graph. Nétice that any rule is applicable
to remove node "a" only if each input edge of "a' has at least one token.
Whether or not the output of node "a" have tokens is irrelevant. Rule R1
(Figure la) is applicable when node "a" has inputs and outputs other than
its self-loops. Rule R2 (Figure 1b) is applicaﬁle when node '"a" has no
outputs other than its self-loops. Rule R3 (Figure lc) is applicable when
node "a" has no inputs other than its self-loops. Rule R4 (Figure 1d) is
applicable when node "a' has neither inputs or outputs other than its self-
loops. 1In each case, the rule is applied by removing node "a" along with
its inputs and outputs; but in rule Rl edges are added as follows. An

edge with a token is added from any node immediately preceeding node "a"

to any node immediately succeeding node "a".

Based on these four reduction
rules, the following reduction algorithm can be applied to a marked graph

M to examine its liveness.

Algorithm 1

temp := M

do [ Rl is applicable to "temp" > temp := R1 (temp)
[0 R2 is applicable to "temp" = temp := R2 (temp)
[l R3 is applicable to "temp" - temp := R3 (temp)
[J R4 is applicable to "temp' - temp := R4 (temp)
] od;

result M is live iff temp = empty

end



{(a) R1

£ \,@ @ -] @
d
(b) R2
| - %% o e &
rd
{c) R3
g ‘:?3 empty
(d) R4

Figure 1. Reduction rules for marked graphs



Notes:

(i) Variable "temp" is of type marked graph; it stores the intermediate
marked graph during the reduction. At the beginning, ""temp" stores the
original marked graph M. At the end, "temp" is the empty graph; i.e.,

one with no nodes and no edges, iff M is live, as shown in Theorem 2
{below).

(i1) The notation: do [...[] guardi -+ statement; [l...] od defines a repet~
itive guarded command as introduced by Dijkstra [11]. When the booclean

expression guards is true, statements
P & + " 1 may be executed. When all guards

are false, the execution contrcl moves to the next statement.
(1ii) The statement: temp := Ri (temp) means apply the reduction rule Ri
to the marked graph "temp” and store the resulting marked graph back in

"remp!.

Now, we prove that Algorithm 1 is both correct (Theorem 2) and efficient

{Theorem 3).

Theorem 23
If Algorithm 1 is applied to a marked graph M, then
(i) 4t terminates, and
(ii) it yields an empty marked graph iff M is live.

(i) Termination:

Each application of a reduction rule reduces the number of nodes in M by
one. Since M has a finite number of nodes, Algorithm 1 must terminate.

(ii) Final marked graph is empty 1ff M ig live:

By inspecting the reduction rules in Figure 1, it is straightforward to

show the following three properties.



Pl: No reduction rule adds new cycles to the marked graph; i.e., any

cycle in the graph after some sequence'of reductions corresponds to

a'cycle in M.

PZ: No reducfion rule adds tokens to cycles without tokens before the
reduction; and no reduction rule removes all the tokens from a cycle
with tokens before the reduction. Hence, any cycle with tokens in
the graph after some sequence of reductions corresponds to a cycle
with tokens in M. Moreover, any cycle without tokens in the graph
after some sequence of reductions corresponds to a cycle without

tokens in M.

P3: Any reduction rule removes only self-loops with tokens. From Py,

these self-loops correspond to cycles with tokens in M;.

If Part:

Assume that M is not live. From Theorem 1, M must have at least one cycle
C without tokens. From P2, no reduction rule can add tokens to C. TFrom
P3, no reduction rule can remove C. Therefore, the final marked graph is

not empty since it contains C at least.

Only If Part:

Assume that the final marked graph M' is not empty. M' does not contain

a node with tokens on all its inputs, otherwise one of the rules Rl1, RZ,

R3, or R4 can still be applied to M' and reduce it even further. Hence,

no node can fire in M', and M' is not live. From Theorem 1, M' must have
at least one cycle C without tokens. From Pl and P2, M must also have

cycle C without tokens. From Theorem 1, M is not live. O

Theorem 3:
The execution time of Algorithm 1 when applied to a marked graph M is

O(n3), where n is the number of nodes in M.



Proof:

Since each reduction removes exactly one node from M, Algorithm 1 performs
at most n reductions when applied to M. Each reduction consists of the
following three steps. First, traverse and examine the edges in the marked
graph to check whether or not any reduction is applicable. Second, remove
one nodé and its inputs and outputs. Third, add new edges if needed; i.e.,
when reduction rule Rl is applied. The execution time of all three steps

is O(nz); and the execution time of Algorithm 1 is O(n3}.

