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ABSTRACT

The goal of this dissertation is to determine precisely
how an object is moving in three-dimensional space and to
determine the three-dimensional relationship of points on
the surface of the object. The only information available
is a sequence of photographic images taken as the object

moves across the field of view.

The problem can be broken down into two sub-problems:
the problem of determining the correspondence of feature
points in one image with feature points in the next image;
and once the correspondence is established, the mathematical
analysis required to determine the model and the movement .
The correspondence problem, i.e., matching, is investigated
using images of moving blocks. The corners of the blocks
constitute the feature points to be put in correspondence
between images. Several matching methods are combined into
a hierarchy so that if one method fails another method can
take over to help complete the matching process. The top
jevel of the hierarchy matches by searching for feature
points in the image of expected positions as computed from
the expected movement of the object. The next hierarchy
1evel matches an object by its position relative to other
objects in the image, a property that is assumed to change
only gradually. The next hierarchy level matches a block's

faces by relative position. once faces have been matched,



feature points bordering the faces not already matched by

expected position can be put in correspondence.

The mathematical analysis of the problém shows that
sthere are an infinite number of geometrically similar
solutions, each solution differing f£from the others by &
scaling factor. A specific solution can be found by setting
the scaling factor to an arbitrary number. Two views of six
feature points or three views of four feature points are
required to f£ind the model and movement. For good accuracy,
however, considerably more points, two views of twelve or

fifteen points, for example, are needed.
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CHAPTER 1

INTRODUCTION

Computer scene analysis beginning with Roberts
[23] has concentrated on segmentation, object recognition
and the mathematical analysis required to determine an
object's three-dimensional position. The analysis of
image sequences of moving objects has received some
attention, almost entirely directed to the analysis of the
two-dimensional movement of objects. The original
motivation for studying two-dimensional motion came from a
desire to analyze with a computer the vast guantity of
satellite images of clouds (Endlich, et al. [8], Leese,
et al. [13]). An abstract model of cloud movement was
examined in Aggarwal and Duda [1]; this work was extended
to the analysis of the two-dimensional movement of
curvilinear shapes in Chow and Aggarwal [5] and Martin and
Aggarwal [18]. Jain and Nagel [12] broke from cloud
movement data and used difference pictures to analyze
street scene images. Although the images show pedestrians
and cars moving in three dimensions, there is no attempt

to recover three-dimensional information from the images.



1t is clear that past research work has mainly

peen concerned with two-dimensional motion. In party this
is because the interpretation of images of objects moving
in three-dimensions is much more complicated than
two—dimensional motion since rotation and movement in
depth are difficult to analyze. For example, rotation in
space 1s gefined to be about a general three-dimensional
1ine whereas rotation in a plane is defined to be about a
single point in the plane. In addition, parts of an
object can disappear from view as a result of rotation in
space; rotation in a plane does not by ijtself cause an
object to occlude itself. In this dissertation we shall
examine and solve many of the problems involved in
determining the three—dimensional motion of objects from a
seguence of two-dimensional images.

Analyzing the three—dimensional motion of an
object from two-dimensional images regquires a means by
which to grasp the problem mathematically. i. e., @
mathematical formalization. Psychologists have
classically studied movement in terms of texture gradients
that aid human depth perception (see Gibson (10} and
Braunstein [31). These psychologists use images of points
on the surfaces of objects to study the movement in depth
of the objects; Roberts (23] also uses surface points to

help getermine object depth. BY definition, the



three—dimensional relationship of points on a rigid object
does not change over time. Consequently, changes in the
two-dimensional spatial relationship of points between
images must be caused by a relative movement between the
camera and the object being imaged. 1In studies involving
binocular vision (two cameras or eyes spaced a known
distance apart), this change of position of a point
between the two images is known as the "disparity"” in the
images of the point. A simple triangulation argument
gives the depth of the point in this case. Thus, the
change of position between images of points on an object's
surface can be used to formalize the problem of
determining the three-dimensional movement of objects in
space.

Consider the sequence of images of a moving object
given in figure 1. This sequence shows a truncated wedge
rotating and translating. These simplified line drawings
gloss over the difficult low-level processing problems,
such as separating out the various 6bjects in an image
(segmentation) and identifying the same feature points (or
tokens) on an object in each image despite possibly
changing illumination conditions. This dissertation does
not address these low-level processing problems; instead,
images from the widely studied blocks world {(Winston [29])

are used since edges and vertices (feature points) are
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easily determined. 1In images of the real world, however,
we know of no general solution to finding the same points
on an object's surface in each image.

Once points on an object's surface have been
extracted in each image, we must determine the
correspondence of points between consecutive images. By
"ncorrespondence” here we mean the mapping that takes an
image of an object point to the image of the same object
point in the next image of the object. This is a
difficult problem since an image may have more than one
movinngbject and thus many points to choose from. The
correspondence problem is further complicated by the
disappearance of points on an object due to occlusion from
other objects, self occlusion as points rotate out of
view, shadows, etc.

Once the correspondence of points has been
established, we can attempt to analyze the motion. Here
we are confronted with a basic guestion: how is the
motion to be represented? One methbd might involve
qualitative descriptions such as "moving left and away,
rotating to the right," etc. as in Badler [2]. There
still remains the question, however, of how the
qgualitative description is to be calculated. 1If a more
exact mathematical calculation were used to derive the

qualitative description, then the more precise
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mathematical result would also be a valuable
characterization. 1In this dissertation, we shall take the
more quantitative approach and Use matrices with
"homogeneous coordinates,™ as Roberts [23] d4did, to
describe the movements of objects. Homogeneous
coordinates are an elegant means of representing movement
since a four by four matrix can represent any rotation or
translation. We have to be sure, however, that given
these two elementary motion matrices, it is pPossible to
represent any motion an object can have in Space. For
example, consider a planet travelling about the sun. It
is rotating about an axis passing through the sun; at the
same time it is rotating about its own polar axis. How is
this two-axis rotating movement to be analysed? What if
there are n axes of rotation? The translation and
rotation four by four matrices are an adegquate
representation since a theorem from classical mechanics
(see Coffin [6]) establishes that any motion, including
the rotation within rotation problem just mentioned, can
be decomposed into one rotation and one translation. The
rotation and translation matrices can be multiplied
together to form one matrix useful for predicting the next
three-dimensional position of the object. 1In addition to
representing motion, a four by four matrix in homogeneous

coordinates can be used to model the projection of object
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points onto the focal plane of the camera.
There are some fundamental problems involved in
analyzing sequences of images of moving objects that we

want to understand:

1. whether the extra images, and thus objgct motion,
help the three-dimensional analysis, and

2. exactly how much of the original
three-dimensional information can be recovered

from a sequence of two-dimensional images.

The first problem is essentially concerned with
determining what the value of motion is in analyzing
scenes. The relationship of points on the surface of an
object and the entries in a four by four matrix that is a
calculation of the movement of those points.

Our analysis of three-dimensional motion will
depend on certain key assumptions. For example, we assume
throughout that all images are from one camera. We assume
that there is no a priori knowledge of specific objects or
their specific motions, that objects in general are rigid,
that motion is smooth and continuous, and that central
projection is the best geometrical description of the
image formation process. By changing this last assumption

to parallel projection, an exact model (to within a
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reflection) for anv four non-coplanar pocints can be
derived given three different views of them, as Ullman
[25] has shown. Badler [2] used a spherical projection
model and was able to predict the point poesitions in
succeeding images of translating objects. We shall see
that the answers to our fundamental questions depend on
the assumptions about image formation, the rigidity of
objects, and the lack of specific prior knowledge of
models or movement of objects.

The problems in determining the movement of an
object from its images are identical in many ways to the
problems encountered in optic flow analysis and
stereopsis. Stereopsis, or binocular vision, is the
problem of determining the depth of objects from two
different images. The distance between the two imaging
devices is assumed to be known. Optic flow analysis,
originated by Gibson [10], depends on a vector field
formed by points on object surfaces as a camera or eye
moves through its environment. Some recent work by
Williams [28] concentrates on deriving the "focus of
expansion" which is the fixed point of the vector field in
a sequence of images taken by a translating camera. The
fixed point lies along the line of translation. 1In all of
these problems separate views of an object are given in

which the correspondence of points on the surfaces of
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objects must be determined and the displacement of these
points used to determine distance from the camera to the
object. There are some differences; for example,
binocular studies normally assume that the distance
between cameras is known, and optic flow studies assume a
moving camera. The problems encountered, nonetheless, are
very similar, and the results of this study should be
applicable to these other areas of research.

This dissertation is divided into two parts. The
first part discusses the problem of putting the images of
points on an object into correspondence for pairs of
images. The second part discusses the mathematical
problems in deriving the model and movement of an object
given a sequence of images. Motion representation and a
model of the image formation process are prereqguisite
knowledge that is discussed to aid in understanding the

derivation of an object's model and movement.






CHAPTER 2

CORRESPONDENCE

2.1 The Correspondence Problem

In this chapter, we shall examine the
correspondence problem: given the same identifiable
tokens (or points) on the surface of an object in two
different images of the object, find a one-to-one onto
mapping from the first set of images of tokens to the
second set of images of tokens on the object. This simple
statement of the problem ignores difficulties caused by
the disappearance of tokens due to occlusion or movement
beyond the view of the camera. These difficulties will
alsc have to be discussed.

Correspondence and motion determination are
intimately related problems since if either the
correspondence or the motion is known the other can be
determined. Neither is known criginally{ Correspondence,
or matching, of tokens must be determined first because
motion determination depends on knowing the

14
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correspondence.

One obvious strategy to match tokens between
images would be to choose the "nearest neighbor® of a
point in the next image. This strategy has not been
chosen since it imposes assumptions that are untenable for
the class of images available: the timing between images
must be chosen in such a way that the closest neighbor to
a point in the next image is itself; there is also an
implicit assumption that camera registration is good
between images. There are additional problems with
breaking ties and mapping conflicts (a point in the next
image being the nearest neighbor to two different points
in the current image). Alsoc, for rotating objects, in
some cases points on the boundary of the object appear to
exchange positions suddenly with interior points that are
approaching the boundary of the object due to rotation.
This case would possibly confuse a nearest neighbor
algorithm. For these reasons, the nearest neighbor
strategy is not adopted here.

The correspondence method described here follows
the one developed in Roach and Aggarwal [22]. 1In that
paper, the objects being tracked were blocks, and the main
goal was to put blocks and their faces in correspondence.
The images used for this purpose are given in appendix

five. The method described here suggests an extension to
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these ideas to put images of points into correspondence

alsoc.

2.2 Motion iﬂ the Blocks World

There is a trend in research on images of moving
objects toward analyzing motion in everyday scenes. Real
world scenes can be extremely complex; so to develop a
fundamental understanding of motion it was decided to
examine scenes containing a restricted class of objects.

A system is described here to find and track
points on moving blocks through a series of
two-dimensional images of scenes. The blocks world was
chosen because it is a reasonably well understcod domain,
because it is complex enough to create interesting
problems, and because the same identifiable tokens {(the
corners) can be found in each image. Blocks are assumed
to be rigid, convex polyhedra. Scenes normally have
several objects some or all of which may be moving., The
blocks move independently of each other, although
coincidental joint motion is possible. For example, a
block might be sitting on a moving block and hence move

with it. No attempt, however, is made to conclude that
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this movement is caused by the support relationship. The
plocks may move in different planes although there are
practical support difficulties with taking seqguential
static pictures of blocks moving vertically. Blocks may
enter and leave the scenes and may occlude one another.
Where one object occludes another, contrast must be
sufficient to reveal the occluding edge. Blocks may move
toward or away from the camera and may change velocity.
I1f objects accelerate more frequently or at a constant
rate, the matching program might not be able to track the
object. This may cause matching problems in case the
position of the object relative to other objects is also
changing very rapidly. It is assumed that the time
interval between scenes is short enough that only small
changes occur: objects d§ not magically appear oOr
disappear, for example, nor do they move more than
one-third of the way across the image between any two
scenes.

The goals of the system are to find objects in
each scene correctly, to disambiguate uncertainties, and
to derive motion matrices for each object. The line
labelling method proposed by Waltz [27] cannot be used to
find objects in images because the noise and number of
missing lines would be overwhelming. Since there is no

prior knowledge of particular objects or their motions,
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one of the goals of the system is to build models of the
objects as they appear and make a record of their
movements.

Solutions to fundamental correspondence problems
in the blocks world may be extended to real scenes since
many objects (cars, trains, airplanes, buildings, objects
on conveyor belts, etc.) can be modelled by blocks.
Badler's model [2] and most graphics programs use this

idea.

2.3 Experimental Setup

An image dissector camera is used to take pictures
of blocks. Edges are found using the gradient operator
program described in McKee and Aggarwal [16]. The output
of this program is a 112x112 binary array with ones
representing points along the edges.

The camera is in the position of an observer
standing several feet from the scene; its relation to any
plane in which a block may be moving is unknown. Exact
distances from blocks, tilt, pan, roll, and height of the

camera are unknown.
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when one object occludes another, occluding edges
are not lost. shadow lines do not appear against the flat
black background put do appear when cast on blocks. The
boundaries of the tabletop are invisible to the camera.
Noise is introduced by digitization, edge finding, and by
the edge—following-end—point—finding program. Since
T-nodes are the main clue to occlusion, it is particularly
difficult to handle the introduction of false T-nodes and
the destruction of legitimate T-nodes by noise. Objects
are moved by hand between scenes SO variation in the

velocity of constantly moving objects can be considerable.

2.4 The Analysis Problem

Ooriginally, in Roach and Rggarwal [22], motion was
represented using a comparison of image sizes of an
object. A bigger image meant an object was moving closer,
for example. This scheme was gualitative and imprecise.
In addition, it was incorrect for rotating oblong objects
moving in depth. The current movement computation is much
more precise but has the drawback of needing many points
to complete the analysis. 1In addition, more work is

required to put points in correspondence than to put
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finding ang points matching Programs: multiple
interpretations are allowed, ang matching is 3 multi—-Jlevel

Process. The basic philosophy of the System is that if a

resolved in a later image. The matching process has been

designed to achieve additional flexibility by

incorporating a hierarchy of methods. The highest level
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constitute matching failure. The remainder of this
section discusses these ideas in greater detail.

