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1. Introduction

Computational models for the analysis of time sequences
of images of dynamic scenes are crucial for the solutiovn of many
image understanding problems. For example, in meteoroloegy, the
automatic prediction of frontal positions from satellite images
of cloud cover requires that the movements of clouds be tracked
from image to image [1]. 7In fact, meteorological applications
imparted the initial impetus to research in motion analysis. The
spectrum of applications has widened dramatically in the past
several years to include biomedicine, tactical and strategic mil-
itary applications and industrial automatign. In addition to
this variety of real world problems, models for motion analysis
are of fundamental importance to our understanding of the human
visual system. Mammalian visual systems not only contain
"software"” for motion analysis [2], but apparently also include
"hardware® four the detection ¢f moving objects 1in the visual
field [3,4].

Perhaps the moust prevalent problem in motion analysis
is the tracking of objects from frame to frame. Tracking is a
prerecuisite for computing either the motion of the object or a
description of how the object is changing. 2 general approach to
tracking is to establish correspondences between points, or sets
of points, in successive frames and then to group those sets into
objects based on similarity of motion. Such grouping operations
are often based on the assumption that the objects are rigid or
that they are articulated (i.e. jointed) but composed of rigid

parts. Such assumptions impuse structural constraints on the
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relative positions of object points, which in turn impose con-
straints on the two-dimensional pattern of positions projected by
those points onto the image plane. For example, Ullman (5] and
Roach and ARggarwal [6] use the rigidity assumption to compute the
three-dimensional structure of moving objects from multiple views
of the object 1in motion, while Webb [7] and Rashid [8] discuss
how jointed objects may be analyzed. It 1is important to note
that 1in a great number of applications the objects in motion can
be treated as two-dimensipnal so that grouping operations and
accompanying computational models of motion can be specified
solely on the basis of changes in image coofdinates}

This paper will focus attention on processes for estab-
lishing the <correspondence between sets of points in successive
frames. It should be pointed out that these correspondence
processes have applications to other problems in image under-
standing besides motion analysis - e.g., stercopsis, change

detection, etc. wWwe will not consider the subseguent grouping

procedures which establish structure and motion from such
correspundences., Niscussions of those problems can be found in
[5-67.

There are a number of factors which contribute towards
making the correspundence problem quite difficult; the presence
or absence of such factors determines the procedures which can be
applied to solve any specific correspondence problem. First, the
types of transformations that objects can be subject to from
frame to frame must be considered. Can the objects change thelir

orientation in the field of view, or their size? Can their shape



change, and if so, is any pricr information aveilable which con-
strains such changes? (This is especielly important for tracking
clouds, which changeyshape, sometimes dramatically, from frame to
frame.)

Objects may be moving againsi changing backgrounds, and
this tends to complicate the correspuondence processes. It is
much simpler to track an object which is moving agaeinst a clear,
blue sky than it is to track an object which is moving along the
ground from one type of textured region to another. Furthermore,
if it is possible for the ubject to move behind other objects, so
that it is only pqrtly visible at times (o; even c;mpletely
invisible for some time) then the correspondence processes must
be able to establish their matches given wonly partial informa-
tion.

We will consider two general approvaches towards estab-
lishing a correspondence between image parts in successive
frames. The first is based on constructing "iconic” or
picture-like models of a segment of one frame. Such iconic
models are sometimes referred to as templates in the picture pro-
cessing 1literature., Farly psychological theories of visval per-
ception attempted to account for human pattern recognition based
on iconic memory models. However, such thecries fail to account
for recognition of patterns that are highly abstract, or general-
ized (e.g., the recognition of caricatures, cartoouns, etc.).
Similarly, computatiovnal theories of pattern recognition based on
iconic pattern representations are not applicable in all situa-

tions. Nevertheless, the computational efficiency of algorithms
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for matching iconic models against images justifies their serious
consideration before more general modelling techniques are
adopted.

The second approvach employs structural models for seg-
ments of the first frame, and then computes homologous represen—
tations for segments of the second frame against which it matches
those pieces. Such procedures can, in general, tolerate grosser
changes in size, shape, etc., than can procedures based on iconic

models. They are, however, computationally more complex.,




2. Tracking Using Iconic rodels

In tracking using iconic models, ovne must first "lock-
on", or detect, a subset of the first frame which one suspects
contains a moving object, construct an iconic representation of
that subset, and then match that iconic representation against
the second frame. Suppose that for the frame acguired at time
t

F, = f(x,y,tl), Xlﬁxﬁxz' y15y§y2 is a subimage that contains

17 1
a nmoving object. For F, we define AW = X%,-%; and AY = Y,=Yq-
~hen there are a variety of iconic representations which can be
constructed based on Fl. These include:

1) Using I, directly;

1

2) Segmenting Pl into a binary image (i.e., an 1image
composed of O0's and 1's), where the 1's indicate object points
and the 0's non-oubject points; and

3) aApplying an edge detection operation to Fl resul t-
ing in a binary image where the edges, or bounderies, of the
objects are labeled 1, and all other pvints are labeled 0.