The above result is based on the assumption that the total number of edges
in the marked graph is 0(n?) after any sequence of reductiocmns. This is
valid if there are no duplicate edges between any two nodes in the graph.
To guarantee this condition, duplicate edges should be detected and re-
moved from the original graph M and after each application of reduction
rule Rl which adds new edges to the marked graph. Duplicate edges from
node nj to node ny, in a marked graph are removed as follows. If all

edges fromn; to np have tokens, then remove all of them except one, any
one. Otherwise, keep exactly one edge without tokens from nj to no. It
is straightforward to show that this removal of duplicate edges does not

affect the liveness of a marked graph. U

Algorithm 1 can be made more efficient as follows. First, detect the
strongly connected components® in the given marked graph M. Then, show

that each of them is live by reducing it to an empty graph using only

*A strongly connected component m of a marked graph M satisfies the fol-
lowing three conditions: (i) m is a marked subgraph of M, where the
tokens on each edge e in m are the same as those on e in M. (ii) m is

strongly connected; i.e., there is a directed path from any node to any

other node in m. (iii) If m; is any other strongly connected component

of M, then m; does not have any common nodes with m.




reduction rules Rl and R4. Finally, it can be shown that M is live iff

all 1its strongly connected components are live. This modification makes
the algorithm more effecient since in many cases strongly connected com—
ponents represent a small part of M; however, in the worst case the exe-
cution time for the algorithm is still O(n3), We leave the details to

the reader.

For any given subclass of marked graphs, it may be possible to find another
set of reduction rules to speed-up the reduction algorithm for that partic-
ular subclass. In the next section, we identify such a subclass: members
of that subclass are called connection graphs. A connection graph is a
marked graph which represents the relationships between a number of commu-
nicating processes, called cyclic processes. The communications between
cyclic processes in a connection graph are free of deadlocks iff the con-

nection graph is live.



Iv. CORNECTION GRAPHS

A cyclic process is a directed graph with two types of nodes, called send-

ing and receiving nodes, and two types of directed edges, called links and
buffers such that the following four conditions hold:

(i) Each sending node is represented as a rectangular node, and has one
input link, one output link and, one output buffer (Figure 2a).

(ii) Each receiving node is represented as a circular node, and has one
input link, one output link, and one input buffer (Figure 2b).

(iii) One of the nodes in the process, identified by a small arrow input

to it, is called the initial node.

(iv) The links, and the sending and receiving nodes form a directed cycle,

whereas the buffers represent the inputs and outputs of this cycle.

Figure Zc shows a cyclic process P. It has five nodes, three of them are
sending nodes, and the other two are receiving nodes. Receiving node 1

ig the dinitial node of P.

A sending (or receiving) operation is associated with each sending (or
receiving) node. The associated operation can be executed only when its
node is "enabled". At the beginning, the initial node is enabled. Then,
after its associated operation is executed, the following node in the pro-
cess is enabled, and so on. The "enabling" sequence continues such that
at any instant only one node in the process is enabled. To identify the

enabled node at any instant, a token, called the control token is placed

on the node inmput link. 1In Figure 2c¢, the control token is placed on the

input link of the initial node.

A sending node in a cyclic process is enabled if the control token is on



Input Iéput
link Link
Input
Output buffer
buffer =@r=—-— T /
Cutput : g?t§Ut
link § iin
(a) Sending node (b) Receiving node
Initial
node

(¢) An example of a cyeclic process

X Control §
Control 5

" -

) =D -

é Control Control
. 7 |
V ¥ V

(d) Sending a message (e) Receiving a message

Figure 2. The model of cyclic processes



10

its input link. In this case, the sending node can be executed. The
execution consists of (i) moving the control token to the node's output
link, and (ii) putting a message token on the node's output buffer (Fig-

ure 24).

A receiving node in a cyclic process is enabled if the control token is
on its input link. In this case, it can be executed only if there is at
least one message token on its input buffer. The execution consists of
(i) moving the control token to the node's output link, and (ii) removing

one message token from its input buffer (Figure 2e).

Interactions between cyclic processes are achieved by exchanging message
tokens via their buffers. This requires that processes share (or be con-

nected by) common buffers.

A set of cyclic processes is called connected if any input {(or output)
buffer of one process is an output (or input, resvectively) buffer of
another process in the set. The directed graph showing the processes and

thelr connecting buffers is called the connection graph of the set.

The state of a connection graph is defined by the number of tokens on each

buffer, and the enabled node in each process. The initial state is a state

in which all buffers are empty, and the enabled node in each process is its
initial node. A state s 1s called reachable iff there is an execution se-
guence that leads from the initial state to s. As an example, Figure 3
shows a connection graph of three cyclic processes Py, Pp, and P3; the

connection graph is in its first reachable state after its initial state.