Once the end points of lines in the image have
been found, the next step, finding the faces, is not hard.
1t is the grouping of faces into objects that causes
difficulties. Waltz's line labelling method [27] provides
an elegant solution to the face grouping problem, but the
images in this project have too many missing lines and too
much noise for Waltz's method to be effective. So the
method used here is heuristic, based on occlusion clues
from T-nodes. Since there are multiple scenes to record
movement, it is unnecessary to make a hard and fast
decision of which faces belong together. It is possible
instead to allow some connections to be uncertain and then
use information from prior images to help resolve
ambiguities. Prior images may also be ambiguous in which
case no decisions need be made until later images are
analyzed. The only requirement is that there be at least
one match. This match must be a one-one onto mapping from
points on a possible object in the current image to one of
the possible interpretations of the prior image. The
mapping must be one-one onto in the sense that every
object in the current image must map to an object in the
interpretation of the prior image or be marked as new, and

every object in the interpretation of the prior image must
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map to an object in the current image or be marked as
gone. New objects appear on an image boundary, and
objects that are gone have disappeared either off the
boundary or behind another block. For each interpretat ion
of the previous image, the matching routine looks for a
corresponding interpretation in the new image. Thus
multiple interpretations can be carried forward.

It is the goal of this chapter to develop a method
for matching points between images. Methods used by
researchers in the past will now be reviewed in an attempt
to find methods that work for the problems of
three-dimensional motion. Roberts [23] tried all
combinations for making the correspondence between model
points and points in an image. He selected the best fit
(least squared error) from among all possibilities. This
is not a reasonable method in theory or practice due to
exponential blowup in computation time. Ullman [25]
describes a method that matches an image point's nearest
neighbor in the next image. This method requires that the
time between images be very short. The nearest neighbor
strategy was not pursued in this work partly because the
kind of data needed to support it was not available. The
possibility of incorrect matchings seems considerable
(especially for rotating objects) but possibly not

insuperable. Aggarwal and Duda [1] and Martin and
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Aggarwal [18] both relied on local features (angular

measure and curvilinear shape outline, respectively) to
match pieces of objects between images. These methods are
suitable for two-dimensional motion since they were
assuming a parallel projection model in which the change
of angle between camera and object has no effect on the
object's image. in three-dimensional movement, however,
angles and outlines can change drastically between images
rendering this approach unsuitable. Chow and Aggarwal [5]
use more global properties to put objects in
correspondence. They use the predicted position of an
object's centroid to locate the object in the next image.
1f an object changes velocity, however, another method
must be used to £ind the object. The methods discussed so
far are heuristic in nature. Attempts have been made,
however, to introduce a mathematical approach using ideas
from projective geometry. Underwood and Coates (261, for
example, worked with faces of blocks and used shape
numbers that do not change as the angle of view changes.
This method depends on a clear view of each face and on a
very noise-free image of the face. When faces are partly
occluded or lines in an image are noisy, spurious shape
numbers would be generated causing the matching process to
fail. Another problem with this method is that regular

faces would be hard to identify since their shape numbers
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are not unique. Underwood and Coates assumed virtually
noise free images of single convex objects, but for the
images to be analysed in this project these assumptions
are untenable. Duda and Hart [7] give an excellent
treatment to the problem of projective invariants using
feature points on the surfaces of objects. Their result,
however, is not useful since it involves a rather large
search. There are thus many different techniques
available, but none of them is entirely satisfactory.
Since any single method could fail it was decided to use
multiple methods arranged in a hierarchy by importance.
The first matching level would use object points’
expected position to search for the object in the scene.
A matching point in the next image is sought within a
small radius about the expected position. Failure to £1ind
object points at their expected positions means that the
object's direction or speed has changed and another
matching method is required: relative position matching.
It is assumed that the time intervals between scenes are
short enough that many "significant®” changes do not occur
at once. In particular this means that the position of an
object relative to other objects in the scene changes only
gradually. A large number of changes between scenes can
defeat object position matching. If an object cannot be

identified by its position relative to other objects,
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matching proceeds at a face level by pairing faces that
have similar positions relative to their neighboring
faces. Once there is a consistent face mapping, the faces
can be reassembled into objects. Face matching is
especially needed to defeat errors in initial object
segmentation. When a bad segmentation suggests too many
objects or too few, the objects can be broken down into
faces, matched, and then reassembled. 1If the top level,
velocity matching, has failed, then the lower levels of
matching must be followed by another matching routine that
puts points into correspondence. This additional level of
matching requires that the faces have been matched between
images.

Once the faces of an object have been put in
correspondence between images, it is relatively easy to
put points bordering the faces into correspondence. A
point that is common to faces A, B, C in one image will be
common to X, Y, Z in the next image so long as A
corresponds to X, B to Y, and C to Z. Of course, more
than one point may adjoin the same corresponding faces in
two images. In that case, the relative position of the
points in the first image must be used to find the
correspondence between points in the next image.

The discussion so far has ignored problems caused

by occlusion. Points in one image may disappear in the
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next image, and new points may appear. It is necessary,
therefore, to determine when points have disappeared and

to use new points in movement calculations as they appear.

2.5 The Analysis Program

This section describes the programs proposed to
process and analyze the data starting from a sequence of
images Sl' 82,..., Sn and ending in sets of points put in
correspondence. The end goal of this system is to create
object models that tell the three-dimensional positions of
the points on the surface of the object to within a
scaling factor; the system also determines the motion for
each object to within a scaling factor. Enough points
must be available, however, to make the analysis accurate.
Models and motion histories are the output of the system.
During analysis, the current image, the immediately
preceeding image, the models of objects determined from
their images, and the expected movement of objects are the
only information sources.

The initial stages of the program collect scenes

Sl’ 82,..., s find lines and their end points, and then

ni

group the lines into faces. These processes are well
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understood and not of sufficient theoretical interest to

be discussed in detail. 1Instead, the following sections

discuss how objects are found and points matched.

Before entering into a detailed account of point

matching in section B below, we shall give an overview of

the matching process. We assume that faces have already

been found and grouped into objects. The different layers

of the hierarchy are labelled by numbers.

1. (motion matching)

2.

for each expectation for each object do
if all points are close to their expected position
then succeed else
if some of the points are close to their expected
position then
if another object is occluding the object being
searched for then succeed else
if points have disappeared due to self-occlusion
(rotated out of view) then succeed else
if points can be matched by following edges from
previously matched points then succeed else
(relative position matching)
determine the relative positions of objects in the image
if any object's position description matches the position
description for the sought object then succeed, match

faces (see 3 below), and then match points (see 4 below)
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else
3. (relative face position matching)
determine the relative positions of faces in the image
for each face of the unmatched object
if a face in the image has the same relative position
description and the neighbors of that face also
match the neighbors of the face from the unmatched
object then succeed and match points (see 4 below)
else fail.
4., (point matching)
[note: this level is called from levels 2 or 3 after
having matched faces]
associate with each point the list of adjacent faces
in the image. From the face matching map, match

points that have equivalent lists of adjacent faces.

A. Object Finding

The program that groups faces into objects is
based oh the heuristic that a T-node indicates a point
where one object occludes another. This heuristic is not
entirely valid since noise and accidental alignments can

cause spurious T-nodes. The strategy used to handle
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spurious T-nodes is to allow ambiguous segmentation.

Faces are related to adjoining faces in one of three ways:
the faces that belong to the same object and are connected
by the interfacing line, the faces that may possibly
belong to the same object, and the faces that definitely
do not belong to the same object. The line separating
faces that may belong to the same object is marked as an
uncertain connecting line. Two interpretations of the
objects in the scene are produced, one in which all
uncertain connections are allowed (giving a minimal number
of objects) and one in which uncertain connections are not

allowed (giving an interpretation with a maximal number of

objects) .

B. Matching Object Points Between Images

The system described up to this point has been
bottom up or data directed. When matching points on
objects between images, however, there are definite
positional expectations based on the motion of objects.
These expectations amount to goal direction, thus the

entire system is a combination of data and goal directed

processes.
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The matching program works at four levels: motion
matching, relative object position matching, face
matching, and point matching. Ambiguous matches are
allowed so there may be more than one possible
interpretation of the motions of objects. Each
interpretation has a list of expectations for the movement
of objects. 1In the following discussion, it is assumed
that the matching process is dealing with one
interpretation at a time.

Motion matching normally proceeds by taking each
expectation in turn and searching through the list of end
points on objects in the image for all points within a
limited radius of their expected positions in the image.

If no points match, then before the expectation is
discarded entirely, the program tries to determine whether
the object has disappeared behind another block. This is
achieved by determining whether a block is occupying the
same part of the image where the points were expected. A
block occupies the same area of the image if its centroid
is close to the centroid of the expected position of the
points that were not found. 1If an object is thus found in
the image it could either be the image of the block being
sought or the image of a different, occluding block. If
there is another expectation that places a block in the

correct position of the block that was found, or if no
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face match can be found between the block being sought and
the image of the block in the correct position, it is
assumed that the image of a different block has been
found. 1If a face match can be found and no other object
is expected in that position, it is assumed that the
object is found but its points are not in their correct
positions. From the face match a points match is
performed and a new movement calculated.

If some of the points are found in their expected
position but others not, then several possibilities must
be explored. One possibility is that the points not
accounted for are simply occluded by another object. This
is tested by checking whether the object to which the
points already identified belong is occluded by another
object in the image. This determination depends on a good
grouping of faces in the image into objects. A second
possibility is that points have disappeared and new points
appeared due to object rotation. A simple means of
deciding whether this is the case is to note that points
that once were on the interior of the object in the
preceding image now lie on the exterior boundary; new
points may also have appeared. New points can be
identified since they connect along new lines to
previously known points that now have more connections

than before. To assure as much accuracy as possible in
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the movement and model calculations, as many points as
bossible must be used. Thus the identification of new
points is important for they must be used in matching and
motion analysis with the next frame. A third possibility
is that due to noise the images of some points are just
outside of the circle of expected position. Candidates
for matching these points can be found by following
connecting lines from identified points in the image to
unidentified points. The pattern of connecting lines
between all visible points is known from the previous
image. This pattern can be used to guide a search for the
points not yet matched by following connections from
points that have already been matched. Thus, it is
frequently possible to match points using topological
(connection) information when motion matching partially
fails.

For various reasons, motion matching alone is not
sufficient. Velocity estimates may not be available, for
example, or objects may change velocity. Further levels
of matching are needed to prevent failure. For each
object in an image, the position of the obiject's centroid
is compared with the centroid of each adjacent object and
a relative position description (above, left, right,
below, above right, etc.) formed. For each object from a

previous image attempting a match with an object in the
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current image, the relative position descriptions are
compared. If the two descriptions are very similar {(one
mismatch of the kind left versus left and below is
allowed) then the object positions match. 1If, in
addition, the adjacent objects also position match and the
status (occluded, shadowed, or on the boundary) of the two
objects matches, then the objects have been position
matched.

In the face matching routine, the program attempts
to put the faces into correspondence using the relative
position method described above with faces instead of
objects. After faces are successfully matched, they are
reassembled into objects. Reassembly requires deciding
which faces belong together. The objects of the previous
scene are used as a guide for regrouping the faces of the
current scene. Faces in the current scene can, however,
only be grouped together provided there are no T-node
clues that prohibit their being joined. One important
reason to have this level of matching is to defeat errors
in the initial segmentation of the current scene; another
important reason is that face matching must precede point
matching.

Point matching works by Iisting with each point
the faces next to it. When the faces of an object in two

different images are put in correspondence, points can
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normally be placed in correspondence by simply matching
points with equivalent associated lists of faces. The
list of associated faces of a point, however, is not
always a unique description; severai points may have the
same list of associated faces. 1In this case, the relative
position of the points in question can be used to
disambiguate the matching process for those peints. If a
face has disappeared from view (and that is noted in the
face match list) then special care must be taken when
assigning the lists of faces associated with points for
points that are on the boundary of the object and that are
on the face next to the face that has disappeared.
Similarly, care must be taken when building the face
association list for points that border a face that has

just come into view.

Conclusions

Experience with this hierarchical method of
matching, Roach and Aggarwal [22], shows that it is
reasonably robust. If the time interval between images is
not precisely equal, or if the objects are not moving with

uniform velocity, then the predictive level of matching is
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of little value. The size of the time interval between
images is also reasonably important since the relative
position of objects must not change too quickly. The
matching scheme presented here, however, is less sensitive
to the time interval than a nearest neighbor matching
strategy which requires a very high sampling Jate. A
disadvantage of using a predictive matching method is that
the amount of time required to compute the prediction may
be large. The hierarchy of matching techniques increases
the time needed to achieve correspondence. Processing
time was not a significant problem in this project since
tracking was not done in real time. For applications that
require rapid real time processing, any predictive
matching method may prove too time consuming.
Theoretically, predictive methods of establishing
correspondence are the best possible among methods. In
practice, noise, camera registration, and movement and
sampling variability reduce the advantages of being able
to find a point's next position by prediction. It may be
that a simpler algorithm, such as a modified closest
neighbor method with rapid sampling, will be found in the

future to be adequate.






CHAPTER 3

MOVEMENT

3.1 The Movement Problem

In this chapter, we want to determine how much of
the original three-dimensional scene information can be
recovered from a sequence of images. In the first parts
of the chapter we develop the matrix mathematics necessary
to move objects through space. In these sections, we
assume that the translational velocity, rotational
velocity, axis of rotation, etc. are given ana show that
a single four by four matrix in homogeneous coordinates is
sufficient to represent any translational or rotational
movement. We next develop the equations of central
projection and their inverses also using matrices with
homogeneous coordinates. We show that full recovery of
the original three-dimensional ipformation is impossible
without more knowledge than the images alone. We finish
the chapter by determining the conditions needed to
recover the correct three-dimensional information (to

36
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within a scaling factor) from the projections of points in
a sequence of images; the conditions required to find the
accurate four by four movement matrix (to within a scaling
factor) are also determined. The methods developed in
this chapter are gquite general and not restricted to any
special class of objects, such as blocks. The only

requirement is that the objects be rigid.

3.2 Movement Calculations

The problem that is to be solved may be stated
very simply: given all the parameters of motion of an
object, its speed, direction, speed of rotation, direction
of rotation, and axis of rotation, how can we calculate
the position of the object in space at every time 1f we
are given the position of the object at an initial time?

Thnis problem has been solved and the calculations are

ai

ven 1in Newman and Sproull, The Principles of Computer

~

Sraphics, [20].