The advantage of using Fl directly is that it requires
the minimal amount of computation to construct the iconic
representation. However, the exact gray levels in Ty depend not
only on the properties of the moving object (e.g. its reflectance
and shape), but also on the properties of the background against
which it is moving. If this background cen change dramatically,
relative to the object, from frame to frame (e.g., if the back-
ground is textured), then it might prove difficult to match Fl
based upon this direct representation.

on the other hand, segmenting ry into either an




object/background or edge/no~edge representation makes the
salient shape characteristics vf the moving object explicit in
the 1iconic representation. One must be able, however, to compute
such segmentations reliably. In the remsinder of this sectiovn we

?
will denote by Fl the iconic representation of Fl.

Now, suppoucse that Fz = f(x,y,tz), 0<x<n, 0<y<m, is the
frame acguired at time t2. In order to match Fy against a piece
“of Fz(i.e. a subset of F2 having the same shape and size as Pl)

one must first compute an iconic representation o¢f that subset

which is of the same form as the representation chusen for Pl.

El
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We will let F2 refer to that iconic representation of F2.

Next, one must adopt some measure of match between
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values indicate match) or difference measures (low values indi-

I
o The measures may be either similarity measures (high

cate match). A variety of such measures have heen considered
including the following:

1) Normalized cross correlation (similarity measure)

_ P(x,v)
C{xn,v) %y’ where (1)
Lx Ly : : s
S 2 Fy(xy+i,y;+3) Fylx+i,y+3) and
=0 j:()

P{x,y)
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2) Sum of absolute differences (difference measure)
Alx,y) = b by i?l(x1+i,yl+j) - Fz(x+i,y+j)!; and (2)

3) Sum of sguared differences (difference measure)
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The normalized cross correlation is closely related to

the sum of squared differences since

Lo Ly . . 2
s(x,y) = % 2 [Py (xy+i,y +3) = Fylx+i,y+3)]
i=o j=o
Lx Ly . L2
= .2 .z Fl(xl+1’yl+3)
i=o j=o
TS . . .
-2 2 2 Fl(x1+1,yl+J)F2(X+i.y+3)
i=o  J=o0
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+ .E .S Fz(x+i,y+3)
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and if £ 2 F§ and £ 2 Fg were fixed, then S(x,y) would be minim-
ized when
Y Ly _ . .
3 3 ry(x+i,y +3) Fo(xti,y+])
i=o j=

is maximized. This latter quantity is the wunnormalized cross

correlation. One must normalize it as above because the unnor-

malized cross correlation will be high in areas of Fy having high
average intensity, whether or not they match rl. For C(x,y), it
is easily shown that 0£C(x,y)<1l, and that C(x,y)=1 if and only if
for some constant ¢
Fl(x1+i,y1+j) = C Fz(x+i,y+j) 0<i<Ax, and 0<3iy (91,

From the point of view vof computational expediency, the
difference measures (2) and (3), are preferable to the similarity

measure (1) because their cumulative nature (see below) allows

them to be incorporated into fast matching algorithms.
The straightforward space domeain algorithm for comput-

ing any of the preceding match measures requires Ax\y vperations




per pixel. If Ax and /\y are large, then this can take a signifi=-
cant amount of computing time on a general-purpose computer. We
will discuss two approaches toward reducing this time:

1) The use of special-purpose computer architecture;
and,

2) the develoupment of faster algorithms for general
purpuse computerse.

There are at least three distinct types of architec-
tures for image processing which can profitably be distinguished;
each is accompanied by its own specific set of advantages, disad-
vantages, and theoretical end practical problems. | ﬁ

1) "rocal plane architectures” which are actually
integrated into video sensors behind the focal plane and which
are capable of processing data at high-quality television data
rates (7.5 MHz) .

2) Cellular arrays of simple, bit serial processing
elements (PE’s) . Cellular arrays are a special <class of
single-instruction stream multiple-data stream (S1rD) machines
having fixed-interconnections.

3) General multiple-instruction stream multiple-data
stream (MIMD) machines with many general-purpose processors,
memories and a flexible interconnection network, Such machines
can also be operated as SIMD machines.

As one moves from architectures of type 1 through type
3, there is a significant decrease in speed. Focal plane archi-
tectures can compute a relatively complex computation (e.g., a

5x5 convolution) at the rate of 100 ns/pixel, while a cellular




il i e

L B
S

- 10 -

array such as CLIP 4 [10] and »T“D machines (such as zZmCR [11]
would orperate at significantly lower date rates (see Davis [12]
for more details).

Ralancing this decrease in processing efficiency is an
increase in processing generality. Ftocal plane architecture is
functionally quite rigid; it cannot, e.g., be wused to appiy
iterative algorithms to an image unless the number of iterations
is known a priori. Fven then, it requires duplication of circui-
try, (e.g., the median of median operation computed by TI VLST
architecture [13]). 7“he cellular arrays are more general, since
their FPRE's are ordinarily capable of computing any Roovlean func-
tion over a single bit plane vf a point and a simple function of
its four or eight neighbors. However, for non-logical opere-
tions, the PE's are very difficult tou program due tou their "low-
level” instruction set. MIMD machines composed of many micropro-
cessors are still more general, since not unly are the micropro-
cessors® machine instructions ordinarily quite powerful, but com=-
pilers are available for translating high-level 1languages ({such
as PASCAL or FORTRAN) into the machine language of the micropro-
cessors. However, difficult problems in scheduling and sharing

need to be sclved before MIMD machines becume generally avaeil-

able,

For the purposes of object tracking using iconic match-
ing technicues, focal plane architectures would be moust prefer-
able because they can support such computations at close to

real-time data rates. As one example of a "foucael plane architec-




ture® for convolutions, consider the approvach suggested by Texas

Tnstruments [14] based on VLSI technologies.