A comnection graph is in a deadlock state if in this state some of its

processes satisfy the following two conditions:



Figure 3. A connection graph of

three cyclic processes

Pl, PZ’ and Pg’



(i) In this state, the enabled nodes in these processes are receiv-
ing nodes with empty input buffers.
(i1} In all the states which can be reached from this state, these
buffers remain empty.

The communication in a connection graph G is deadlock-free iff G can never

reach a deadlock state.

Any connection graph is a marked graph where sending and receiving nodes
are simply nodes, buffers and links are just directed edges, and message
and control tokens are simply tokens. It 1s straightforward to show that
the communication in G is free of deadlocks iff G is live. Thus, one way
to examine that the communication in G is deadlock-free is to use Algorithm
1 to examine the liveness of G. Another alternative is to develop a more
efficient algorithm to examine liveness of connection graphs specifically.
Such an algorithm is discussed in the next section. It is based on six
reduction rules; each of them, when applied, removes two nodes from the
connection graph. Thus, the algorithm performs at most %'reduct10335 where

n is the number of nodes in the connection graph.



12

V. A POLYNCOMIAL~-TIME ALGORITHM TO EXAMINE LIVENESS OF CCNNECTION GRAPHS

Consider the six reduction rules S1 to S6 in Figure 4, where g is that

part of the connection graph not invelved in the reduction. Each of these

rules can be applied to remove a sending node "a" and the receiving node

b connected to it via a buffer, provided that there is a control token
"

on the input link of node "a". Whether or not the receiving node "b" has

a control token on its input link is irrelevant.

Each reduction rule involves two cyclic processes. Rules Sl and 52 are
applicable only if each of the involved processes has at least two nodes.
Rules 83, S4, and S5 are applicable only if one process has exactly one
node, and the other has at least two nodes. Rule S$6 is spplicable only

if each of the two involved processes has exactly one node. Based on these
six reduction rules, the following reduction algorithm can be applied to

any connection graph G to examine its liveness.

Algorithm 2:
step 1: temp := Gj

step 2: find every sending node whose input link has a token
in temp:
let N be the set of all those nodes;

step 3: while N is not empty do
remove any element n from N;
let n' be the receiving node connected to n by a
buffer in temp;
apply the appropriate reduction rule to remove
buffer (n, n') from temp;
let temp be the graph after reduction;
examine whether the reduction has produced* new
sending nodes whose input links have tokens
in temp;
if so, add these new nodes to N;
endwhile

step 4: result communication in G is deadlock-free iff temp=empty

en

% Referring to Figure 4, reduction rule S1 can produce up to two such nodes;
rules S2, S3, and S4 can produce at most one; but 55 and 86 cannot produce
any such nodes.



ey

8
g
l @ s

(a) s1

Figure 4.

(b) s2
—=> } “‘é
(c) $3 B

Reduction rules for connection graphs



b s e e e

(d) s&

o eEm J

R e cxsmmen o

(e) 85

emgtg

(f) s6

Figure 4. Continued



Now we prove that Algorithm 2 is correct (Theorem 4), and more efficient

than Algorithm 1 (Theorem 5).

Theorem 4:
If Algorithm 2 is applied to a connection graph G, then
(i) it terminates, and
(ii) it yields an empty connection graph iff the communication in G
is deadlock-free.
Proof:

(1) Termination:

Each application of a reduction rule reduces the number of nodes in the
connection graph by two. Thus, the number of iterations in step 3 is at

n R . .
most<§ where n is the number of nodes in G. Therefore, step 3 must termi-

nate, and so does Algorithm Z.

(ii) Final graph is empty iff communication in G is deadlock-free:

Since each reduction rule is applicable only when a sending node has a
token on its input link, step 2 finds all such nodes in the original graph
G. TFor each such node, step 3 performs the appropriate reduction and findsg
any new sending node whose input link has tokens due to the reduction.

This continues until no more reductions are possible. 1In effect, step 2

and step 3 perform all the possible reductions on G using rules 81 to S6.

If Part:

Any of the six reduction rules may remove cycles from the connection graph.
We show that each of them removes only those cycles which contain tokens.
Then, on reaching an empty graph, we conclude that each cycle in the orig-
inal connection graph has at least one token; hence the original graph is

free of deadlocks by Theorem 1. The reduction rules can be grouped into



14

three sets:

a. BRules 81 and S2:

FEither of these two rules removes one buffer with its tail and head nodes.
However, as shown in Figures 4a and 4b, each cycle which contains the buffer

also contains at least one token.

b. Rules 83, S4, and S5:

Each of these rules removes one cycle which has one control token, as shown

in Figures 4c, 4d, and 4e.

¢c. Rule 56:
This rule removes two cycles; each of them has one control token, as shown

in Figure 4f.