The discussion that follows is facilitated if we
consider a specific object in space {(0,0,-10), (0,0,-8),
‘C.2.-9), (0,3,-10), (-4,0,-10), (-4,0,-8), (-4,3,-9),

These are the initial coordinates of the
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vertices of a truncated wedge. It is convenient to

represent a point in space as an "homogeneous coordinate.™
This means that a fourth coordinate is added so that
{(-4,3,-10) becomes (-4,3,-10,1), (-4,0,-8) becomes
(-4,0,~-8,1), etc. 1In addition, (-4,0,-8,1),
(-12,0,-24,3), (8,0,16,-2), (-4c, Oa, -8a, o), a any real,
all represent the same point. The reason why this is
useful will be explained in the following.

Suppose now that the object is moving in the
X-direction 1 unit, the Y-direction 3 units and the
Z-direction -2 units, or (1,3,-2,0) altogether. The point
(0,0,-10,1), therefore, moves to (1,3,-12,1). 1In general,
any point on the object (X, Y, Z, 1) moves to (X+1, Y+3,
Z-2, 1). Furthermore, if Tx is the movement of a point in
space in the X-direction, Ty in the Y-direction, and Tz in
the Z-direction, then translation of,the point (X, v, 2,

1) is given by,

[ X Y Z 1] 1 0 0 0

0 0 1 0

T, Ty Tz 1

— e

when multiplied out, the result is

[X+TX Y+Ty Z+TZ 1]
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as desired. Note the simplicity of the matrix for
translation. This is due to the use of homogeneous
coordinates. If the points had been left in normal

three-dimensional form, then the equation would be:

(X Y Z] |(X+T )/X 0 0
T
0 (Y+T ) /¥ 0
0 0 (z+'rz)/z‘

=[X+TX Y+Ty z+TZ],
which shows that the matrix must be recalculated for each
new point.

Now it is necessary to derive the matrices for
rotation. Rotation is more complicated than translation
since an axis of rotation must be specified as well as a
direction and magnitude. First, we will derive elementary
rotation information, then show how to perform a rotation
about an arbitrary axis in three-dimensional space, and
finally apply the result to the example object.

To help derive rotation results, consider figure

two which shows X and Y axis with' the Z axis coming out of

the page.
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THEOREM.

If a point (x,y,z) is rotated clockwise through © degrees

about the Z-axis at a fixed radius, then the new

coordinates of the point are related to the coordinates by

the formulas
X'=X cosf® + Y sinb®

Y'=X(-sin 8) + Y cos 6

Normally, the rotational velocity w =d6/dt is the quantity
given for rotating objects where t denotes time.
Therefore, the equations of interest are

X'=% cos{wt) + Y sin{wt)

Yi=X[~sin{wt}] + Y cos{wt)

Z2'=7,

In terms of matrices,

[X'Y'2'1]=[X cos(wt)+Y sin(wt) -X sin(wt)+Y cos{wt) 2 1]

=[x Y z 1] [cos(wt) -sin(wt) 0 o |.
sin{wt) cos{wt) 0 ¢
0 0 1 0

0 0 0 1_
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If we know, for example, that rotational velocity
is .1 radians/sec., and if we rotate the point (0,3,-10,1)
about the Z axis, then the new position of the point after
one second will be
(0 x .995 + 3 x -0998, 0 x (~.0998) + 3 ¢ «995,-10,1)
=(.299, 2.985, -10, 1)
since cos 0.1 radian = -995 and sin 0.1 radian = .0998,

In a similar manner, the rotation matrices may be derived

for clockwise rotation about the X and Y axes:

R=[1 0 0 0
0 cos(wt) -sin(wt) 0
o sin(wt) cos(wt) 0

_O 0 0 l__j

[——
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R = " cos{wt) 0 sin(wt) 0 ].
0 1 0 0
—sin(wt) 0 cos{wt) 0
L0 0 0 1]

Now that we know the elementary rotations about X,
vy, and Z axes we must derive the general matrices for
rotation about an arbitrary axis in three-dimensional
space.

Assume that the direction of the axis in
three-dimensional space is given by a line from the origin
to the point (a,b,c) such that the length of the line
(=Va2+b2+cz) is one; a, b, ¢ are the so-called direction
cosines of the axis. Furthermore, assume that the point
(XO, YO’ ZO) is a point on the axis. (See figure three.)
In addition, given the rotational velocity of the object,
we can calculate the positions of the rotated points.

The basic strategy is to move the object and the
axis of rotation together until the axis of rotation
coincides with one of the axes of the main coordinate

system (the Z-axis, say), perform the rotation, and then

reverse the sequence of the moves that aligned the axis of
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rotation with the Z-axis. To align the axis of rotation
with the Z-axis, it is necessary to translate (XO, YO’ zo) Vd
to (0,0,0) and then rotate the axis about the X- and the
y- axes so that the direction cosines are mapped into
(0,0,1) - the Z-axis.
To translate (xo, YO’ ZO) to (0, 0, 0) we simply

multiply by this matrix:

[ 0 0 0| = Trotationhelp
0 1 0 0
0 0 1 0

-XO -YG —ZO 1

We now wish to rotate the rotation axis about the X-axis
so that it lies in the X-Z plane (¥=0). Since the X
coordinates do not change, the line (0, b, c) and (a,b,c)
will rotate in exactly the same way. Figure four shows
the angle that (0, b, ¢)-- and hence (a, b, c¢)—-- must be
rotated about the X-axis. The X-axis in this diagram
points out of the paper at the reéder. From trigonometry
we know that cos 8=c/ b2+ c2 and sin 8 =-b/ Vb2+ 02. So

the rotation needed about the X-axis is
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1 0 0 0

0 cos® -sin® O

0 sin® cos© 0
\‘O 0 0 1 B

Figure five shows the resulting position of the axis of

rotation. The rotation needed now is through ¢ degrees

about the Y-axis. Cosg¢ = \/b2+c2/ Va2+b2+c2 and
sin ¢ =a/ Va2+b2+c2; since Va2+b2+c2=l, cos ¢ = Vb2+c2 and

sin ¢ =a. Thus the rotation matrix is

| cos ¢ 0 sin ¢ 0
0 1 0 0

-sin¢ 0 cos ¢ 0

-0 0 0 0_|

Now the axis of rotation is aligned with the Z-axis, and




(o,o,\/ b2+ c? )

b4

N

O¢o

FIGURE

5

43




48

49

we can perform the rotation through wt degrees. If we
assume that the rotational velocity is w then the

rotation matrix is:

(cos(wt) -sin(wt) 0 0’]= R,
!\ sin(wt) cos (wt) 0 0

|

%

‘1 0 0 1 0

1

\L, 0 0 0 1

Now that the actual rotation (sz) igs finished, we must
move the axis and the object back to a position so that
the axis is in the same place as it was originally. This

is achieved by undoing Ry¢' Rxe' and Trotationhelp’

-1 -1 T—l
yo x6 ' “rotationhelp”

undo a rotation would mean to move a point through an

normally denocted by R s R To
angle opposite to what it has been rotated through. Since

cos(-a)=cosqg and sin(-a)=-sina,



R

1
Yo

-1
%0

r-cos—¢ 0 sin-¢
0 1 0

-sin-¢ 0 cos—¢

B 0 0 0

[ cos ¢ 0 -sin ¢
0 1 o
sin ¢ 0 cos ¢

L o 0 0

may be similarly derived:

1]

50
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R—lz.( 1 0 0 0|
%0
0 cos © sin © 0
0 -sin © cos 6 0
L.O 0 0 l__
-1 r T
T otationhelp 1 0 0 0
0 1 0 0
o 0 1 0
__XO YO ZO 1—

We have just proven the following

THEOREM.

To rotate a point about an arbitrary three-dimensiocnal
axis in space whose direction cosines are (a, b, c)
through point (XO, YO’ ZO) with rotational velocity w,

multiply the coordinates of the point by
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-1.-1.~1

TrotationhelpreRy¢szRy¢ z9 "rotationhelp”

A numerical example illustrating rotation and translation

is given in appendix three.

3.3 Projection

In the last section we showed how to compute the
positions in three-dimensional space of points on an
object provided that the velocity, angular velocity and
axis of rotation are known. When a picture of points is
made, the image of each point is projected onto the focal
point of the camera. We want to find the projective
coordinates‘of any three-dimensional point in focal plane
coordinates. Since the focal plane is two-dimensional
there will only be two coordinates of interest. 1In effect
three coordinates of g=(x,y,z) will be mapped into two
screen coordinates qs=(xs, ys), say, where the 2
coordinate has become meaningless. We are transforming
coordinates from a global coordinate system to a special
camera-dependent coordinate system.

Cameras are not normally pivoted about their lens

but rather about a gimbal offset from the lens which adds
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a complicating factor. We sball assume that the pivot of
the camera is at the lens for simplicity's sake. See Duda
and Hart [7] for the more complicated computation.

The problem may be broken down into two parts:
first we must relate coordinates of the focal plane to the
global coordinate system; second, we must project
g=(x,y,2z) onto the focal plane.

To relate the coordinate system of the camera to
the global coordinate system, we must move the lens center
to (0,0,0), align it with one of the axes, the Z-axis say,
and then rotate about the Z-axis until the X', Y' axes of
the focal plane are aligned with the X, Y axes of the
global coordinate system. This is precisely the same
problem we solved in the previous section. Assume that
the lens is at point (XO, YO, ZO) and that the orientation
angles of the optical axis of the camera are § and ¢. We
know from the previous section that the matrices required
to translate the lens center to (0,0,0) and align the

optical axis with the Z-axis are

g
S

; R R =
*XO'YO'ZO) X8 yo
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1 o o o[ 0 0 0| [cos¢ 0 sing o |

0 1 0 0 0 cosf® =-sind 0 0 1 0 0

0 0 1 0 0 sino cose 0 -sind 0 cosd¢ O
_jXO —YO ~ZO l—-~—0 0 0 1_‘ _-O 0 0 1

The lens center is now at (0,0,0) in the global coordinate
system. We must now rotate the focal plane about «
degrees with the Z-axis as the rotation axis to align the

X', ¥' and X, Y axes:

RzK = cosk =sink 0 0
sink CoSs K 0 0
0 0 1 0

B 0 0 G 1_

Now the optical axis is aligned with the Z-axis and the
focal plane axes are aligned with the global X, Y axes,

and the lens is at (0,0,0). This is not sufficient,
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however, since the projection of the point is onto the
focal plane of the camera, not the lens itself. If we

assume that the focal plane is F units away from the lens,

then it is necessary to translate the lens -F units along

the zZ-axis, the necessary matrix is

[ =
"1 0o 0o o0 1= TrocaL
1
;
0o 1 0 o0
6o 0o 1 0
o 0o -F 1

we have proven the

THEOREM

2

% camera has the center of its lens at (XO, YO' ZO); its

ocptical axis has orientation angles 8 and ¢; X', Y' axes

-

i

axe an angle ¥ with the X, Y axes; the focal length of

tre camera is F. To align the focal plane of the camera

s- that (0',0') of the focal plane maps to (0,0,0) of the
5.obal coordinate system and (%',y') maps to (x%,y,0), it

necessary to multiply by the matrices

B R__R
Y020 xs Ry Rz TrocarL:
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The first part of the problem, to relate global to
focal plane coordinates, is solved. Now it is necessary
to determine the central projection of point g=(x,vy,2)
onto the focal plane. 1In figure six we show the physical
situation. We assume a front image plane to prevent the
annoying problem of image inversion found with rear plane
projection models. We want to determine the relationship
between x, x', vy, v', and z, z'. These relationships will
determine the mathematical function of projection. By
similar triangles,

x'/F=x/(F+z)

y'/F=y/ (F+z)

z'=0,
So x'=Fx/(F+z)

y'=Fy/(F+z), and

z'=0.
These equations show that given a point g=(x,y,2z), its
projective coordinates are (Fx/(F+z) ,Fy/(F+y),0). 1In

homogeneous coordinates, the matrix equation is
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[x Y Z 11 P

=[x Y z 11[1 0 0 0]

0 0 1 1/F

C 0 0 1

[X Y 2 (Z/F)+1]

]

[X ¥ Z (Z+F)/F]

dividing by the fourth coordinate to return to cartesian
coordinates gives the result [Fx/z+F Fy/z+F Fz/z+F 1].
The third coordinate is not zero; this coordinate has
become meaningless since all information about depth
(Z-coordinate) is lost in the projection.

Given point g=(x,y,z), the complete transformation
needed to find the projective coordinates relative to the
focal plane is given by the equation

‘ -
q qT(XO,YO,ZO)Rsty¢RZKTFOCALP°

When the matrices are completely multiplied out and

divided by the fourth coordinate, the equations for the
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projective coordinates are

a1, (x=Xg) + @y, (y=¥g) + a,3(2-2¢)

¥' = F
aj) (x=Xg) + aj,(y=¥g) + a33(2-Zg) +)
o= aZl(x~Xo) + a22(y—Y0) + a23(z—20)
agp (x=Xg) + az,(y=¥g) + az3(z-Z;)
where ay,= cos® cosK
8,5, sinb sin¢ cosKk + cosb® sink
a13=-cose sin¢d cosk + sinb sink

a21=—cos¢ sink

a22=—sin6 sin¢ sink + cos® cosk
a23= cos® sind sink + sin® cosx
sian
: a5, = sing
a32=—51n6 coso
IS
a33= cosbB cosd
)
A numerical example of the projection process is
given in appendix three.
rmation
The explanation we have given here for the
to the

mathematical model of central projection follows that
given in Duda and Hart [7] with modifications to allow the
camera to assume an unrestricted position with respect to
the global coordinate system. As we shall see, our
analysis of movement will depend on this more general
treatment. By setting « to zero in the above equations,

> the .
the equations found in Duda and Hart [7] are obtained.



3.4 On the Ambiguity of Images of Moving Objects

In his classic baper, Roberts [23] defineg scene
analysis as the necessary mathematical analysis to locate
objects in three-dimensional Space from their

two-dimensional images. In the Previous section we

want to invert this Process, that is, determine the
three-dimensionail coordinates of object points and the
object movement Parameters (velocity, rotational velocity
and axis of rotation) given the Parameters and Coordinates
of object points in a Séquence of images. we also assume
that the correspondence of points between Scenes is known.
The purpose of this section is to show that without
further information it is impossible to determine the
exact three-dimensional Coordinates of an object’'s points
or its movement Parameters. We shall show by construction
that a sequence of images of a moving object is inherently
ambiguous, that such a sequence can represent any number
of similar yet distinct objects with different movement
pParameters.