In general, the correlation of a sequence X = {Xi}ifo
with 2 sequence of weights W = {wi}izo is defined by
n
c(iy = 2 W.X.y o (4)
3=0 J i+]

This is essentially the one-dimensional form of the

unnormalized cross correlation discussed above. It is possible to

n
extend the design discussed below to normalize C(i) by 2 X, -,

j=o i+3
but the principle point of the design is the efficient computa-
tion of C(i). Now if we express Xn as

np € (01 (5)

then by substituting (4) into (5) and reordering terms we can

uobtain

I %A
W vis
o

c(i) =

W.X, .
b 3X1+j,b

0 j=0
Thus, C(i) can be coumputed using a total of about rn shifts and

adds. However, time can be saved by prestoring all values of

n
W.X. . .
3=0 37i+3,b
ina 2" by Bw + log, (n) bit read-only memory (RO™) where Ew is
the number of bits required to store the max imum wj. Now, the

computation of C{i) takes r+l table look-ups in the memory, and

r+1 shifts and adds. This technique 1is <called the ROM =



accumulator (RAC) technigue.

An advantage of 7I's VLST design is that the dynamic
range of the convolution weights can be increased with only a
small increase in RO¥., Cn the other hand, the VLST approach is
impractical for lerge convolutions. Fven a small, 10x1C convolu-

tion would reguire a ROM which is 2100

x(Bw+logzn) bits, which |is
clearly impossible. If one adopted the blocking schemes sug-
gested in [14] (i.e. essentially break the large memory into
several smaller memories and then combine the results with addi-
tional circuitry), then the architecture might become too slow.
Note that one if also faced with the formidéble problém of load-
ing the partial product memory (which for image tracking could
obviocusly not be constructed with ROv). This requires both com-
puting all the partial products, and then storing them into
memory. Such problems need tu be faced befure such architectures
could be applied tu tracking problems. See [15] for an alterna-
tive architecture based oun charge-coupled devices.

An alternative to using special purpuse architecture is
to design fast algorithms for computing the location of maximum
match. Although it is possible to wuse frequency domain tech-
niques, we will restrict our attention to space domain techniques
because they generalize to wider classes of match functions.

Rarnea and Silverman [16] introduced & class of fast
algorithms for image registraticvn which avoided the comparison of

g ¢
every point in Fl with every point in FZ. In the following, we
present a generalization of some of the ideas presented in [16]

which involves representing the matching problem wusing state-
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space representation techniques, and then searching for the best
match using an ordered search algorithm. Tor notational conveni-
ence, we will develop the algorithm using only one-dimensional
pictures.

Let a(i), o<i<m, be a =sequence of numbers which
represents a one-dimensional image and 1let p(i), o<iln,n<m

represent a one-dimensional object whose position in g we want to

detect., We say that the sequence p = {pi} ?zo is an initial
¥ §
seguence of a second seguence p = {pi} 2.=o if

§
a) n<n and

by p; = p‘é o<i<n .

Let v be any cumulative mismatch function for matching a sequence

. m . e .
p = {p:} n against a secuence g = {qg.,} ,_ . } is cumulative
i’ i=o i’ i=¢
. n . e s
iff when p = {pi} i=o is an initial subseguence of
n!

p' = {p';} o, ME,a(3)L(p',q(3)). Here, M(p,g(3)) will be a
difference measure that represents the dissimilarity of the

sequence p to the subseguence qj""'qj+n—l'

As an example, consider the mismatch function, A,

defined as

n

A(p,q(3)) = 2 !pi-qi+jl.
1=0

‘;#dIf p is an initial subsequence of p', then we can write p°’

4:as PqPge oD p'n+1...p' 1« Clearly,

n
n'
AP ,q(3)) = 5 Ip'i-q;, |
¢ o T 1 it
1=0
Ll
= 2 IPmAyl




2 2 !pi-qi-kj; = A,(r,q(3))

so that A, is a cumulative mismatch measure.

The state-space, then, is defined as follows: A state
is a triplet <t,j,M(pt,q(j))> where

1} t indicetes how long an initial subsequence of p
has been compared against g starting at pesition j,

2) 3 is a position in g,

3) pt.is the initial subsequence of length t of p, and

4) N(pE,q(j)) is the dissimilarity Qf pt to é(j).