Only If Part:

Assume that the communication in a connection graph is free of deadlocks.
We want to show that the reduction rules can reduce the connection graph

to an empty graph.

Assume that during the application of these rules to a comnection graph G,
we have reached a nonempty graph G' to which no rule can be applied. In

G', no token is on the input link of a sending node, otherwise ome of the
transformations can be applied. All control tokens should be on the input
links of receiving nodes with empty buffers. This is a deadlock state for
G'; i.e., G' is not live. From Theorem 1, G' must have a cycle which does
not have tokens. This cycle should also exist in the original connection
graph G. Hence, the communication in the connection graph is deadlocked

contradicting the assumption at the beginning. U

Theorem 5:

The execution time of Algorithm 2 when applied to a connection graph G is



i5

0{(n), where n is the number of nodes in G.

Proof:

The execution time for Algorithm 2 is dominated by that of step 3. 1In the
n . : .
worst case, step 3 executes E-lteratlons; each of them requires an execu-

tion time bounded by some constant regardless of the number of nodes or

edges in G. Thus, the execution time of Algorithm 2 is o(n). 1

Processes in a connection graph communicate using a non-blocking send/
blocking receive communication protocol; i.e., a process resumes execution
immediately after sending a message and does not wait for the other process
to receive it. In [12], Hoare employs a blocking send/blocking receive
communication protocol where both the sending and the receiving processes
wait until the message transmission occurs; then they both resume execution.
If this protocol is used for the communication between cyclic processes,
then the resulting class of systems can still be represented as connection
graphs. Figure 5 shows how to represent a blocking send/blocking receive
communication as two successive non-blocking send/blocking receive communi-
cations. The result is a connection graph with twice the number of nodes
as in the original graph; thus, Algorithm 2 can still be applied to examine
the liveness of the original graph in a linear time with respect to the

number of nodes in the original graph.

In the next sections, we discuss how to use Algorithm 2 more efficiently
to examine the liveness of connection graphs where most processes are
identical. Such connection graphs are called array graphs; they are use-

ful in modelling the communications within VLSI arrays [131.



(a) Blocking send/ (b) Non-blocking send/
blocking receive blocking receive

Figure 5 Mapping from blocking send/blocking receive to
non-blocking send/blocking receive.



VI. ARRAY GRAPHS
An array graph consists of a number of identical array cells and a number
of end cells. Communications between the different cells in an array

graph are assumed to be asynchronous. This assumption does not limit our

study to asynchronous self-timed VLSI arrays [14]; the results are also
applicable to synchronous arrays since if an asynchronous communication
is deadlock-free then any synchronous version of that communication is
also deadlock-free. In this section, we define array graphs with rec~
tangular cells, then extend the results to arrays with hexagonal cells
in the next section. These two types of cells are of special importance
since they fully utilize the chip area. 1In [15], it is shown that many

matrix operations can be realized using rectangular and hexagonal cells.

An array cell A is a cyclic process, as defined in section IV, with the

following three additional conditions:

(i) All sending nodes in A are adjacent and followed by all receiving

nodes.

(ii) Each input or output buffer has a name and a direction out of the

four directions: west, east, north and south.

(1ii) For each input (or output) buffer, there is exactly one output (or

input respectively) buffer with the same name and the opposite direction.

As an example Figure 6a shows an array cell A. It has four adjacent

sending nodes followed by four adjacent receiving nodes. For convenience,
the name of each input (or output) buffer is written inside the associated
receiving (or sending) node in Figure 6a. Sending node "d" is the initial
node; so the control token of A is on its input link initially as shown in

Fig. 6a. Notice that cell A satisfles the above condition (iit); for



WesSt egmd

West
buffers

e HAST

North buffers
-

Initial
node

5, D, SR ¥

N s

[

i )

e e s

>

S -
c
T '
} %
i i
T t
% §
Al b
~
South buffers
(a) Detailed
al d
4 §
| ;
a a
e oo S s o e
A — A a——
W o e e e
b b
T g é
c§ éd
(b} Block

{(c) Abstract

Figure 6 Different graphical representations for an array cell A

East
buffers



i7

instance, A has an input west buffer named "a", and an output east buffer
19,1t

also named "a''. TFigures 6b and 6c show less~detailed graphical represen-

tations for arréy cell A.

Because of condition (iii), there is a one-to~one correspondence between
west and east buffers, and between north and south buffers in an array

cell. Therefore, identical cells can be connected such that the west (or
north) buffers of one cell are connected to the east {or south respectively)
buffers of another cell. Ultimately, this yields a mesh structure as shown

in Figure 7a.

Let A be an array cell. A cyclic process W is called a west cell for A
iff for each input (or output) buffer in W, there is exactly one output
(or input respectively) west buffer in A, and vice versa. Similarly, de-
fine E, N, and S to be east, north, and south cells for A. The four cells

W, E, N, and S are also called compatible end cells for A.