In order to understand how different moving

objects can have the Same projective coordinates we first
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need to show how different stationary objects can have the
same projective coordinates. In the previous section the

equation for projection was given by

R R_T

vt=vT yoRze TrocaL?

) PP 4

R
0° O'ZO) X0

where v gives the (X,Y,2) coordinates of a point in
homogeneous coordinates and v'! gives the projective
coordinates (x',y"') of the point in homogeneous coordinates
(information about the Z—cQordinates is lost in the
projection). Now, however, we are given the problem in
reverse: v' is given and we want to determine v. The
appropriate equation is

-1,.-1

L ~1-1_-1,.-1
v=v' P TeocarRacRye Rxe T (g, ¥ 20)

where
..l r— ——
P "= 1 0 0 0
0 1 0 0
0 0 1 =-1/F F=focal length of camera
0 0 0 1




Trocar= | 1
0
0
_O
R;i [ cosk
-sink
0

sink

coskK
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...l —
= cos ¢
Ry¢
0
sin ¢
0
R = 3
X6
0]
0
0
M_O =,—.‘1
“»C,YO,ZO)
0
0
%
X

cosb

-sin®

-sin ¢

cos ¢

sin®

cosH
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1 s and

(XO'YO'ZO) is a point on
the optical axis of the

camera.
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If we let vi=(w'x', w'y', w'z', w') where z' is a
free variable (since the Z-coordinate information is lost
in projection) and multiply out the matrices, the

resulting equation is

v=v' [ ay 212 313 o |
221 322 223 0
~Xo/F ~¥,/F ~2y/F -1/F
Ko*ag F Yo +as,F Zy+ay4F 1|
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—(wix' ow'y' wiz' w8y 212 213 0
is a
lost As1 452 823 0
X, /F ~¥,/F ~2,/F -1/F
Xy-a3,F  Ygtag, P ZgtagsF o1

where the terms a,;,--a3, are the same as those given for

projection. When this is multiplied out and divided by

the fourth coordinate, the result is

65

7 = . )
Vo XO + F/(F z')(allx' + aZly + aBlF)
< - - ¥
Jy YO + F/(F z')(alzx‘ + a55Y + a32F) (%)
v = R ] 8
. ZO + F/(F~2 )(a13x + a23y + a33F)
See figure 7. These equations (%) give a locus of points

that form a straight line in space through (X4, Y4, Z4)

and the point (x', y') in the focal plane; each point on

the line is determined by a specific value of the free

parameter z'. As z' approaches -« , F/(F-2") approaches

and v=(Xy, Y, Zg); if 2z' is zero then v is (x',y') given

[ h] “
in global coordinates. The consequence of these

S R

ulations is that given only the image coordinates of

t on an object we can not recover the full

““““ &

-dimensional information about the object point.

0
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best we can do is find a parameterized equation for the
ray on which the point falls.

Now it is easy to see why given only the projected
image coordinates of points on an object we cannot
uniquely determine the size or distance to the object.
There are in fact an unlimited number of objects that give
the same projected image.

The main question of interest is whether there are
different moving objects that give the same image at all
times. The motion of an object can in general be
decomposed into a translation and a rotation. With the
help of equation (*) above we shall first show that
pictures of a translating object are inherently ambiguous
and then that pictures of a rotating object are inherently
ambiguous. The conclusion will be that a sequence of
pictures of a moving object is insufficient to determine

the exact movement, distance, or size of the object.
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A. The Ambiguity of Images of Translating Objects

We shall use (*) in the following simplified form
v=(XO,YO,ZO)+X(A,B,C), where A=F/{(F-2°') and
A=cos ¢ cosk x' - cos¢ sink y' + sin¢ =
allx‘ + a21y' + a3lF, etc. Consider an object with points
{(Xl'yl’zl)"“'(xn'yn'zn)} that has projective
coordinates {(xi,yi),...,(xé,yﬁ)}. Assume that its
translational velocity is (P,Q,R). For each projected

point (xi,yi) there is a unique Ai such that

(x;,¥3023) = (Xpo¥5,20)+ 2 (A;,B;,Cy)

(XO+A.A.

i 1’Y

O+XiBi,ZO+XiCi).

After time t the position of point (Xi'yi'zi) derived from

its projection will be

(X0+AiAi+tP,YO+AiBi+tQ,ZO+AiCi+tR)e

From equations (+) in the Projection section we know that

the projective coordinates will be

all(AiAi+tP)+a12(AiBi+tQ)+al3(Aici+tR)

a31(AiAi+tP)+a32(AiBi+tQ)+a33(AiCi+tR)

azl(AiAi+tP)+a22(AiBi+tQ)+a23(Aici+tR)

aBl(KiAi+tP)+a32(XiBi+tQ)+a33(XiCi+tR)
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We now wish to construct a different object that has a
different velocity but the same projective coordinates at
all times as the original object. The construction is as

follows: for each point (Xi’yi'zi) of the original object

determined by
(i3 5y5021)= (Koo ¥grZg) ¥ A3 (A3 0By, Cy)
derive a new point

(}-Zsi 'YSi'ZSi)z(XO'YOFZO)+S}\i (Al 'Bi 'Ci)

where s is a real number, s>0; s is a scaling factor. The
new object so constructed is similar to the old object and
is smaller if s<1, the same object if s=1, or larger if
s>1. Thus, we call the equations that scale all the

points of an object the equations of expansion and

contraction. The velocity of the new object is

i

isP,sQ0,sR). Aft i iti . . .
0,8R) er time t the position of (x81,y51,251)

1X0+s&iAi+stP,Y0+sxiBi+stQ,20+sAiCi+stR).

-
e

= projective coordinates of this point will be
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ali(sAiAi+stP)+a12(sAiBi+stQ)+a13(sAiCi+stR)

x'. = F
si
aBl(sxiAi+stP)+a32(sAiBi+stQ}+a33(sxici+stR)
. s{all(kiAi+tP)+a12(AiBi+tQ)+a13(AiCi+tR)]
s[aBl(kiAi+tP)+a32(AiBi+tQ)+a33(AiCi+tR)]
. all(AiAi+tP)+a12(AiBi+tQ)+a13(Aici+tR)

a31(xiAi+tP)+a32(AiBi+tQ)+a33(AiCi+tR)
and similarly,

azl(AiAi+tP)+a22(AiBi+tQ)+a23(AiCi+tR)

Yei =
si
a3l(AiAi+tP)+a32(AiBi+tQ)+a33(AiCi+tR)
But now we see that the projective coordinates of any
point (Xi'yi'zi) of the original object after time t are
the same as the projective coordinates of the point
(xsi'ysi’zsi) of the constructed object after time t.
This proves that there are uncountably many objects all
similar to one another with similar translational
velocities that have the same projective coordinates. See

appendix three for a numerical example.
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B. The Ambiguity of Images of Rotating Objects

We want to show now that a sequence of images of a
rotating object 1is inherently ambiguous, that is, that
more than one object can produce the same sequence of
images. The proof technique we shall use here is similar
to that used for translation. A three-dimensional point
represented by fixing z' in equation (*) is rotated and
its image coordinates determined; another point closer or
farther away by a scaling factor s is rotated and its
image determined. It is shown that the images of the two
points are the same. The proof is more formidable looking
for rotation since more information is needed. Rotational
velocity and an equation for the axis of rotation are
needed; the rotation axis is best specified by the
direction cosines of the axis and the three-dimensional
cocrdinates of a point on the axis. The best method to
represent a rotation is a matrix using homogeneous
roordinates {see Roberts [23] or Duda and Hart [7]). The

iereral form of the rotation matrix is given in appendix

e g

MR SN

Consider an object with points {(xl,yl,zl,l),--«r
*.¢¥..Z,,1)} that has projective coordinates
*oeYideeeo(xi,yl) . Assume that the rotational
ity is o

} » that the orientation angles of the axis of

are © and ¢, and that a point on the axis of
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rotation is (p,q,r). Let the ith point be represented by
(*) in the following form

and let the point (p,g,r) on the axis of rotation be
represented by

+A'B',Z

(p,d,T)=(Xg+A'A", Y +A1ch) .

0 it

We now rotate the points of the object by multiplying by
the rotation matrix. The details are given in appendix
two. When we find the image of the point vy after

rotation, its coordinates are

8 [ g8
. allA +alzB +al3C
v,
i a3lAl v+a3sz l+633cll
g9 LI [ ]
g s aZlA +a228 +a23C
A g ¥ A
i a3lA +a328 +a33C"

where A", B!, C''" are complicated terms--see appendix
tWo.

We now wish to construct a different object that
will have the same image while rotating. For each point

v of the original object construct
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Vsi‘(Xo+sxiAi'Yo+S*iBi'Zo+SAiCi'1)-
Let the rotational velocity be w; let the orientation
angles of the axis of rotation be 9 and ¢. Let the point

on the axis of rotation be
(ps,qs,rs)=(xo+sx'A',Y0+sx'B',ZO+sAFC').

We can now show that after time t the image of Vai after
rotation will be the same as for Ve The details of the

rotation of are given in appendix two. The projective

Vo
si
coordinates of the rotated point applying equations (+)

are

¢ & ¢ §
SallA + salzB + sa13

v 3 g8 28
si SaBlA + sa3zB +

CV!

IR
sa33C

s{allA" + alZB" + a..,C'""]

= F 13
LI
s{a3lA + a32B" + a33C"]
LI [ ]
. allA + alzB + alBC"
L]
a31A + aBZB" + aa3c"
= x°
v,
i
sa At 2t
. . 21 + salzB + salBC“
Y

s1 v
sa3lA + saBZB" + 5533c"
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e
allA + a

5
a31A + a

12877+ a5ct

= F

B'' + a,.C'!

32 33

= y
V.
1

Thus we see that the projective coordinates of the two
points are the same. This proves that the image of a
rotating object is inherently ambiguous. See appendix
three for a numerical example.

In conclusion, it is clear now that the
three-dimensional position of points in space along a line
of projection is inherently ambiguous, even when the point
(or a group of points) is moving. The angular orientation
of the axis of rotation and the rotational velocity are

not, however, ambiguous.

In the previous sections we have shown that a
sequence of images of a translating or rotating object is
inherently ambiguous, that is, more than one object can
produce the same sequence of images. Since any movement
can be broken down as a translation followed by a
rotation, this proves that a sequence of images under
central projection of a moving object is inherently
ambiguous. See appendix three for an example combining

both rotation and translation.
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3.5 Finding the Movement of an Object From a Sequence of
Noise-Free Images

We want to know how much of the original
three-dimensional information can be recovered given only
the images of a moving object. We have shown that the
best possible result would be to find the model and

movement of an object determined up to an unknown scaling

X
factor, but we have not yet determined whether we can
achieve that good of a result. 1In this section we show
, line how to find the movement and three-dimensional model of
point points on an object's surface from a sequence of
ration noise-free images up to a scaling factor; that is, by
are setting the scaling factor to an arbitrary value we can
find a particular movement and model for points on the
chiject.
We have assumed that the camera is stationary and
a the object moves. It is convenient to reformulate the
ect is oroblem such that the object is stationary and the camera
can m-ves. This reformulation makes the solution easier.
ement To solve the problem, two views are needed of five
zoints not all in the same plane. The X, Y, Z coordinates
ler ~{ each point are variable, so five points produce fifteen
/ variables. The x, y, 2z coordinates and 6, ¢, K
ining

~rientation angles for each camera position are also

. - 5 w1 z s
sariable producing twelve more variables. Thus, there are



a total of twenty-seven variables in the problem. Each

point produces two projection equations (given by (+)) per
camera position for a total of twenty non-linear
equations. We assume that the correspondence of image
points between images is known. To make the number of
equations and unknowns come out even, seven variables must
be known including one variable that will determine the
scaling factor. There are a number of ways to set the
seven variables correctly. For example, the
three-dimensional coordinates of two points and one of the
three coordinates of another point are known: (0,0,0),
(1,0,0), and (2,2,0)- The points (0,0,0) and (1,0,0) fix
the X-axis and also the scaling factor; the coordinate
system can be rotated about this X-axis until the third
point lies in the X-Y plane, thus setting its third
coordinate to zero. Although this problem setup is
correct, it is difficult to solve numerically since good
original estimates for unknown variables (especially
camera orientation angles) cannot be determined. Another
correct setup for this problem sets all coordinates and
orientation angles of the first camera to a value of zero.
This sets six variables. The seventh variable and the
scaling factor are set by letting the x-coordinate of the
second camera be an arbitrary constant (equal to 1.0,
he unknown

say). Reasonable estimates can be made for t

ar
SC
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variables, but the difficulty with this problem setup is
that in some special cases the x-coordinate of the second
camera should be zero. In these cases, setting the
«-coordinate to a non-zero constant is incorrect. 1In
fact, it is possible that the x, y, z coordinates of the
second camera are all zero (no camera translation) in
which case a different means of setting the scaling factor
must be sought. Thus we need a different formulation for
the problem which will now be explained. -

We will set the XO' YO' ZO position and 6, ¢, K
srientation angles of the first camera by making all six
variables equal to zero. In addition, the z-component of
any one of the five points is set to an arbitrary positive
constant. We showed earlier that the best result possible
in locating the three-dimensional position of a point on
an object is to find (sx, sy, sz) where s is an arbitrary
scaling factor. By setting the z-component of the
rosition of a point to an arbitrary constant, we are
fixing the scaling factor. Once the z-component of a
t-int is known, the x and y components can also be found
sing the inverse of the projection equations (by
ivtermining lambda from z and the focal length). The
situation is shown in figure eight. There are now

¢.3jhteen projection equations in eighteen unknowns

actually, there are twenty equations, but two of them
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have no unknowns) , the equations of projection, however,
are non-—linear.