A start state is of the form <r,j,M(pr,q(j))>, where
1<r<n and for each r,1<j<(m-r), while a goal state is one for
which r=n. Notice that the start state represents a situation

where an initial subsequence of p has been compared to g at posi-

tion j, while a goal state represents the situation when

all of p
has been compared to g starting at position j. TE

S = <t,j,w(pt,q(j))> is a state, then the k=successor uf §

{denoted Ok(S)) is 8°' where

t+

St = <t+k,j,M(p k,q(j))> H

i.e., S' is obtained by comparing k more points from p against

the subsequence of g beginning at Jj. 1£ Sr = 0y (Sr_l},

Sr-l = ok(sr__z),...,s2 = Ok(sl), then Sl""'sr is a path from Sl

te S_. The cost of the path is the value of the dissimilarity
measure in state Sr (which is also the maximum of the dissimilar-

Y: we will also refer

ity measures for the set of states Sl"“'sr
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to this cost as the cost of Sr‘ The objective, then, is to find
a minimum cost path between a start state and a goal state. This
can be accomplished by an ordered search algorithm [17]. The
cumulative nature of the mismatch algorithm assures the admisse-
bility of the algorithm - i.e., it 1is guaranteed to find &
minimum cost path.

The ordered search algorithm is defined as follows:

1) Put all start states, <r,j,%(pr,q(j))>,oijim—n,
into a set called OPEN.

2) Choose the state from OPEN with minimal dissimilar-
ity measure and delege it from OPEN. Let S=<t,j,ﬁ(pt,q(j)); be
this state.

3) If S is a goal state, then the best match of p tu g
occurs at position j, and the algorithm halts. Otherwise, con-
tinue.

4)y Compute OK(S) and add this new state to OPEN. Gou to
Step 2.

A slight modification of the above algorithm, employed
by BRarnea and Silverman [15], can lead to dramatic savings in
computation time; however, the algorithm would no longer be
admissable. The modification involves not putting into OPEN any
state <t,j,N(pt,q(j))> with N(pt,q(j))>T(t), where T is @ thres-
hold function. Rarnea and Silverman [16] discuss methods for
computing a reasonable threshold function from the seguences p
and g. We will not adopt this modification in the example below.

As an example of the application of the algorithm, con-

sider TFigure 1. Figure la contains an image, g, and an cobject,
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p. The iterations of the ordered search algourithm are described
in Figure 1b, using k=1, r=2 and dissimilerity measure A, the sum
of absovlute differences. The example proceeds as follows: With
r=2, the initial subsequence of p of length 2 (i.e., 4 7 } is
matched against the subsequence of length 2 in g starting at each
vf the rositions 0,1,...,5. For example, at position 3, the
mismatch is |4-3] + |7-2| = 6. For each partial match a state is

entered into the set OPEN. The minimal cost state is 8§=<2,1,1>.

with k=1, Ok(sl) is obtained by adding the mismatch of

it

p2 and q3 to the cost of Sl’ This mismatch is }2-31

1, so that
Ok(Sl) is the sgate SZ=<3,1,2>, indicating that the initial

subsequence of 1length 3 of p (i.e., 4 7 2 ) has been matched to

50 is added to OPEN,

is also the minimal cost state at iteration 2, with

d4; 9, 93- This state, S

52
Dk(sz) being the state 83=<4,1,4>. Notice that even thouugh 53 is
a final state, the algorithm does not terminate. tor a final
state to be chosen by the algorithm it must be known to be

minimal over the current COPEN set, thus S, must first be placed

3
in OPEN and its dissimilarity measure compared to the measures of
all states. At iteration 3 this comparison vyields the minimal
cost state S4=<2,4,3>. Ok(84) is the state <3,4,6>, but at
iteration 4 state SS=<2,5,4> is chosen arbitrarily from the
minimal coust subset of OPEN, {<2,5,4>, <2,0,4>, <4,1,4>}. We
next choose <2,5,4> whose successor, <3,5,6>, is then placed in
OPEN, Then, at iteration 5, <2,0,4> is taken from OPEN, and its

successor, <3,0,9>, is placed on OPEN. TFinally, at iteration 5,

goal state <4,1,4> is chosen from OPEN and the algorithm halts.

P
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Although the ordered search algorithm will decrease the
number of comparisovns of points in p with points in g, there are
two sources of overhead which might render the strategy more
custly than the direct approach:

1) The algorithm must maintain a sorted list of states
representing partial matches of p to g; and

2) If not enough primary storage is available to
simul taneously maintain all of g, then the algorithm may need to
page pieces of g in and out when the subsequence vf g associated
with the newly chosen state of Step 2 is found not to be in the
currently available ftorage. This I/0 overhead «can se;erely
degrade the performance of the algorithm.

The computational cost of matching p against g can also

be reduced by employing a subtemplate-template matching strategy

[12]. Here, one matches a piece, p' of p against g, and then
matches the remainder of p only at those points in g where the
match of p' is sufficiently good (e.g., higher than some thres-
hold, ¢t). 1f p' has n' points, n'<n, then the total amount of
computation performed by the subtemplate-template matching algo-

rithm is
w {t} = mn" + mnp,

- where P is the probability that the match of p' to g(j) has a
value greater. than t for randomly chosen values of j. MNote that
unlike the ordered search strategy, the subtemplate-template
matching strategy is not guaranteed to find the best match since

there is a non-zero probability that the match of p' to g at the
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position which maximizes the match of p to g will be below the
threshold, t. Note that this false dismissal rate can be kept
arbitrarily close to the false dismissal rate of matching p to g
in two ways:

1) lowering the threshold, t, for matching p' @against
q or

2) increasing the size uf the subtemplate, p'.