A west cell W can be comnnected to an array cell A by connecting each buffer
in W to its cbrresponding west buffer in A, as shown in Figure 7b. Simi-
larly, cells E, N, and S can be connected to array cells as shown in

Figures 7¢c, 7d, and 7e,

Let A be an array cell; and let W, E, N and S be a compatible set of end
cells. A connected directed graph G is called an array graph based on
A, W, E, N, and S iff G is constructed by connecting cells identical to

A, W, E, N, and S such that the following three conditions are satisfied:



18

(i) Each end cell is connected to one array cell.

{ii) Each array cell is connected to four cells, at most three of them

are end cells.

(iii) Restriction: The west buffers of at least one array cell must be
connected to the east buffers of another array cell; and the north buffers
of at least one array cell must be connected to the south buffers of other

array cells.

Restriction (iii) is only intended to simplify the presentation in the next
section. But this restriction means that all the array cells in an array
graph should not form a single one-dimensional array; because this restricted
case is an important one, we will discuss it separately later in the next

section.

Because of restriction (iii), a minimal array graph must have at least
three array cells forming an L-shape as shown in Figure 8. There are four

such minimal graphs.

For any compatible set of cells A, W, E, N, and S, a family of array graphs

can be based. Members of such a family differ in their sizes and shapes;
but each of them is based on the same set of cells. In the next section
we show that every member in such a family is live iff a specific member,
namely an L-shaped array graph (Figure 8), is live. Based on this result,
we give an O(n)-time algorithm to examine the liveness of every member in
an array graph family, where n is the number of nodes in a single array
cell. Also in the next section we discuss similar results for one-

dimensional array graphs and for hexagonal array graphs.



= Fast

N T
{-_ A @-_._..;:-_..i%: A _L\
H g b Té
§ ! | . T ; .
el e} 14 S st BN = S S i
I ! % b T T b
& . i -
> b (c)
A - AN

Ym
-
=
T
>

wm“mwmn@gm
o e csams s e s e Ee]

T e e e s s

e

c d c; id
g—-A—g S
A
(d) (e)

Figure 7 Five types of connections in an array graph.

N
W A E
N
W A A E
S S

Figure 8 An L-shaped Array Graph. (A minimal array graph)




VII. LIVENESS OF ARRAY GRAPHS

Since array graphs are marked graphs, Theorem 1 holds for them as well.
From Theorem 1, an array graph G is live iffkevery directed cycle in G
has at least one token. There are two types of directed cycles in G,
namely cycles which consist solely of links and cycles which have one or
more buffers. Each cycle of the first type is contained completely in
one cell and is guaranteed to have one token, namely the control token of

that cell. Therefore, we need only consider cycles which have buffers.

Figure 9 shows a cycle with four buffers; it spans three cells Ej, Ep, and

Ez. This cycle consists of four buffers "a," "b," "c," and "d" and four

parts, called internal paths, inside the three cells. Each internal path

starts with a receiving node and ends with a sending node. TFor example,

the internal path in cell E; begins with the receiving node for input buffer
"a" and ends with the sending node for output buffer "b"; this internal path
is denoted [a,b>. Cell E, has two internal paths [b,&> and [d,&>»; and cell
E3 has one internal path [c,d> This cycle has a token iff at least one of
the four internal paths [a,b>», [b,c>, [c,d>, and [d,é:>has initially the
control token of its cell. These concepts are useful t0>prove the following
two lemmas which state, in principle, that if an array graph has a "large"

cycle without tokens then it must also have a "small" cycle without tokens.

Lemma 1:

An array graph G has a cycle Cj;, without tokens, which spans at least one
array cell A and one end cell E iff G has a cycle Cp, without tokens, which
spans exactly cells A and E.

Proof: is in Appendix I. 0



.
i
b e o s o s s s e s SN

[s 9

"V AVUPTRGRE RPN pR——

Cell Ej

Figure 9 A cycle with four buffers "a", "b", "c'", and "4",
which spans three cells E;, Ep, and E3 in a rectangular
array graph.



20

Lemma 2:

An array graph G has a cycle Cj, without tokens, which spans array cells
only iff G has a cycle Cp, without tokens, which spans exactly two array
cells.

Proof: is in Appendix I. W
From these two lemmas we can prove the following theorem.