Unlike linear equations, there is no developed
systematic theory for solving systems of simultaneous
non-linear equations. Finding a closed form solution for
any system of non-linear equations is rare. Consequently,
most non-linear systems are solved using methods developed
by numerical analysts that achieve approximate answers.
Numerical methods fail sometimes either because they do
not converge or converge to the wrong answer. All
numerical methods require an initial guess for the unknown
parameters. How good the initial guess 1is normally
determines whether the numerical method converges to the
correct answer. We have found that the system of
non-linear projection equations explained above can be
solved by using a modified finite difference
Levenberg-Marguardt algorithm due to Brown [4]1,[14], and
[17] without strict descent that minimizes the least

squared error of the eighteen equations. This routine is

available under IMSL as ZXSSQ [30]. It is a modification

of the classical least squared error technique originated

by Gauss at the end of the eighteenth century. Brown's

~ethod performs a smoothing operation not available with

other techniques which normally permits convergence to the

~srrect answer. Least squared error technigues are
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frequently used to solve systems of simultaneous equations
that involve observational data (such as photocoordinates
from images) known to have errors or noise, although the
method works as well for error-free data. Because of
error in the data, there is no solution that satisfies all
the equations. Adjustments (numerical changes) are made
to the values of variables by assuming a model for the
distribution or errors in the data (usually, a normal
distribution is assumed). These adjustments are designed
to minimize the inconsistencies between observations and
the answers computed by the equations when the variable
values are substituted into the equations. Minimization
is effectively achieved by following a gradient operator
to a local minimum in the equation space. It can be shown
that a series of simple matrix calculations are equivalent
to the gradient operation. For full details concerning
the least squared error method see Mikhail [19].

The method employed here is iterative and requires
an initial guess for each unknown parameter. If we assume
that the camera is taking snapshots rapidly, then its
position will change only slightly between photographs.

In particular, we can make the simplifying assumption that
the only camera movement is translation in the
%x-direction, that is, 82=¢2=K2= 0, and the y and z

coordinates are no different for the second camersa

Su

we
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position than the first. These assumptions allow us t

get reasonable initial estimates using simple parall )

Figure nine shows the physical situation. Let x! ?x.

the photocoordinates in the first image of a poii; y%t:e
wi

W tll 7 14 and X I3 2

be 1ts photocoordi
rdinates in th
e second image
. Let X be

%,

the x-coordinate
of the second
camera and let F b
e the

focal length Fo
. r the first ima
ge, by similar tri
iangles

X z
Xl
1 E
or
%!z
X = 1
F

For the second camera,

T

’ g'

we have
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XPARALLAX

Substituting for z in the first €quation ang reducing,

X = XO '(X’l/XPARALLAX)
2

Using similar triangles again, we can derive the following

value for Y,

Yy = XO -(yi/XPARALLAX)
2




84

The possibility of several different values for

and hence different original estimates for all the

X

14
0,

points, raises the question of determining which initial

estimate is best. 1Indeed, what is the best means of
selecting which of the five object points is to be the
reference point whose three-dimensional coordinates are

known? We allow each point in turn to become the

reference point and then for each guess of X0 estimate
2
the three-dimensional position of each of the other four

points as well as YO and Z, (using the inverse of the

central projection eéuations?. The least squared error of
this set of estimates is calculated by substituting the
estimates for unknown variables in the equations for
central projection (assuming for camera two that

65= §,= Ko= 0.0 degrees) and the answers differenced with
the observed projective coordinates of the points. The
errors are all squared and added together; the set of
estimates with the least squared error is taken as the

best initial guess. There are only fifteen sets of

initial guesses so this pre-processing time is quite
small, and without it, the initial estimate is not always
good enough to cause convergence to the right answer.
Experiments show that original estimates that are
extremely close to the correct answer frequently do not

converge to the correct answer whereas estimates that are
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object, the movement of the object, ang the position of
the camera; the Program moves the object and
mathematically projects an image at Prescribed time
intervals. The Photocoordinates are used to ten places of
accuracy.) The method failed to find the exact answer only
in cases where a moving object was rotating (no
translation) and the axis of rotation bPassed through the
lens of the camera,. The answer that this numerical method
Ccomputes gives both a model for the object and its
movement since the movement of the camera is also
calculated. By negating all values of the solution, a
Second solution is attained. This solution amounts to
Setting the z coordinate of the reference point to the
negation of the original arbitrary scalar.

It should be noted that a large number of other
methods were tried on this system of equations: Brown's

algorithm with strict descent, Newton's method, normal
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least sguared error, Fletcher-Powell [9], and several
other numerical method; designed to deal with simultaneous
non-linear equations. Newton's method and least squares
were alsc used with many different step lengths. Some of
these methods converge to answers that are close to
correct, but others do not converge at all. Only Brown's
method without strict descent regqularly converges to the

correct answer.

3.6 Finding Answers from Noisy Images

We have been making two very important
assumptions: that the objects being observed are rigid
and that the images of the object are noise free and thus
completely accurate. The first assumption is an important
restriction since the problem solution presented does not
work with images of moving, highly non-rigid objects. The
second assumption is not reasonable. 1In this section we
shall examine and solve the problems introduced when the
images are noisy.

In effect, when noise is added to the images of
the object it is equivalent to taking perfect photos of an

object that is not quite rigid -- jello-like is an apt
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metaphor. Thus we See that the rigidity ang noise-free

images assumptions are interrelated. To test the effect

method described in the previous Section, fron one to four

Pixels were randomly added or Subtracted fronm the exact

Photocoordinate data for a moving object

to observations (i. e., image datga points) that contain
error (noise), Adjustment ig only pPossible, however, when
there are more €quations than unknowns. Two views of five

points is therefore inadequate for noisy data since there

are the same number of equations asg unknowns. Two views

is not Very accurate. It 1s only with Considerable
over-determination (two views of twelve or even fifteen
points; three views of seven or eight pPoints) that the
results become accurate, Appendix'four has 3 graphical
Comparison of the experiments run Qith over-determinegd
Sets of équations., For the two views case, the model of

the object improves considerably, and the camera position
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improves somewhat as the number of points increases. For
three views, the opposite effect secems to hold: the
camera positions' accuracies improve considerably and the
model points' positions (originally fairly good) improve
somewhat. Clearly, attaining good accuracy depends on
considerable over-determination. It should be noted that
in some examples we tried, Brown's method without strict
descent would not converge using a reference point that
produced the minimum squared error from its original
estimate. By trying a different reference point, and thus
a different initial estimate, which produced a small
squared error, convergence to a satisfactory result was
achieved.

In addition to synthetic data, an experiment was
run using laboratory images, 108x108 pixels, from a rather
noisy image dissector camera. The images used appear in
Roach and Aggarwal [22] and are reproduced in appendix
five. 1In general, these images contain too few points to
assure accurate results. The images of three different
objects were used with three views of four points and
three views of five points. The results verify our
findings that too few points result in an inaccurate
answer.

The problem setup we have described requires that

we set the z-coordinate of the reference point to some
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numeric value, usually arbitrary. In some cases, however,
there may be a priori knowledge: the distance between two
points, or the distance from the camera to a point on the
object in one of the images (using a ranging device) may
be known. In these cases, the model and movement of the
object is found as shown above using an arbitrary constant
for the z-coordinate of the reference point. The scale of
the attained solution can then be changed using equations
of expansion and contraction as explained in the section
"on the Ambiguity of Images of Moving Objects” until the
distance between two points in the model or the distance

from the camera to a model point is as desired.

Conclusions

This work is directly related to the problems
encountered by researchers in optic flow studies, as
mentioned in the introduction, although the findings here
have no bearing on finding the "focus of expansion®” for a
translating camera. J. J. Cibson's texture gradients
[10], however, seem to be very much related to the work

presented here.
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Roberts [23] originally used least squares
analysis together with simple models and a support
assumption to locate objects in space given one image of
six points on the object, This study shows that it is
possible with more than one view to dispense with the
model. It is possible, in fact, to determine the
three-dimensional realtionship of the points on the object
as well as its movement (up to a scale factor) from the
multiple views. This is also the conclusion of Ullman's
recently available dissertation [25b] which uses a novel
closed form solution for restricted motions of objects
from noise-free central projection images. For
unrestricted motion, his method requires an impractical
computation in a very large (infinite) search space.
Another problem with central projection according to
Ullman is that perspective effects are often small
(especially for small objects), and thus noise makes
central projection an unsuitable model for determining
three-dimensional structure and movement. Obviously, no
method can succeed in the case where noise effects
overwhelm image changes due to motion. We have shown in
this thesis that given noisy central projection images, the
movement and three-dimensional relationship of points can
be attained only when there are considerably more

equations than unknowns. We have assumed that noise does
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not overwhelm image changes caused by the movement of
objects. We chose to use synthetic data originally to
ensure that the numerical method adopted converges to the
correct answer and later as a control over the accuracy of
the answer when noise was added to the data. The need for
considerable over-determination and thus the images of
many points re-emphasizes a pProblem that no one has solved
since Roberts® paper: how to find the Ccorrect tokens on
the surface of the cbject in images (in our case, the same
tokens in every image). Note that we are not referring to
the well known correspondence problen. Without the
ability to determine reliably the same feature points in
each image, the whole analysis scheme fails. Finding
points on blocks as in figure one is easy; finding
identical points in each image of a3 Sequence from the real
world is considerably more difficult. Future research
will have to devise a reliable low-level Processing

solution for this problem.



CHAPTER 4

SUMMARY

moved), €Xtraction of feature Points from each imaged
object's surface, Correspondence of feature Points between
images, and mathematical analysis to determine the

three—dimensional model and movement of the points,

92



have been ignored in this dissertation. Ideally, the

feature point eéxtraction Process shoulg eXtract pointsg

down the Process ang Possibly cause it to fail. The

Jain, Martin, ang Aggarwal [117.

[22]. 1n this dissertation, a simple extension to the
methods described in that Paper was given to determine the
Correspondence of Points insteaq of objects, The methods

described are heuristic, More mathematicajl approaches
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noise-free and noisy sequences of central projection
images of rigid objects. The solution only assumes that
objects are rigid; there are no special assumptions as to
object type (blocks), etc. The solution given determines
the relative movement between the camera and an object.
Thus, it would be possible to study the problem of a
camera moving through an environment containing mobile and
immobile objects. This might be a rather simple problem,
but it should be investigated. The problems of moving
jointed objects (such as animals) and of non-rigid objects
that vary slowly (like clouds) have not been approached in
the research for this dissertation. Also worthy of
further investigation are problems dealing with non-rigid
objects such as springs, plants that bend in the wind,
etc. Although the mathematical techniques and results
developed here are for rigid objects, they are guite
general and powerful. They will be basic building blocks
for future research in jointed movement if not also for
less rigid objects.

Psychologists, of course, have their own theories
concerning human perception of movement. The current
vogue in pSychological studies concerning low-level visual
processes is a paradigm that assumes the eye is computing
fourier transforms on the input (see, for example, Lindsay

and Norman [15], second edition). This paradigm appears
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to be antithetical to the basic premise of this paper that
low-level Processing must extract feature points from
images. It should be interesting to see how psychologists
account for movement computations with their Paradigm, or
whether the fourier transform approach is compatible with
the feature point extraction method of determining an

object's motion.

i



APPENDIX 1

Matrix for Rotation about @ General Axis in Space

three~dimensional Space. An explanation of the matrices
necessary to leag to this resuilt are given in Newman ang

Sproull [20]. Here we give the movement matrix in terms

axis of Fotation. Let be the rotational velocity ang
(x,¥,2) a point on the axis of rotation. The rotation

matrix is

a1 212 413 a1y
a7 oY) 853 oy
a

31 a39 a33 a3y

a

441 %42 43 Q44

If (a,b,c) are the direction cosines of the axis of

rotation and v = Vb2+c2, then




g7
2 2
= +
all vS coswt+a
a12 = ab coswt-c sinwt+ab
a5 = —ac coswt+b sinwt+ac
a14 = 0
a = —ab coswt+c sinwt+ab
21

8,y = (ab/v)2 coswt+(c/v)2 coswt+b2
ay,3 = azbc/v2 coswt—acz/v2 sinwt«abz/v2 sinwt

—bc/v2 coswt+be

8y = O
a31 = —~ac coswt-b sinwt+ac
a3, = a2bc/v2 coswt+ab2/v2 sinwt+ac2/v2 sinwnt

—bc/v2 coswt+bc

a33 = (ac/v)2 coswt+(b/v)2 coswt+c2

a3, = 0

3,y = -vzx coswt+aby coswt+acz coswt-cy sinwt+bz sinwt
2

-a“x-aby-acz+x

a = (abx—azbzy/vz—azbcz/vz) cosm:—abzz/v2 sinwt

42
+(cx—aczz/v2) sinwt+(*c2y/v2+bcz/v2) coswt
—abx-bzy—bcz+y

a,3 = —(—acx+a2bcy/v2+azczz/v2) cosmt+(ac2y/v2) sinwt

—(bx—abzy/vz) sinwt+(bcy/v2—b22/v2) coswt
cacx—bcy—czz+z

a4 = 1.

1f 6, ¢, kK are the orientation angles of the axis of

rotation, then
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all = cosz¢ coswt + sin2¢

@75 = sinb cos¢ coswt - cosf cos¢ sinwt

= sin6 sing cosg

a,3 = -cosf sing Cos¢ coswt - sinsg Cosd singpt

+ cosb cosg sing

al4 = 0

a,; = sind sing Cos¢ coswt + cos cosd sinwt

- sin® sin¢ coswt

855 = 81n7"9 sin“¢y coswt + sin6 cosg Sing sinpt
—Cos8 sin6 sing singt + cosze cospt + sinze Cosd cosuyt
a23 = = s5inf cosh sin2¢ coswt - 00326 sing sinwt
- sin28 sind sinwt + sing COsb coswt - sing COsH cosd cospt
854 = 0
a31 = - cosb sing Cos$ coswt + sind 0S¢ sinwt
+ cosf cosd sind 3
a3, = -sinb coss sin2¢ coswt + sinZg sing sinwt ‘
+ cosze sing sinwt
+ sin® cosb coswt - sind cosH cosz¢
ay5 = cosze sin2¢ Coswt - sind cosh sing sinwpt
+ sinb cosH sinwt + sinze coswt + c0526 c052¢
a34 = 0
3,1 = Xg(l-cos® coswt - sinZs)
41 0

+ YO(—sinG sin¢ cos¢ coswt - cost cosd sinwt

+ CcO0sH sin¢ cos¢) + Zo(coss sin¢ cos¢ coswt

- Sin® cos¢ sinwt - Ccos9 sin¢g cos¢)




99

a42 = Yo(l~sin26 sin2¢ coswt - sinf cose sind sinpt
+ sin® cosb sin¢ sinwt - c0528 coswt ~ sin26 cosz¢)
+ Xo(sine sin¢ cosd coswt + cosb cosd sinwt
+ sinf® sing coso)
+ Zo(sine cosH sin2¢ coswt - sin28 sind sinwt
- c0526 sin¢ sinwt - sin® cosH coswt
+ s8in8 cos® cosz¢)
a3 = Zo(l~cosze sin2¢ coswt + sin® cosé sin¢ sinwt
- sinb cos® sin¢ sinwt - sinze coswt - cosze cosz¢)
+ Xo(cose sin¢ cos¢ coswt + sind cosd sinwt
- cosb sin¢ cos¢)
+ Yo(sine cos?H sinz@ coswt + c0828 sing sinwt
+ sin26 sin¢ sinwt - sing Cosf coswt

+ sinb coss cosz¢)

44




APPENDIX 2

Details of the Ambiguity of Images of Rotating Objects

Consider an object with points {(xl,yl,zl,l),...,
(xn,yn,zn,l)} that has projective coordinates
{(xi,yi),...(xé,yé)}. Assume that the rotational
velocity is w; that the orientation angles of the axis of
rotation are 9 and ¢, and that a point on the axis of
rotation is (p,9.,r). Let the ith point be represented by

(*) in the following form
vi=(Xi,Yi:Zi:1)=(XO+A1A1'Yo+xiBi'zo+XiCi’l)

and let the point (p,g,r) on the axis of rotation be

represented by
(p,qfr)=(xo+k'A‘,YO+A‘B',ZO+x'c*).