Lowering the threshold, of course, will increase W(t)
since for t'<t, more points in g will match p'. If t is made too
low, then it is possible for W(t) to be greatei than mn, which is
clearly undesirable; Similarly, increasing thé size of b' may
also increase W(t). Vanderbrug and Rosenfeld [18] discuss
choices of n' and t which minimize W(t) while keeping the overall
error rate below threshold.

A related strategy to subtemplate-template matching is

coarse-fine template matching [19]. Here, uvne first matches an

averaged and sampled version, p', of p against a similarly aver-
aged and sampled version, g', of g. Positions in ¢' which are
good matches to p' are then used to guide the application of p to
a. Again, there are trade-offs between reliability and two fac-
tors - the size of p' relative to p and the threshold used in
matching p* to g'.

The coarse-fine matching strategy can bhe further gen-
eralized to matching in a pyramid image representation [20,21].
p pyramid is a stack of regularly reduced resolution versions of
an image. Tanimoto and Pavlidis [22] for example, describe an

edge detection procedure which operates in a pyramid.

i
ir

W
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The applicability of these correlation-besed matching
procedures is 1limited by a number of factors. The two most
important of these for object tracking are the inability to deal
with objects whose orientations in the image plane change from
frame to frame and the inability to match given only partial
infurmation. The structural techniques discussed in Section 3

are designed to overcome these problems.
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3. Structural ratching Technigues

In this section we shall discuss methods which estab-
lish the correspondence between points of interest at consecutive
time instances using structural meodels or domain constraints to
gquide the ©process, The points of interest are assumed to be
derived from the images by low level operators which c¢an detect
specified components and determine the locations and descriptive
feature values of those components. Fach such component,
together with 1ts features will be referred to as a token. Tour
example, a simple 3x3 edge operator with 1local non-maxima
suppression coulq be used to form a token répresentiﬁé an edge
which is considered to be centered at a given pixel with a
specific orientation and contrast. The function of the matching
process is thus to construct @ mapping from thekset of tokens of
one image to the set of tokens of a second image., Clearly, the
methods suitable for establishing this mapping depend on the par-
ticular attributes retained with the tokens.

However, inter-token constraints imposed either by
structural models or the scene domain are also important. Object
models can be derived from two primary sources. General descrip-
tive models of the objects or uvbject types expected to occur in
the scene can be provided to the analysis system before process—
ing is initiated. In this <case the tokens in each image are
matched against the descriptive features contained in the models.
Fror a given token in one image the corresponding token in the
preceding image is identified as that token which matched the

same model feature as the given token, ¥Models can also be
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derived from the images as they are processed. In this case gen-
eral information about object formation is used to group the
tokens in an image into structures which are a first estimate of
the object models and provide constraints useful for establishing
the correspondence to the tokens in another image. Such scene
domain cunstraints can also be applied to individual tokens, usu-
ally in the form of limits impused on the area of search for
matching tokens.

An early system which employed motion measurements for
scene segmentation (Potter [23]1) formed tokens referreq tuo as.
"cross~shaped templa?es." The attributes of these tokens were the
distances (horizontal and vertical) from a given pixel to the
neerest gray level discontinuity. To match a given token of this
sort from one image a heuristic search of the second image was
performed, starting at the image location of the original token.
The search expanded outward from that starting position and con-
tinued until either a similarity measure over the token attri-
butes exceeded & threshold, i.e., a match was found, vr 2 pre-set
search limit was reached. The displacement between the locations
of matched tokens constituted the motion measurement for the
tokens of the first image. The segmentation of that image was
then performed wusing the constraint that tokens with the same
motion measurements were part of the same object.

Two major problems arose for the system, First, the
attributes associated with the tokens 1limited the allowable
object motions to be simple translations in the image ©plane.

Second, the system attempted to form a token for every pixel in
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the image plane, thereby incurring extensive computetion in the
search phase. By considering the distance from each object boun-
dary point, i.e., the gray level discontinuities used in [23], to
some central position, a model of the cobject to be tracked can be
used in conjunction with a matching technigue tov overcome these
prublems. The matching technique is a generalization of the
Hough transform (Duda and Hart [24]) to arbitrary shapes as
encoded in boundary list representations (Rallard [25], Davis and
"vam [26]) and will be discussed in the following. We will first
describe position invariant matching, and then describe generali- -

-

zations to orientation and scale invariant matching.

%

Let B = {(X;,¥;)]} n

i=0

for the shape to be tracked. B might be the set of edge loca-

be a 1ist of boundary points

tions in an image window detected by an "interest operator™ at

time t Let p = (X,Y) be any point (in practice, a central

1 @
point such as the centroid of B will be computationally con-
venient tou use as p). Then the Hough-representation of R using

n = -
$=07 where dxi = X Xi

p, H(B,p), is the seguence of vectors {di}~
and dyi = Y-Y,.

Now, suppose we are given an image, £, which contains
an instance of the shape whose boundary is described by B. Here,
f would be the image acquired at time tsye A second array, h,
which is an array of accumulators that is registered with £, will
be used to compute the transform of f with respect to H(B,p).
After the transform is computed, points in h with high values

will correspond to hypothetical locations of p in £. Of course,

once the location of p is known, the instance of P in £ can be
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recovered using H(B,p). The array h will be larger than the
array of £, since if the shape is only partly contained in £, the
point p might lie ocutside of f.