Theorem 6:
Let G be an array graph; and let GL be an L-shaped array graph (as in
Figure 8) which is based on the same cells as G. Then,
G is live iff GL is live.
G is not live
iff G has a cycle C; without tokens (Theorem 1)
iff either C; spans at least one end cell
iff G has a cycle Cp, without tokens, which spans exactly one
array cell and one end cell (Lemma 1)
iff GL has a cycle, similar to Cop, without tokens
or Cy spans array cells only
iff G has a cycle Cp, without tokens, which spans exactly two
array cells (Lemma 2)
iff GL has a cycle, similar to Cp, without tokens

iff GL is not live (Theorem 1). L

Corollary 1:

An array graph G is live iff each member of the array graph family of G
is live. N

Theorem 6 suggests the following algorithm to examine the liveness of an



21

array graph G based on cells A, W, E, N, and S.

Algorithm 3:
step 1: Construct an L-shaped array graph GL based on the cells A,
W, E, N, and S

step 2: Use Algorithm 2 to examine the liveness of GL

step 3: result G is live iff GL is live

end

From Corollary 1, Algorithm 3 examines, as a side effect, the liveness of
every member of the array graph family of G. The following theorem estab-

lishes the time complexity of Algorithm 3.

Theorem 7:

The execution time of Algorithm 3 when applied to an array graph G is O(n),
where n is the number of nodes in a single array cell in G.

Proof:

The execution time of Algorithm 3 is dominated by that of its second step.

From Theorem 5, the execution time is 0(m), where m is the number of nodes

in GL° As shown in Figure 8, GL consists of three array cells (of n nodes

each), and eight end cells. Since every four end cells have n nodes, we

get m = 5n. Therefore, the execution time of Algorithm 3 is O(n). U

Algorithm 3 does not apply to one-dimensional array graphs (namely hori-
zontal and vertical array graphs shown in Figure 10) because of our re-
stricted definition of array graphs in the previous section. Nevertheless,
Lemmas 1 and 2 are applicable to any one-dimensional array graph GN(k) of
order k where k is the number of array cells in the graph (Figure 10).

These two lemmas can be used to prove the following theorem.



n array cells N
A. %
7~ ] h
W A — E
N N N i
| W A 1 E
Wk A+ A cee — E i > n Array
® cells
| E :
[ 4
S S S ]
W A — E
8

{a) Horizontal array graph
GH(n) of order n (n 2 2)

(b) Vertical array graph
Gv(n) of order n {(n = 2)

Figure 10 One-dimensional array graphs of order n (nz2)



22

Theorem 8:

Let GN(k) be a one-dimensional array graph of order k(k22). GN(k) is live
iff GN(Z) is live.

Proof: is identical to that of theorem 6 excépt replace G by GN<k) and

GL by GN(Z). (]
Now we can modify Algorithm 3 by replacing G by GN(k) and GL,by GN(Z) S0
that it becomes applicable to one—dimenéional array graphs. Its time

complexity remains linear in the number of nodes in one array cell.

The above discussion for rectangular array cells can be extended to hex-

agonal cells. A hexagonal array cell is a cyclic process with adjacent

sending nodes followed by receiving nodes; every sending (or receiving)
node is associated with an output (or input) buffer. Each buffer‘has a
name and a "direction" from the following six directions: north, north-
west, north-east, south, south-west, and south-east. For each input (or
output) buffer with one direction, there eiists an output (or input re-
spectively) buffer with the same name but with the "opposite" direction,
as illustrated in Figure 11. Two identical hexagonal array cells can be
connected by connecting each north (or northwest or northeast) buffer in
one cell to the corresponding south (or southwest or southeast respectively)

buffer in the other cell, as illustrated in Figure 12a.

For any hexagonal array cell A, define a north end cell N to be a cyelic
process such that for each north input (or output) buffer in A there is
one output (or input) buffer in N. Similarly define NW, NE, S, SW, and

SE te be a northwest, northeast, south, southwest, and southeast end cells

for A. The connections between A and these end cells are illustrated in

Figure 12,

Let A be a hexagonal array cell: and let N, NW, NE, S, SW, and SE be a



North

buffers
e
Northwest ; % Northeast
buffers al b buffers
{\\f\ | 9// /:,
X o e
55 K
e : o
Southwest &, & . JESoutheast
buffers éa p: buffers
i
(-
South
buffers

Figure 11 A block representation of a
hexagonal array cell.

(d)

(e) (£) (g)

Figure 12 Different connections in a hexagonal array graph.



23

compatible set of end cells. A hexagonal array graph based on A, N, NW,

NE, S, SW, and SE is a connected directed graph constructed by connecting
cells identical to A, N, NW, NE, S, SW, and SE such that the following three
conditions are satisfied: (i) Each end cell is connected to one array

cell; (ii) each array cell is connected to six cells; and (iii) G must

have at least four array cells connected as shown in Figure 12a. Because
of condition (iii), the minimal hexagonal array graph based on A, N, NW,

NE, S, SW, and SE is shown in Figure 13.