We now rotate the points of the object by multiplying by
the rotation matrix. Note: the proof given here uses
direction cosines (d, e, f) for the angular orientation of

+he axis of rotation; cosf = f/Ve2+f2, sing =—e/Ve2+f2,

cost = J;§;;§; sin¢ =d; (P, 9v r) is the point on the axis

100
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of rotation. After time t the position of the rotated
point is
(X, + X.A.)(v2 cos wt + dz)
0 1771
+ (YO + kiBi)(~de cos wt + £ sin wt + de)

+ {(Z, + kiCi)(—df cos wt - e sin wt + df)

0
- v2 p cos wt + deq cos wt + dfr cos wt - f£fg sin wt
4+ er sin wt - d2 p - deq - dfr + p,

(XO + AiAi)(—de cos wt - f sin wt + de)
+ (Y0 + AiBi)(dzez/v2 cos wt + fz/v2 cos wt + e2)

+ (Z0 + )\ici)(dzef/v2 cos wt - dez/v2

sin wt

+ dfz/v2 sin wt - ef/v2 cos wt + ef)

+ (dep - d2ezq/v2 - dzefr/vz) cos wt

+ (—dezr/v2 + fp - dfzr/vz) sin wt

- (fzq/v2 - efr/vz) cos wt - dep - e2q - efr + q,
(X0 + kiAi){—df cos wt + e sin wt + df)

by xisi)(dzef/v2 cos wt - df? sin wt

- dez/v2 sin wt - ef/v2 cos wt + ef)

+ (Z, * Aici)(dzfz/v2 cos wt + e2/v2 cos wt + f2)

0
- (-dfp + dzefq/v2 + dzfzr/vz) cos wt

- (—dfzq/v2 + ep - dezq/vz) sin wt

+ (efq/v2 - ezr/v2) cos wt

-dfp - efq - fzr + I,

1}.

By substituting XO+AfA' for p, Y0+x‘B' for g, and ZO+A‘C‘

for r and cancelling terms, the above vector becomes:



(X + xiAi(v2 cos wt + d%)
+ %iBi(—de cos wt + £ sin wt + de)
+ xici(-df cos wt - e sin wt + 4f)

- vzx'A' cos wt + deX'B' cos wt + dfrtCct cos wt

- £A'B' sin wt + er'C’ sin wt - dz)\'A' - dex'B’
- dfA'C" + A'AT,
Y. + xiAi(—de cos wt - f sin wt + de)
+ xiBi(dzez/v2 cos wt + fz/v2 cos wt + e2)
+ )\ici(dzef/v2 cos wt + dez/v2 sin wt
+ dfz/v2 sin wt - ef/v2 cos wt + ef)
+ {(de)'A' - dze?‘k'B'/v2 - dzefX'C’/vz) cos wt
s (-de2rrcr/vE 4+ EA'AY - ag2r1ct/v?) sin wt
- (fZA'B'/v2 - efx‘C'/vz) cos wt - der'A’ - ezk'B'
- efr'C' + A'B',

7. + AiAi(—df cos wt + e sin wt + daf)

s

+ xiBi(dZef/v2 cos wt - dfz/v2 sin ot
- dez/v2 sin wt - ef/v2 cos wt + ef)
+ )\ici(dzfz/v2 cos wt + e2/v2 cos wt + fz)
L (cafatAr + dZefx'BT/vT + a%e2nrct /v?) cos wt
_ (-af2a'B'/v? + ed'A' - gedrrct/v?) sin wt
+ (efA'B'/v2 - ezk'c‘/vz) cos wt
_ GfN'A' - eEA'B' - £2A'C' + A'CY,
1.

To simplify matters, rewrite this vector as
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(xO+A", Y +B' ', Zy+C'tel) .

When we find the image of the point v, after rotation, its

coordinates are

g8 8 98
. - r allA +alzB +a13C
Vs :
i a3lAl |+a328' |+a33cl g
2% g9 g2
N a21A +a228 +a23C
V- ] 7 ¢ g %
i a31A +a328 +a33C

We now wish to construct a different object that
will have the same image while rotating. For each point

vy of the original object construct

vsi=(XO+sxiAi,Y0+skiBi,Zo+sxici,l).

Let the rotational velocity be w; let the orientation
angles of the axis of rotation be 6 and ¢. Let the point

on the axis of rotation be

(Psrqsifs)z(xo‘*sl'?\' ,Y0+S}\'B' ,ZO+S}\'C') o

We can now show that after time t the image of Vi after
rotation will be the same as for v;.
Now we want to rotate the scaled point Vi with

Vei < (X0+sxiAi,YO+skiBi,ZO+sAiCi,l),



The rotation of vy is given by

2 2
((XO + skiAi)(v cos wt + 4d7)

(Y

(z

4

+

(YO + S xiBi)(—de cos wt + £ sin wt + de)

(Z, + S kici)(-df cos wt — € sin wt + ag)

0
v2(XO + s)\'A') cos wt * de(YO + sA'B') cos wt
df(Z0 + s\'CY') cos wt - f(YO + sA'B') sin wt

e(z, + sA'C") sin wt - d2(XO + sA'A")

0
de(YO + s A'B') - df(Z0 + s AC') + X0 + sA'ATY,

skiAi)(-de cos wt - £ sin wt + de)

(YO + sxiBi)(dzez/v2 cos wt + fz/v2 cos wt + ez)

(Z skici)(d2ef/v2 cos wt + dez/v2 sin wt

0
dfz/v2 sin wt - ef/v2 cos wt + ef)

(de(x, + SA'A") - ae® (v, + SA'B') /2

dzef(ZO + sk‘C')/vz) cos wt

(-de® (2, + sA1Cl)/ve + E(Xg + SA'AT)

ag?(z, + sarct)/v2) sin ot

(£2 (¥, + saB')/ve - ef(Zg * sa1C')/v2) cos wt
de(x, + SAAY) - e2(x, + s1'B")

ef(Z0 + sA'CY) + YO + sA'BY,

sxiAi)(—df cos wt + e sin wt + 4f)

(YO + s?\iBi)(dzef/v2 cos wt - dfz/v2 sin wt
dez/v2 sin wt - ef/v2 cos wt + ef)

(2, + s)\ici)(dzfz/v2 cos wt + e?‘/v2 cos wt +f2)

0
(-df (X, + s ATAT) 4+ dzef(Y + sA'BY)
0 0

dzfz(ZO + sk'C')/vz} cos wt
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1)

(X

i

df(XO + sA'A') - ef(Y

f2(Z0 + sA'C') Z
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(—df2(y0 + SA'B') /vE + e(Xy + SA'A")

def(zO + sk'c'/vz)) sin wt

(ef(XO + sA'B')/v2 - ez(zo + sA'C')/v2) cos ot
0 + SA'BY)
0 + s)A'CY,
skiAi(v2 cos wt + dz)

+ skiBi(—de cos wt + £ sin wt + de)
skiCi(—df cos wt - e sin wt + d4df)
(—VZSA'A' + desA'B' + dfsA'C*®) cos wt
(-fsA'B' + esA'C") sin wt - dZSX'A' - desA'B?
dfsA'C*® + sA'AY,
sAiAi(—de cos wt - £ sin wt + de)
sAiBi(dzez/v2 cos wt + f2/v2 cos wt + e2)
sAiCi(dzef/v2 cos wt + dez/v2 sin wt
dfz/v2 sin wt - ef/v2 cos wt + ef)
(des)'a' - d%e?sa'B'/v? - alefsha'c'/v?) cos wt
(~de2sn'C'/v2 + £sA'A' - Af2sA'C'/v?) sin wt
(fst'B'/v2 - efsA'C‘/vz) cos wt - desA'A’
ezsx'B' - efsA'C" + sA'B?,
sAiAi(—df cos wt + e sin wt + df)
sAiBi(dzef/v2 cos wt - dfz/v2 sin wt
de2/v2 sin wt - ef/v2 cos wt + ef)

2

skici(dzfz/v2 cos wt + ez/v cos wt + fz)

(~dfsA'A' + d2efsA'B' + d%£2sA'C'/v?) cos wt
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— (=df2sA'B'/v% + esA'A' - defsA'C'/v%) sin wt

2sk'C'/vZ) cos wt - dfsA'a’

+ (efs,\'B’/v2 - e
-~ efgA"B* - fst'C' +UBATCY,
1)

= (xO + sA'’, YO sB'', Z, + sC'', 1).

0

The image of the rotated point by equations (+) is

sa.,.A'" + sa..B'" + sa,.C"?

. _ 11 12 13
X = F
Vsi saBlA" + sa328" + sa33C"
s[allA" + alzB" + al3c"]
= F
s[a3lA" + a328" + a33C"}
. aj A" + a; Bt + a ,C"Y
| B | 28 FR ]
a3lA + a32B + a33C
= !
v,
i
saZlA" + salZB" + sa13C"
Yo . = F
Vsi saSlA" + saBzB" + sa33C"
] g8 g8
g allA' + alzB + a13C
g8 98 g8
a31A + a32B + a33C
= g
Yy

i
Thus we see that the image of the two points is the same.
This proves that the image of a rotating object is

inherently ambiguous.




APPENDIX 3

Numerical Examplesg

Example of rotation and translation from "Movement
Calculations®

The final rotation matrix multiplications look
quite formidable and rather abstract so we shall make it
more tangible by giving an example. We have defined a
truncated wedge and a velocity of (1,3,-2,0). ©Now add an
axis of rotation with direction (—12/13,3/13,4/13) and let
point P=(XO; YO’ ZO)=(—6,1,3) be a point on the axis of
rotation. Let the rotational velocity w=.1 radians/sec.

The matrices for rotation are:

Trotationhelp -
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R
Y

for

Y

0 4/5

0 -3/5

t=1 secC,

= .995

.0998

={ 5/13

12/13

L 0

3/5 0
4/5 0
0 1
12/13
0
5/13
0
-.0998 o
. 995 0
0 1
0 0
0 -12/13
1 0
0 5/13
0 G

0 |
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Rxe 1 0 0 0
0 4/5 -3/5 0
0 3/5 4/5 0
0 0 0 1
771 =1 0 o 07]
rotationhelp
0 1 0 o

-6 1 3 1
L _

Now we give the computer pPrintout from a program that
tells the original position of the object, the rotation
and translation information. Thus, a point P is moved to

position p' by the calculation

-1_-1_-1 _
pTrotationhelpr Ry Rz Ry Rx rotationhelpT(1,3,-2) =P

ROTATIONAL VELOCITY .1000000

POINT (X, Y, Z) ON ROTATIONAL AXIS
-6.0000000 1.0000000 3.0000000

DIRECTION COSINES OF ROTATIONAL AXIS
-.9230769 <2307692 .3076923

VELOCITY VECTOR COMPONENTS

1.0000000 3.0000000 -2.0000000



INPUT OBJECT COORDINATES:

0.00000 0.00000
0.00000 0.00000
0.00000 3.00000
0.00000 3.00000
-4.00000 0.00000
-4.00000 0.00000
-4.00000 3.00000
-4,00000 3,00000
TIME= 1.00000

3-D COORDS ARE:
1.2838585E+00
1.2349436E+00
1.3483624E+00
1.3728198E+00

-2.7131854E+00
-2.7621003E+00
-2.6486815E+00

—2.6242241E+00

-10.00000
-8.00000
-9.00000

~10.00000

-10.00000
-8.00000
-9.00000

-10.00000

4.0074262E+00
3.8238278E+00
6.9014376E+00
6.9932368E+00
4.1345549E+00
3.9509565E+00
7.0285664E+00

7.1203655E+00

-1.1903994E+01
-9.9130400E+00
-1.0630991E+01
-1.1626468E+01
-1.1990472E+01
-9.9995181E+00
-1.0717469E+401

-1.1712946E+01
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Example of projecting points onto a focal plane from
"Projection"

Let’'s project the points that were rotated and
moved in the "Movements Calculations” section onto a focal
plane. Assume that the center of the lens is at {(6,0,-2),
that the focal length is 2, and that the direction cosines
of the optical axis of the camera are {(0,0,~1). The

matrices of interest are,

= [ 1 0 0 0 |
T(o,0,-1)
0 1 0 0
0 0 1 0
0 0 1 1
Ry = [ 1 0 0 0
0o -1 0 0
0 0 -1 0
0 0 0 1
R = R = identity matrix

yo zZK
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TrocAL = | o o 0
0 1 0 0
0 0 1 0
0 0 -2 1
p =1 0 0 0o |
0 1 0 0
0 0 1 1/2
|0 0 0 1 -

wWe showed earlier the movement computation needed
to derive the three-dimensional position of points. We
can determine the projective coordinates by multiplying
the object point positions by the projection matrices and
dividing by the fourth coordinate to return to cartesian
coordinates. The projection g' of point g is determined
by the equation

R

= '
aT g,0,-1) "% By "z Teocar? = @ °

The result for our example is:

PROJECTIVE COORDS
2.5926074E-01 -8.0925455E-01
3.1212875E-01 ~9.6646240E-01
3.1244670E-01 -1.5992225E+00

2.8521774E-01 -1.4529185E+00
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~5.4315458E-01 -8.2769957E-0]1
-6.9056666E-01 -9.8779863E-01
~6.0767212E-01  -1.61252458400

-5.4035593E-01 -1.4661597E+00

The first two coordinates of each line are the screen

coordinates of the rotated, translated truncated wedge.,

Numerical Example of Ambiguous Images from Translating
Objects

Here we give the computer printout for two
different translating objects that result in the same

image:

TIME INTERVAL IS 1.0000000
POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 -2.0000000
DIRECTION COSINES OF CAMERA OPTICAL AXIS
0.0000000 0.0000000 ~l.OOOOQOO
VELOCITY VECTOR COMPONENTS

1.0000000 3.0000000 -2.0000000



INPUT OBJECT COORDINATES:

0.00000
0.00000
0.00000
0.00000
-4.00000
-4.00000
-4.00000

-4.,00000

0.00000

0.00000

3.00000

3.00000

0.00000

0.00000

3.00000

3.00000

-10.00000

-8.00000

-9.00000

-10.00000

-10.00000

-8.00000

-9.00000

-10.00000
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PROJECTIVE COORDS BEFORE MOVEMENT

0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00
0.0000000E+00C -8.5714286E-01
0.0000000E+00 -7.5000000E-01
-1.0000000E+00 0.0000000E+00
-1.3333333E+00 0.0000000E+CO
~-1.1428571E+00 -8.5714286E-01
-1.0000000E+00 -7.5000000E-01
TIME= 1.00000

3-D COORDS ARE:

1.0000000E+00

1.0000000E+00

1.0000000E+00

3.0000000E+00
3.,0000000E+00

6.0000000E+00

-1.2000000E+01
fl.OOOOOOOE+Ol

-1.1000000E+01



1.0000000E+00
—-3.0000000E+00
=3.0000000E+00
—~3.0000000E+00

=3.0000000E+00

PROJECTIVE COORDS

2.0000000E-01
2.5000000E-01
2.2222222E-01
2.0000000E-01
-6.0000000E-0]
=7.5000000E~-01
~6.6666667E-01
-6.0000000E-01
TIME=. 2.00000
3-D COORDS ARE
2.0000000E+00
2.0000000E+00
2.0000000E+00
2.0000000E+00Q
—2.0000000E+00
~2.0000000E+00

~2.0000000E+00

6.0000000E+OO
3.0000000E+0Q
3.0000000E+00
6.0000000E+00

6.0000000E+00Q

-6.0000000E~01
-7.5000000E-0]
-1.3333333E+00
-1.2000000E+00
-6.0000000E-01
-7.5000000E-01
-1.3333333E+00

-1.2000000E+00

6.0000000E+00Q
6.0000000E+00
9.0000000E+06
9.0000000E+00
6.0000000E+GO
6.0000000E+00

9.0000000E+00

-1.2000OOOE+01
=1.2000000E+0]
-1.0000000E+0]
~1.1000000E+01

=1.2000000E+01

-1.4000000E+01
-1.2000000E+01
—-1.3000000E+01
-1.4000000E+01
—-1.4000000E+03
-1.2000000E+01

—-1.3000000E+01



-2.0000000E+00

PROJECTIVE COORDS

3.3333333E-01
4.0000000E-01
3.6363636E-01
3.3333333E-01
~3.3333333E-01
-4.0000000E-01
-3.6363636E-01
-3.3333333E-01
TIME= 3.00000
3-D COORDS ARE:
3.0000000E+00
3.0000000E+00
3.0000000E+00
3.0000000E+00
-1.0000000E+00
-1.0000000E+00
-1,0000000E+00

~1.0000000E+00

PROJECTIVE COORDS

4.2857143E-01

9.0000000E+0CO

~1.0000000E+00
-1.2000000E+00
~1.6363636E+00
~-1.5000000E+00
-1.0000000E+00
-1.2000000E+00
-1.6363636E+00

-1.5000000E+00

9.0000000E+00
9.0000000E+00
1.2000000E+01
1.2000000E+01
9.0000000E+00
9.0000000E+0QO
1.2000000E+01

1.2000000E+01

-1.2857143E+00

~1.4000000E+01

-1.6000000E+01
-1.4000000E+01
-1.5000000E+01
-1.6000000E+01
-1.6000000E+01
~-1.4000000E+0C1
-1.5000000E+01

-1.6000000E+01
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5.0000000E-01 -1.5000000E+00
4.6153846E-01 -1.8461538E+00
4.2857143E-01 -1.7142857E+00
-1.4285714E-01 -1.2857143E+00
-1.6666667E-01 -1.5000000E+400
-1.5384615E-01 -1.8461538E+00
-1.4285714E-01 -1.7142857E+00

For the second object:

TIME INTERVAL IS 1.0000000
POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 -2.0000000
DIRECTION COSINES OF CAMERA OPTICAL AXIS
0.0000000 0.0000000 -1.0000000
VELOCITY VECTOR COMPONENTS

2.0000000 6.0000000 -4.0000000

INPUT OBJECT COORDINATES:
0.00000 0.00000 -18.00000
0.00000 0.00000 -14.00000
0.00000 6.00000 -16.00000
0.00000 6.00000 -18.00000

-8.00000 0.00000 -18.00000

-8.00000 0.00000 -14.00000
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-8.00000 6.00000 -16.00000

-8.00000 6.00000 -18.00000

PROJECTIVE COORDS BEFORE MOVEMENT

0.0000000E+00
0.0000000E+0O
0.0000000E+00
0.0000000E+00
-1.0000000E+00
-1.3333333E+00
-1.1428571E+00

~-1.0000000E+00

TIME= 1.00000

3-D COORDS ARE:

2.0000000E+00
2.0000000E+00
2.0000000E+0GO
2.0000000E+00
~6.,0000000E+00
-6.0000000E+00
-6.0000000E+00

-6.0000000E+00

PROJECTIVE COORDS

0.0000000E+0CO
0.0000000E+00
-8.5714286E-01
-7.5000000E-01
0.0000000E+00
0.0000000E+00
-8.5714286E-01

-7.5000000E-01

6.0000000E+00
6.0000000E+00
1.2000000E+01
1.2000000E+01
6.0000000E+00
6.0000000E+00
1.2000000E+01

1.2000000E+01

-2.2000000E+01
~1.8000000E+01
-2.0000000E+01
-2.2000000E+01
~2.2000000E+01
~-1.8000000E+01
-2.0000000E+01

-2.2000000E+01

Pi



TIME=

2.0000000E-01
2.5000000E-01
2.2222222E-01
2.0000000E-01
~6.0000000E-01
=7.5000000E-01
-6.6666667E-01

-6.0000000E-01

2.00000

3-D COORDS ARE:

4.0000000E+00
4.0000000E+00
4.0000000E+00
4.0000000E+00
-4.0000000E+00
-4.0000000E+00
-4.0000000E+00

-4.0000000E+00

~6.0000000E-0]
~7.5000000E-01
—-1.3333333E+00
=1.2000000E+00
-6.0000000E-01
~=7.5000000E-01
—-1.3333333E+00

-1.2000000E+00

1.2000000E+01
1.2000000E+01
1.8000000E+01
1.8000000E+01
1.2000000E+01
1.2000000E+01
1.8000000E+01

1.8000000E+01

-2.6000000E+01
~2.2000000E+01
~2.4000000E+01
-2.6000000E+01
-2.6000000E+01
—~2.2000000E+01
~2.4000000E+01

-2.6000000E+01
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PROJECTIVE COORDS

3.3333333E-01 -1.0000000E+Q0
4.0000000E-01 -1.2000000E+00
3.6363636E-01 -1.6363636E+00

3.3333333E-01 -1.5000000E+00
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-3.3333333E-01 -1.0000000E+00

-4.,0000000E-01 -1.2000000E+00
-3.6363636E-01 -1.6363636E+00

-3.3333333E-01 -1.5000000E+00
TIME= 3.00000

3-D COORDS ARE:

6.0000000E+00
6.0000000E+00
6.0000000E+00
6.0000000E+00
-2.0000000E+00
-2.0000000E+00
-2.0000000E+00

-2.0000000E+00

PROJECTIVE COORDS

4.2857143E-01
5.0000000E-01
4.6153846E-01
4.2857143E-01
-1.4285714E-01
~-1.6666667E-01
~1.5384615E-01

~-1.4285714E-01

1.8000000E+01
1.8000000E+01
2.4000000E+01
2.4000000E+01
1.8000000E+01
1.8000000E+01
2.4000000E+01

2.4000000E+01

-1.2857143E+00
-1.5000000E+00
-1.8461538E+00
-1.7142857E+00
-1.2857143E+00
-1.5000000E+00
-1.8461538E+00

-1.7142857E+00

-3.0000000E+01
-2.6000000E+01
-2.8000000E+01
-3.0000000E+01
-3.0000000E+01
-2.6000000E+01
-2.8000000E+01

-3.0000000E+01



Numerical Example of Ambiguous Images from Rotating
Objects
Here are the computer printouts for different
rotating objects that have the same images:
TIME INTERVAL IS 1.0000000
POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 -2.0000000
DIRECTION COSINES OF CAMERA OPTICAL AXIS
0.0000000 0.0000000 -1.0000000
ROTATIONAL VELOCITY .1000000
POINT (X, Y, Z) ON ROTATIONAL AXIS
=-6.0000000 1.0000000 3.0000000
DIRECTION COSINES OF ROTATIONAL AXIS
-.9230769 .2307692 .3076923
VELOCITY VECTOR COMPONENTS

0.0000000 0.0000000 0.0000000

INPUT OBJECT COORDINATES:
0.00000 0.00000 -10.00000
0.00000 0.00000 -8.00000
0.00000 3.00000 -9.00000
0.00000 3.00000 -10.00000

-4.00000 0.00000 -l0.0000d
-4.00000 0.00000 -8.00000

-4.00000 3.00000 -9.00000
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-4,00000 3.00000 -10.00000

PROJECTIVE COORDS BEFORE MOVEMENT

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.0000000E+00
-1.3333333E+00
-1.1428571E+00

-1.0000000E+00

TIME= 1.00000

3-D COORDS ARE:

2.8385846E-01
2.3494363E-01
3.4836237E-01
3,7281978E-01
-3.7131854E+00
-3,7621003E+00
-3.6486815E+00

-3.6242241E+00

PROJECTIVE COORDS

7.1826586E-02

0.0000000E+00
0.0000000E+00
~8.5714286E-01
-7.5000000E-01
0.0000000E+00
0.0000000E+00
~8.5714286E-01

-7.5000000E-01

1.0074262E+00
8.2382781E-01
3.9014376E+00
3.9932368E+00
1.1345549E+00
9.5095651E-01
4.0285664E+00

4.1203655E+00

-2.5491572E-01

-9.9039943E+00
-7.9130400E+00
-8.6309911E+00
-9.6264683E+00
-9.9904724E+00
-7.9995181E+00
-8.7174693E+00

-9.7129465E+00

B T R



TIME=

7.9466275E-02
1.0507098E—Ol
9.77699688—02
~9.2940322E-01
—1.2541341E+OO
—1.0863262E+OO

—9.3977681E—01

2.00000

3-D COORDSs ARE:

5.9503308E—Ol
4.92016425-01
7.1417331E—Ol
7.6568164E—Ol
~-3.393.172()15‘+OO
—3.4961887E+00
-3.2740318E+OO

—3.2225234E+OO

PROJECTIVE COORDS

1.543718OE~01
1.7127964E~Ol
2.3139629E—Ol
2.1403650E-Ol

—8.6232398E-Ol

*2.78647815*01
-1.1767284E+OO
—1.0472047E+OO
—2.8397692E~Ol
—3.1701096E-01
—1.1994298E+OO

—1.0684284E+OO

1.9922526E+OO
1.6283092E+OO
4.7536653E+OO
4.9356369E+OO
2.2537534E+OO
1,8898100E+OO
5.0151661E+OO

5.1971377E+OO

~-5.168580352--01
—5.6684332E-Ol
~l.5402151E+06
—1.3796941E+OO

-5.7275776E-Ol

—9.7090902E+OO
-7,7451827E+OO
*8.172729OE+OO
—9.1546828E+OO
—9,8698310E+00
—7.905923SE+OO
-8.3334698E+OO

*9.3154236E+OO
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°1,1839600E+00
—1.033882SE+00
—8.8102169E*01
TIME= 3,00000
3-D COORDS ARE:
9.3041470E—01
7.6864977E—01
1.0937778E+00
1.1746602E+00
~3.0431572E+00
—3.2049221E+00
—2.8797941E+00

—2.7989117E+00

PROJECTIVE COORDS

2.5087911E-01
2.7960533E-01
3.8856770E-01
3.56532558-01
-7.9671297E-01
_1.1205725E+00
_9.8423570E-01

'8.21831138—01

~6.3997104E—01
—1.5837025E+00

—1.4208713E+00

2.9446391E+00
2.4054061E+00
5.5481677E+OD
5.8177842E+00
3.3464128E+00
2.8071798E+00
5.9499413E+00

6.2195578E+OO

—7.93999125—01
—8.7499456E—01
—1.9710026E+00
—1.7658123E+00
—8.7610672E-01
—9.8150544E'01
—2.0335289E+OO

—1.8262192E+00

—9.4172352E+00
—7.4981053E+00
—7.62979253+00
—8.5893575E+00
—9.6392811E+00
—7.7201512E+00
—7.8518384E+00

—8.8114034E+00
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For the Second object:

TIME INTERvVAL IS 1.0000000
POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 =2.0000000
DIRECTION COSINES oF CAMERA OPTICAL AXIs
0.0000000 0.0000000 =-1.0000000
ROTATIONAL VELOCITY -1000000
POINT (x, Y, Z) oON ROTATIONAL AXIS
-12.0000000 2.0000000 8.0000000
DIRECTION COSINES oF ROTATIONAL AXIS
~+9230769 -2307692 -3076923
VELOCITY VECTOR COMPONENTS

0.0000000 0.0000000 0.0000000

INPUT OBJECT COORDINATES:
0.00000 0.00000 -18.00000
0.00000 0.00000 -14.00000
0.00000 6.00000 =16.00000
0.00000 6.00000 -18.00000

-8.00000 0.00000 -18.00000
-8.00000 0.00000 -14.00000
-8.00000 6.00000 -16.00000

-8.00000 6.00000 -18.00000



TIME=

PROJECTIVE COORDS

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.,0000000E+00
-1.3333333E+00
~-1.1428571E+00

-1.0000000E+00

1.00000

3-D COORDS ARE:

5.6771693E-01
4.6988726E-01
6.9672473E-01
7.4563956E-01
~7.4263708E+00
~7.5242005E+00
~7.2973630E+00

-7.2484482E+00

PROJECTIVE COORDS

7.1826586E-02
7.9466275E-02

1.0507098E-01

BEFORE MOVEMENT

0.0000000E+00

0.0000000E+00

-8.5714286E-01

-7.5000000E-01

0.0000000E+00

0.0000000E+00

-8.5714286E-01

-7.5000000E-01

2.0148524E+00
1.6476556E+00
7.8028753E+00
7.9864737E+00
2.2691098E+00
1.9019130E+00
8.0571327E+00

8.2407311E+00

-2.5491572E-01
-2.7864781E-01

-1.1767284E+00

~1.7807989E+01
~1.3826080E+01
~1.5261982E+01
~1.7252937E+01
~1.7980945E+01
~1.3999036E+01
~1.5434939E+01

-1.7425893E+01
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9.7769968E-02
-9.2940322E-01
-1.2541341E+00
-1.0863262E+00
-9.3977681E-01
TIME= 2.00000
3-D COORDS ARE:
1.1900662E+00
9.8403283E-01
1.4283466E+00
1.5313633E+00
~-6.7863440E+00
-6.9923773E+00
-6.5480635E+00

~-6.4450469E+00

PROJECTIVE COORDS

1.5437180E-01
1.7127964E-01
2.3139629E-01
2.1403650E-01
-8.6232398E-01
~1.1839600E+00

-1.0338825E+00

-1.0472047E+00
-2.8397692E-01
-3.1701096E-01
-1.1994298E+00

-1.0684284E+00

3.9845052E+00
3.2566184E+00
9.5073305E+00
9.8712739E+00
4.5075067E+00
3.7796200E+00
1.0030332E+01

1.0394275E+01

-5.1685803E-01
-5.6684332E-01
-1.5402151E+00
-1.3796941E+00
-5.7275776E-01
-6.3997104E-01

-1.5837025E+00

-1.7418180E+01
-1.3490365E+01
-1.4345458E+01
-1.6309366E+01
-1.7739662E+01
-1.3811847E+01
-1.4666940E+01

-1.6630847E+01

127



128

-8.8102169E-01 -1.4208713E+00

TIME= 3.00000

3-D COORDS ARE:

1.8608294E+00
1.5372995E+00
2.1875555E+00
2.3493204E+00
-6.0863144E+00
-6.4098442E+00
-5,.7595883E+00

-5.5978233E+00

PROJECTIVE COORDS

2.5087911E-01
2.7960533E-01
3.8856770E-01
3.5653255E-01
-7.9671297E-01
-1.1205725E+00
-9.8423570E-01

-8.2183113E-01

5.8892782E+00
4.8108122E+00
1.1096335E+01
1.1635568E+01
6.6928255E+00
5.6143595E+00
1.1899883E+01

1.2439116E+01

~7.9399%12E-01
~8.7499456E-01
-1.9710026E+00
-1.,7658123E+00
-8.7610672E-01
—9.8150544E—61
-2.0335289E+00

-1.8262192E+00

-1.6834470E+01
~1.2996211E+01
-1.3259585E+01
-1.5178715E+01
~1.7278562E+01
~-1.3440302E+01
-1.3703677E+01

-1.5622807E+01



129

Numerical Example of Ambiguous Images from Rotating and
Translating Objects
Here we give the computer printouts for two
different objects that are both rotating and translating
yet producing the same sequence of images. This sequence
of images for times one through five is illustrated in the
computer plots in figure one of the introduction.
TIME INTERVAL IS 1.0000000
POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 -2.0000000
DIRECTION COSINES OF CAMERA OPTICAL AXIS
0.0000000 0.0000000 -1.0000000
ROTATIONAL VELOCITY .1000000
POINT (X, Y, Z) ON ROTATIONAL AXIS
-6.0000000 1.0000000 3.0000000
DIRECTION COSINES OF ROTATIONAL AXIS
-.9230769 2307692 .3076923
VELOCITY VECTOR COMPONENTS

1.0000000 3.0000000 -2.0000000

INPUT OBJECT COORDINATES:
0.00000 0.00000 -10.00000
0.00000 0.00000 -8.00000
0.00000 3.00000 -9.00000

6.00000 3.00000 -10.00000
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-4,00000 0.00000 -10.00000
-4.00000 0.00000 -8.00000
-4.00000 3.00000 =-9.00000
-4,00000 3.00000 -10.00000

PROJECTIVE COORDS BEFORE MOVEMENT

TIME=

0.0000000E+00
0.0000000E+0O0
0.0000000E+00
0.0000000E+00
-1.0000000E+00
-1.3333333E+00
-1.1428571E+00

-1.0000000E+00

1.00000

3-D COORDS ARE:

1.2838585E+00
1.2349436E+00
1.3483624E+00
1.3728198E+00
-2.7131854E+00
-2.7621003E+00
~2.6486815E+00

-2.6242241E+00

0.0000000E+0O0
0.0000000E+00
-8.5714286E-01
-7.5000000E-01
0.0000000E+00
0.0000000E+0CO
-8.5714286E-01

-7.5000000E-01

4.0074262E+00
3.8238278E+00
6.9014376E+00
6.9932368E+00
4,.1345549E+00
3.9509565E+00
7.0285664E+00

7.1203655E+00

-1.,1903994E+01
-9,9130400E+00
-1.0630991E+01
-1.1626468E+01
-1.1990472E+01
-9.9995181E+00
-1.0717469E+01

-1.1712946E+01



TIME=

PROJECTIVE COORDS

2.5926074E-01
3.1212875E-01
3.1244670E-01
2.8521774E-01
-5.4315458E-01
-6.9056666E-01
-6.0767212E-01
-5.4035593E-01

2.00000

3-D COORDS ARE:

2.5950331E+00
2.4920164E+00
2.7141733E+00
2.7656816E+00
=1.3931720E+00
-1.4961887E+00
-1.2740318E+00

-1.2225234E+00

PROJECTIVE COORDS

4.4325102E-01

5.1143555E~01

-8.0925455E-0]
-9.6646240E-01
-1.5992225E+00
-1.4529185E+00
~8.2769957E-01
=9.8779863E-01
-1.6125245E+00

-1.4661597E+00

7.9922526E+00
7.6283092E+00
1.0753665E+01
1.0935637E+01
8.2537534E+00
7.8898100E+00
1.1015166E+01

1.1197138E+01

-1.3651364E+00

-1.5655549E+00

~1.3709090E+01
-1.1745183E+01
-1.2172729E+01
-1.3154683E+01
-1.3869831E+01
-1.1905923E+01
-1.2333470E+01
-1.3315424E+01
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TIME=

5.3361754E-01
4.,9587813E-01
-2.3474167E-01
-3.0207959E-01
-2.4658354E-01

-2.1608090E-01

3.00000

3-D COORDS ARE:

3.9304147E+00
3.7686498E+00
4.,0937778E+00
4.1746602E+00
-4.,3157185E-02
-2.0492212E-01
1.2020587E-01

2.0108834E-01

PROJECTIVE COORDS

5.8587550E-01
6.5552536E-01
7.0401562E-01
6.6320465E-01
-6.3283666E-03

-3.4969193E-02

-2.1142144E+00
-1.9607258E+00
-1.3907112E+00
-1.5929479E+00
-2,1319395E+00

-1.9790930E+00

1.1944639E+01
1.1405406E+01
1.4548168E+01
1.4817784E+01
1.2346413E+01
1.1807180E+01
1.4949941E+01

1.5219558E+01

-1.7804919E+00
-1.9838758E+00
-2.5018792E+00
-2.3540175E+00
-1.8104199E+00

~2.0148511E+00

-1.5417235E+01
-1.3498105E+01
-1.3629792E+01
-1.4589357E+01
-1.5639281E+01
-1.3720151E+01
-1.3851838E+01

-1.4811403E+01
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2.0284764E-02 -2.5228055E+00

3.1392086E-02 -2.3759392E+00

For the second object:

TIME INTERVAL IS 1.0000000

POSITION OF CAMERA LENS CENTER
0.0000000 0.0000000 -2.0000000

DIRECTION COSINES OF CAMERA OPTICAL AXIS
0.0000000 0.0000000 -1.0000000

ROTATIONAL VELOCITY .1000000

POINT (X, Y, Z) ON ROTATIONAL AXIS

-12.0000000 2.0000000 8.0000000

DIRECTION COSINES OF ROTATIONAL AXIS
-.9230769 .2307692 3076923

VELOCITY VECTOR COMPONENTS

2.0000000 6.0000000 -4.0000000

INPUT OBJECT COORDINATES:
0.00000 0.00000 -18.00000
0.00000 0.00000 -14.00000
0.00000 6.00000 -16.00000
0.00000 6.00000 -18.00000

-8.00000 0.00000 -18.00000

-8.00000 0.00000 -14.00000
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-8.00000 6.00000 -16.00000

-8.00000 6.00000 -18.00000

PROJECTIVE COORDS BEFORE MOVEMENT
0.0000000E+00 0.0000000E+0O0
0.0000000E+0O 0.0000000E+00
0.0000000E+00 ~8.5714286E-01
0.0000000E+00 -7.5000000E-01

-1.0000000E+00 0.0000000E+00
-1.3333333E+00 0.0000000E+00
-1.1428571E+00 -8.5714286E-01

-1.0000000E+00 -7.5000000E-01

TIME= 1.00000

3-D COORDS ARE:

2.5677169E+00 8.0148524E+00 -2.1807989E+01
2.4698873E+00 7.6476556E+00 --1.7826080E+01
2.6967247E+00 1.3802875E+01 -1.9261982E+01

2.7456396E+00 1.3986474E+01 -2.1252937E+01

-5.4263708E+00 8.2691098E+00 -2.1980945E+01
-5.5242005E+00 7.9019130E+00 -1.7999036E+01
-5.2973630E+00 1.4057133E+01 -1.9434939E+01
-5.2484482E+00 1.4240731E+401 -2.1425893E+01

PROJECTIVE COORDS



TIME=

2.5926074E-01
3.1212875E-01
3.1244670E-01
2.8521774E-01
=5.4315458E-0)
~6.9056666E-01
~6.0767212E-01

~-5.4035593E-01

2.00000

3-D COORDS ARE:

5.1900662E+00
4.9840328E+00
5.4283466E+00
5.5313633E+00
~2.7863440E+00
=2.9923773E+00
~2.5480635E+00

=2.4450469E+00

PROJECTIVE COORDg

4.4325102E-01
5.1143555E-01
5.3361754E-01

4.9587813E-01

~8.0925455E-0]
~9.6646240E-01
—-1.5992225E+00
-1.4529185E+00
—-8.2769957E-01
=9.8779863E-01

-1.6125245E+00

-1.4661597E+00

1.5984505E401
1.5256618E+01
2.1507331E+01
2.1871274E+401
1.6507507E+01
1.5779620E401
2.2030332E401

2.2394275E+01

—1.3651364Ef00
-1.5655549E+0p
—2.1142144E+00

-1.9607258E+00

-2.5418180E+01
~2.1490365E+01
~2.2345458E+01
~2.4309366E+01
~2.5739662E+01
-2.1811847E+01
—2.2666940E+0]

—2.4630847E+01
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-2.3474167E-01
-3.0207959%E-01
-2.4658354E-01

-2.1608090E-01

TIME= 3.00000

3-D COORDS ARE:
7.8608294E+00
7.5372995E+00
8.1875555E+00
8.3493204E+00
-8.6314371E-02
-4.0984423E-01
2.4041174E-01

4.0217667E-01

PROJECTIVE COORDS
5.8587550E-01
6.5552536E-01
7.0401562E-01
6.6320465E-01

~6.3283666E-03
-3.4969193E-02
2.0284764E-02

3.1392086E-02

-1.3907112E+00
-1.5929479E+00
-2.1319395E+00

~-1.9790930E+00

2.3889278E+01
2.2810812E+01
2.9096335E+01
2.9635568E+01
2.4692826E+01
2.3614360E+01
2.9899883E+01

3.0439116E+01

-1.7804919E+00
-1.9838758E+00
-2.5018792E+00
-2.3540175E+00
-1.8104199E+00
-2.0148511E+00
-2.5228055E+00

-2.3759392E+00

-2.8834470E+01
-2.4996211E+01
-2.5259585E+01
-2.7178715E+01
-2.9278562E+01
-2.5440302E+01
~2.5703677E+01

~2.7622807E+01
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APPENDIX 4

Statistical Resultg

in each €xample was set to 10. The typical distance to
the reference point, therefore, Was on the order of 15 or
20 units, Three sets of Statistics were kept for each
experiment: average distance from computeg model points
to correct model pPoints, distance from the computed camers
Position to the Correct camerg pPosition, ang average

angular error of 9, ¢, and «.

three €Xperiments, The ®p® token denotes the value for
the 2 eXperiment, etc, In addition, to indicate the trend

of the data, the average of the three €Xperiments ig

connected by 3 solid line ip the graphs.
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The first graph shows the average distance between
the model points for the computed answer given noisy data
and the correct answer assuming no noise. For the 6, 7,
or 8 point cases, there is one point whose computed
coordinates are extremely poor. Note that there is no
average distance for the A or C experiments with eight
points since their averages were too large to fit on the
graph. 1In general, two views of fewer than nine points
result in a numerically unstable model of an object.

The second graph shows the improvement in the
second camera position as the number of points increases.
The improvement does not appear to be very great mainly
due to the unusually good camera position for the A
experiment when six or seven points were used.

The third graph shows the average error for the
angles 8, ¢, and «. There does not seem to be any
improvement here as the number of points increases. The
average error is about .1 radians.

In conclusion, the model of the object showed a
marked improvement as the number of points increased, the
camera position showed a modest improvement, and the
angular orientation of the camera showed little or no
improvement.

Experiments with three views showed the model of

the object to be fairly good with minimal
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over~determination, but the camera positions were poor

until there were three views of at least seven points.
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Image 3 Image 5 Image 8

LD

Image 9 Image 10

Image 11 Image 12

Figure 10

First Seguence




APPENDIX 5

Images from Roach and Aggarwal [22]

In this appendix, two sequences of images from
Roach and Aggarwal [22] are presented that were used to
test an hierarchical object tracking system. Later,
images of points on the objects (the corners in fact) were
used to find the model and movement of the objects. There
were, however, too few points available to attain any
accuracy.

The first sequence is given in figure ten and the
second sequence is given in figure eleven. 1In figure ten,
not all the images at the first of the sequence are given

since they look rather similar.






Image 1

"

\

Image 4 Image 5 Image 6

Figure 11

Second Seguence
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