The transform, h, is computed by first applying an edge
detector to f to produce an edge map, e, of £. Each edge, e in
e is a potential element of the set B, Although contrast and
orientation information may limit the subset of B to which any e,
may correspond, there is, in general, no way to determine the
element of B to which any e; correspends without considering the
positions of all the other e; . Therefore, each edge element, e
is compared to each vector in H(B,p) to compute a pussible loca-
tion for p, and that location is incremented in the transform, h.
"hat is, h is computed by the following simple algorithm origi-
nally reported in [25].

Algorithm MATCH 1:

For each e, = (Xi'yi) in e do

For each dj = (dxj,dyj) in H(P,p) do
h(Xi+dxj, Yi+dyj) s =

h(Xj+dxy, vi+dys) + 1.

e

Notice that the result of applying this algorithm is
exactly the same as correlating a binary image representation of
E with the binary edge map, e (this was originally pointed out by
Sklansky [27]). The correlation, however, is based on consider-
ing all points in h as potential locations for p, and then for
each location counting the number of appropriately positioned

(according to H(B,p)) edges in e. The advantage of the transform

algorithm is computational efficiency. If h is an rxs array then
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to compute h using a standard correlation algorithm requires
O0{rxsxn) operations =~ i.,e., for each of rxs potential locations
for p, we must check the n 1locations of possible edge points
determined by H(B,p). Algorithm MATCH 1, on the other hand,
requires O(lelxn) operations, where |el is the number of edges
detected in f£. Since, 1in practice, edges account for no more
than 5%-10% of any image, algorithm MATCH 1 will result in speed-
ups of 10 to 20 over conventional correlation procedures. As an
example of this process, consider the two aerial rhotographs con-
tained in FPigures 2 and 3. The objects in these images appear to
move toward the top of the image. Figure 4 sh;ws the eége points
found in Figure 2, along with points of interest {marked by
letters) derived by grouping edge points into sets, one set per
point of interest. A Hough-representation is formed for the set
of edge points associated with each point of interest wusing the
location indicated by the letter as the central point. There are
ten points of interest, i.e. tokens, in Figure 4. For each of
these tokens a Hough transformation relative to the edge points
found in the second image is formed. Figure 5 shows the edge
points for the second image in addition to the positions of the
five highest peaks in each transform. Intertoken constraints
were then employed to determine the "best” matches. Note that
two tokens, G and I, moved off the image and another token, J,
disappeared due to structural changes in the image. 1In these
three cases the "best™ match was determined to be no match.

In the preceding, we assumed that the orientation of FE

in f was known. Suppose, on the contrary, that it is not known
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(this can occur, e.g., while tracking & wvehicle, from above,
which is moving aloung an unpredictable path). 1In this case, when

we hypothesize that 2 particular e; corresponds to some dj' the
strongest conclusion we can draw is that if e, were indeed dj’

then p must lie somewhere on the circle of radius

Rj = dx% + dy§ centered at e . The following algorithm accom—

rlishes rotation invariant matching.
Algourithm MATCH 2:

rur each e, = (¥X.,¥.) in e du

i irti
For each dj in H(R,p) do
s 2 2
R. = L\ 1dxs + dvy.
3 j 75

Tor & =0, 2w, by d& dou begin

= n .

hx Rj cus 8 + Xi,

h = R. *sin 6 + Y.

Y J 1
h(hx,by) = h(hx,hy) + 1

end.

Unlike algorithm YATCH 1 where the results were identi-
cal to what <could have been obtained by courrelating the binary
image e with a binary image representation of B, the results of
applying algorithm ™ATCH 2 are not identical to what would be
obtained by individually correlating m = 2w/d8 rotated versions
of B with e, and then choousing the maximum match amoungst the m
correlation planes. Instead, algorithm MATCH 2 adds the m corre-
lation planes together to obtain a single plane (k). The posi-
tion in this plane having maximum value is then Interpreted as

the loucation of R.
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Notice that if prior information is available concern-
ing the orientation of the object in the frame, then this infor-
mation can be easily taken advantage of by the algorithm. One
simply modifies the bounds on the inner I'CR loop so that only
circuler arcs in h, rather than entire circles, are incremented.
I'or example, In tracking wvehicles moving along roads, one can
ordinarily assume that between the successive frames the vehicle
will not make a turn sharper than m/2, since roads do not bend
that quickly.

Al though algorithm-MATCH 2 can detect an arbitrarily
oriented version of a shape, it does not computé the oriéntation

.
of the shape. This could be done by maintaining m separate
correlation planes and applying algorithm »ATCH 1 to m rotated
versions of H(E,p). In practice, however, this approach has
unacceptable storage and time recuirements.