Lemma 1 for rectangular array graphs is also applicable to hexagonal array
graphs with an identical proof. The following Lemma 3 and Theorem 9 for
hexagonal graphs are analogous to Lemma 2 and Theorem & for rectangular

graphs.

Lemma 3:

A hexagonal array graph G has a cycle C;, without tokens, which spans
hexagonal array cells only iff it has a cycle Cy, without tokens, which
spans at most three hexagonal array cells.

Proof: 1In Appendix I. O

Theorem 9:
Let G be a hexagonal array graph; and let GM be the minimal array graph
based on the same cells as G. Then G is live iff GM is live.

Proof: 1is identical to that of Theorem 6 except for replacing GL by G,

and replacing the reference to Lemma 2 by that for Lemma 3. g

From Theorem 9, an algorithm to examine the liveness of a hexagonal array
graph G is identical to Algorithm 3 except for replacing GL by GM. The
execution time for this algorithm is O(n) where n is the number of nodes

in one array cell; the proof is similar to that of Theorem 8,



Figure 13 The minimal hexagonal array graph based on Cells A,
N, NW, NE, S, SW, SE.



24

VIII. CONCLUSIONS

We have presented three algorithms to examine the liveness of marked graphs,
connection graphs, and array graphs. The time complexity for the first
algorithm is 0(n3®) where n is the number of nodes in the marked graph. The
time complexity for the second algorithm is O(n) where n is the number of
nodes in the connection graph. The time complexity for the third algorithm

is O(n) where n is the number of nodes in one array cell.

The second and third algorithms are most useful during the design stages
of communicating processes and VLSI arrays to ensure that their communi-

cations are deadlock-free.

One research problem is to extend the analysis in this paper to communi-
cating processes whose structures are more complex than cycles of sending

and receiving nodes.

ACKNOWLEDGEMENTS
The author is thankful to J. L. Peterson for his helpful comments and to

Sheila Foster for her careful typing.



25

REFERENCES

[1]

[2]

[3]

[4]

£51]

[6l

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[151]

T. Agerwala, "Putting Petri Nets ot Work," Computer, Vol. 12, pp.85-
94, Dec. 1979.

P. M. Merlin, "A Methodology for the Design and Implementation of
Communication Protocols,' IEEE Tran. Commun., Vol. COM-24, pp. 614-
621, June 1976.

J. L. Peterson, "Petri Nets," Computing Surveys, Vol. 9, pp.223-252,
Sept. 1977.

C. V. Ramamoorthy and G. S. Ho, '"Performance Evaluation of Asynchro-
nous Concurrent Systems Using Petri Nets,"” IEEE Trans. Software Eng.,
Vol. SE-6, pp. 440-449, Sept. 1980.

T. Agerwala and Y. C. Choed-Amphai, " A Synthesis Rule for Concurrent
Systems," in Proc. 15th Design Auto Conf., Las Vegas, NV, June 1978,
pp. 305-311.

T. Murata, "Circuit Theoretic Analysis and Synthesis of Marked Graphs,"
1EEE Trans. Circuits Syst., Vol. CAS-24, pp. 400-405, July 1977.

J. L. Peterson, Petri Net Theory and the Modelling of Systems,
Prentice-Hall, Inc., Englewood Cliffs, 1981.

T. Murata, "Synthesis of Decision-Free Concurrent Systems for Pre-
scribed Resources and Performance,”" IEEE Trans. Software Eng., Vol.
SE-6, pp. 525-530, Nov. 1980.

F. G. Commoner et al., '"Marked Directed Graphs,” J. Comp. Syst. Sci.,
Vol. 5, pp. 511-523, Oct. 1971.

E. M. Reingold et al., Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Inc., Englewood Cliffs, 1977, pp. 348-349.

E. W. Dijkstra, ""Guarded Commands, Nondeterminacy, and Formal Depri-
vation of Programs," Comm. of the ACM, Vol. 18, No. 8, Aug. 1975,
pp. 453-457.

C. A. R. Hoare, "Communicating Sequential Processes,' Communications

of the ACM, Vol. 21, No. 8, pp. 666-667, Aug. 1978.

C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley
Publishing Company, Inc., 1980.