Instead it is pussible tu construct a second transform
of B, but with respect tvu a different peint, p*. T1f (i,j) is the
point in the transform of H{P,p) having maximal wvalue, and |if
(i*,j*) 1is the point in the transform of H(R,p') having maximal
value (notice that these values must, in principle, be identi-
cal), then the direction from (i,j) to (i',3") gives the direc-
tion from p to p' in f. Points p and p' should be chusen to be
sufficiently far apart so that small errors in the locations of
the maxima in the transforms h of H(B,p) end h' of H(P,p') do not
lead to large errors in the computed orientation of R,

Notice that the algorithms can alsc be modified in a

straightforward way to deal with a 1limited range of scale
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information. Suppouse, e.3., it is known that the object in® the
image is S times the size of the moudel, with S<{Sl,82] {(note

§. < 8, and 0 < Sl)' Then in algorithm MATCE 1 rather than Jjust

1 2

incrementing a single point at distance d = di + 63 from an

edge puint, one marks all points in direction t:;arf1 (dy/dx) and

with distances d'<{S]d,Szd]. For rotation invariant matching,
rather than incrementingy a circle (or circular arcs if con-
straints on the orientation are available) one increments a ring
of inner radius Sld and ocuter radius S,d ( or the intersection of
the ring with wedges). &2gain, different correlation rlanes can
be maintained for different values of the scale, but this
increases the storage and computational requirements of the
matching algorithms. Note that this idea was employed by Davis
[28] to detect circles of various sizes using Pough transform
technicues.

FPoundary descriptions of objects were alsu employed by
the system <discussed in Martin and Aggarwal [29]. This system
extracted simple closed curves representing figures with curvi-
linear boundaries from each image in a time ordered sequence. In
this case the input was restricted so that the figures indepen-
dently moved in planes parallel to the image plane. The figures
were planar with opaque homougeneous shading. This meant that
when the figures moved so as to ovcclude one another the boun-—
daries mergecd intu apparently single figures. The main task of
the system was thus to derive descriptions of the actual figure

boundaries which were constituents of the apparent figures in the

images.
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= The fact that a given figure in the image might be com-
posed of boundary points from several actual figures precluded
the matching of the entire boundary between two images. Instead
the boundaries were broken into sets of tokens with each token
representing a boundary section which approximated a straight
line or a circular arc. The token attributes were the length and
curvature of the represented arc. The matching prucess began by
finding pairs of highly similar tokens, referred to as "seeds.”
m™he remainder of the matching process made use of the ordering of
the tokens on the figure boundaries to counstrain the segment
"growing" algorithm that was applied to th; alread; matched
"seeds.”

This process was able to detect extended boundary seg-
ments having the same shape in consecutive images. Since the
actual figures were assumed to be rigid, a pair of matched seg-
ments could be interpreted as being two views of a portion of an
actual object boundary. Thus the boundary shapes were used to
form the correspondence which in turn provided motion measure-
ments for each matched segment. The final grouping into actual
objects was based on the constraint that segments exhibiting
similar motions were sections of a single rigid object.

This latter constraint is quite impurtant and ié the
basis of the object interpretation in most current motion
analysis systems. However, for the correspondence processes 1in
the systems discussed so far in this section, the matching has
been based on token attributes not related to motion. In the

remainder of this section we will illustrate how the motion or




the expected motion of the scene components can be used in form-
ing the correspondence.

Endlich, et al. [30] ¢id not incorporate an explicit
novement expectation but did assume that most of the tokens
vithin arbitrarily chosen subimajges exhibited similar velocities.,
Under this assumption their system formed &z courrespondence which
specified a consistent velocity for the largest number of tokens
in a subimage. The tokens were referred to as "brightness

centers” and had an intensity attribute as well as an image loca-

tion. The prucedure used by the system was to iteratively refine

the estimate of the representative velocity and to wuse the
estimated wvelocity to constrain the possible matches for each
token. The process was iterated until each token had no more
than one pussible match,

The velocities determined for each subimage were then
merged together to yield & velocity map which represented the
cloud motions in the satellite images processed by this system.
For mnore general image sequences, however, the arbitrary parti-
tioning of the image into subimages could be a severe problem
because the presence of two or more independently moving scene
components in a given subimage would invalidate the assumption of
a representative velocity for that subimage. In most cases it
will be impossible to know, a priori, bow to partition the image
so that each subimage contains only one scene component. One
might, however, make use of the localized motion consistency con-
straint in a network of competing hypotheses, much like the con-

sistent labelling procedures of Rosenfeld, et al [31].

iy s
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rRarnard and Thompson [32] accomplished this by locating
the prominent (i.e., moust likely matchable) features in each of a
rair of images with an "interest operator". Associated with the
operator was a similarity measure which was used both to initial-
ize the "probabilities™ for the hypothesized matches at the
tokens and tou update those "probabilities" at each iteration of
the refining process. The network upon which this refining pro-
cess operated was created from the tokens in the first of the
pair of images by establishing a node for each token and connec-
tions between all nodes whosé tokens were within a pre~set dis-
tance of each other. At each node a "label” sét was forged con-
taining an element for each possible match of the associated
token. The labels were uvrdered pairs of the disparity, in the x
and vy directions of the image plane, between the locatiun of the
token of the node and the location of each token within a given
radius of that position in the second image of the pair.