C. L. Seitz, System Timing, Chapter 7 in reference [13], pp. 218-262.

H. T. Kung and C. E. Leiserson, Algorithms for VLSI Processor Arrays,
Section 8.3 in reference [13], pp. 271-292.




26

APPENDIX I

PROOFS OF LEMMAS

Proof of Lemma 1:

Figure l4a shows an outline of a cycle Cj, without tokens, which spans at
least one array cell A and one end cell E. In this cycle, [a,B> and [c,d>
are two internal paths in A and [b,¢> is an internal path in E. The
directed path from output buffer "d" to input buffer "a" may involve cell
edges other than in A or E. Since C; has no tokens, then the control token
of A is not initially on the internal paths [a,b> and [c,d>. Also, the
control token of E is not initially on the internal path [b,c>. There are
only four arrangements to order the two internal paths [a,b> and fe,d>in
A; they are shown in Figure 14b. (This is because all sending nodes should
be adjacent and followed by all receiving nodes in A.) In each of these
four arrangements, since the control token of A is not initially on the
internal paths [a,b> and [c,d>, then it is not initially on the dinternal
path [c,b>. Therefore, a cycle C, without tokens can be constructed, as
shown in Figure lé4c, from the two buffers b and ¢, and the two internal
paths [¢,B> in A and [b,c>» in E. Notice that this cycle spans cells A

and E only., g

Proof of Lemma 2:

To prove Lemma 2, we need first to state and prove the following two lemmas.
Lemma 4:

1f two internal paths [a,b> and [b,> in an array cell have no tokens, then
internal path [a,c> has no tokens.

Figure 15 shows all the four arrangements in which the four operations

receive from "a", send to "b", receive from "b", and send to "c¢" can be



//,3 <__Cy'cle

o RS
~ 4
rd g
oo/
i
End cell E Array cell A ®
)
§
c fo= d g
~ |
\\ ‘
\\
(a) An outline of cycle C; ~1

%

3
b
L
i
d

(b} Four possibilities to order the two internal paths [a,b
and [c,d idin array cell A.

b

End cell E v Array cell

c A
e At e ]

(¢) An outline of cycle Cp

Figure 14 Proof of Lemma 1



27

arranged in an array cell. (This is because all sending nodes should be
adjacent.) In each arrangement if [a,b> and [b,> have no tokens, then
[a,c has no tokens. [J

Lemma 5:

For any positive integer k (k22), if k internal paths [ag,a>, [aj,a>,

N [ak_l,ak)>in any array cell have no tokens, then the internal path

[ag,a has no tokens.

k
Proof: (by induction on k)

For k = 2, if [ag,a;> and laj,a,> have no tokens, then [ag,a>> has no tokens
by Lemma 4. Consider the case when the n + 1 internal paths [ag,ad, .y
[an’an+l> have no tokens. Then [a@,an> has no tokens by induction hypothesis.

Since [ao,an> and [an,an+£> have no tokens, then [ao,an+r> has no tokens

by Lemma 4. N

Lemma 2 can now be proved as toliows.

It Part: Assume that G has a cycle C1, without tokens which spans array
cells only. Cycle C; must have two intermediate buffers b and b' with
opposite directions w.r.t. their tail array cells, as shown in Figure 16a.
Let the buffers from b to b' on cycle C; be by, by, ..., and bk' Then

the internal paths [b,b;>, [bj,bs>,..., and [bk,b‘> have no tokens since
Cy has no tokens. From Lemma 5, the internal path [b,b'> has no tokens.
Similarly, we can show that the internal path [b',b has no tokens.
Therefore, there exists a cycle Cp in G constructed from the two buffers

b and b', and the two internal paths [b,b"™ and [b',b>, as shown in Figure

16b. Cycle C; has no tokens; and it spans two array cells only.

Only If Part: Immediate. L




Figure 15 Proof of Lemma 4

‘yaglg_ -PK Cycle Cy
\
N\
Y
@
L]
. e ————
b b1 'ﬁ
R S O el
(a)

Figure 16 Proof of Lemma 2

Cycle Cop
b!
AT o o e e e
_____ e Ay
b
(b)




28

Proof of Lemma 3:

Lemmas 4 and 5 in the appendix are also valid for hexagonal array cells.
If Part: Assume that G has a cycle €y, without tokens, which spans hex-—
agonal array cells only. Cycle C; must satisfy at least one of the fol-
lowing two properties:
(i) C; contains two buffers b and b' of opposite directions w.r.t.
their tail array cells.
(ii) C; contains three buffers b, b', and b'' of directions
either north, south-east, and south-west
or south, north-west, and north-east
w.r.t. their tail array cells.
From (i) and Lemma 5, we have that the two internal paths [b,b'> and [b',>
have no tokens. Therefore, there exists a cycle Cy in G which consists of
the two buffers b and b', and the two internal paths [b,b"™ and b",b™
have no tokens. Cycle Co spans two array cells only.
From (ii) and Lemma 5, we have that three internal paths Ib,b'™>, [b',b7 ">,
and [b'',b>have no tokens. Therefore, there exists a ecycle C, in G which
consists of the three buffers b, b', and b'", and the three internal paths
(b,b'™>, [b',b""™>, and [b'',b> and has no tokens. Cycle Cp spans three

array cells only.

3

Only If Part: Immediate.

C