In addition to the possible match 1labels, there was
included a special label specifying that no meatch could be found
for the given token. The inclusion of this special 1label Iis
indicative of an important concept for motion analysis systems:
the tracking procedures must be robust enough to continue func-
tioning properly when some of the feaures of interest, i.e., the
tokens currently being tracked, are no longer detectable in the
image. A particular feature may not appear in a given image of
the sequence for several reasons: the feature might Dbecome
occluded by scene components of the foreground; the image charac—

teristics might for some reasun, e.g., illumination changes, not

rn
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e
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remain within the tolerances of the interest Operator; or the
feature may move beyond the view of the imaging device.

The motion counsistency constraint of Farnard and Thomp-
son  [32] was propagated throughout the network by increasing the
Probability assigned to a given label at a specified nude by an
amount proportional to the sum of the probabilities of the simi-
lar labels at connected nodes. This label refining process could
be iterated until the network stabilized or until every node had
a clearly defined "most likely" label. However, in Fractice it
was iterated ten times, leaving a few ambiguous labellings.

A networkeof a different sort was proposed by Ullman
[5]. BHere, a node was associated with each token in the pair of
consecutive frames. For each token in one freme the set of PO s=

sible matches in the other frame was determined and counnections

. were established between the node for the given token and the

nodes four the tokens in the matching set. This network was used
to calculate the correspondence which minimized a mapping cost
function. The calculation was to be performed by simple proces-
sors, one attached tu every node and connection in the network.
Each node processor communicated with the processors attached to
the connections incident on that node, while each cunnection pro=
cessor communicated with the Frocessors at the two nodes which
terminated the connectiun. Thus the processors could be parti-
tivned into three disjoint sets: one set assovciated with the
tokens of the first frame; another set related to the tokens in
the second frame; and the final set representing possible matches

between twu tokens, vne from each frame,




all processurs conputed only simple functions of values
stored at the neighbouring processors and used those functions to
update their own velues. This updating procedure was 1iterated
until the wvalues in the network stabilized, at which time the
connection prucessors had values of either 1 or 0, only. The
resulting correspondence was then specified by the set of connec-
tion prucessurs that have a value of 1, i.e., a given token of
the first freme was mapped to a token of the second frame if the
nodes fur those tokens were connected in the network and the pro-
cessor attached to that counnection had a value ¢f 1. Thus, the
specified courrespondence was the mapping which yieldgd the

»
minimal coust.

The cost function prorused was directly related to the
probability distribution of the velocity of the tokens as meas-
ured in the images. *inimizing this coust function was shown by
Ylliman [5] to be ovptimal under the assumption that the movement
of each token was independent of the movements of the other
tukens. 7t was also argued that une-to-oune mappings should be
preferred and then shown that 2 simple modification to the cost
function would effect this preference,

2s the time between frames increased and the velocities
0of the tokens decreased, the mapping also tended to minimize the
total distance moved by all tukens in the scene. This was the
case in which the nearest neighbor match of the tokens tended to
be a one-to-one mapping. At higher veloucities nearest neighbor
matching would result in numerous "splits" and "fusions", i.e.,

one-to-many and many-to-one mappings, while the "optimal™ cost
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minimizing maepping would retain its preference fur une-to=-one
mappings. In this way, although the nearest neighbor match might
not be the desired correspondence, it could be used as the ini-
tial estimate for the minimizing process which derives the

"ortimal®” mapping. Thus the network would be constructed by coun~
necting the node of a given token in one frame to the N nodes
associated with the M nearest tokens from the other frame. Tt
should be noted that there is no mechanism for adding connections
to the network once the minimization process has begun, so the
initial set of possible matches would have to contain the
"courrect" oune, , | ”
There were two major problems with the overall scheme
proposed in Ullman [5] for forming the correspondence between
frames., The first was similar to the problem of subimage selec-
tion of Endlich, et al. [30], in that the coust functiun used a
single distribution fur the velocities. This was Jjustified by
the independence of movement assumption. Clearly, the wvalidity
of this assumption would be in doubt if several tokens were esta-
blished for each object in the scene. Tn that case the motions
of the tokens associated with a particular object would be inter-
dependent and directly related to the overall movement of the
object, The second problem was the reguirement that the
correspondence be specified by a "cover", i.e., every tuken in
both frames was matched. HNote that for the examples studied in
Ullman [5] this was not a problem because the images were of dot

patterns in which occlusion was rare. However, for general

scenes the features that give rise tou tokens will freguently
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disappear and appear necessitating the no-match possibility, as
discussed earlier in bthis section. A solution to this problem
might be to introduce into the original network two special nodes
for which the connection would mean "no match.” Initially all
the nodes for a given frame would be connected to vne of the spe-
ciszl nodes and all the nodes for the other frame would be con-
nected tu the remaining special node. The difficulty here would
be determining the cost associated with the no match connection
as it relates to the velocity distribution and the one-to-cne
mapping preference.

The expe;ted velocity of a token wasvalSO used’ in the
correspondence forming process of the system described in Rashid
[8]. Again, the input was a sequence of images of dot patterns
with a token created for each dot. In this case, however, each
token retained its own expected velocity parameter. The expecta-
tions were used to determine the predicted lucetiuns for the
tokens from one frame, Those computed locations were then
matched against the tokens 1in the next frame. The desired
correspondence was the one-to-one mapping from the set of
predicted locations to the set of tokens for the new frame which
minimized the sum of all the distances between the predicted
locations and their matched tokens.

The minimization was not computed by a network of sim-
ple processors. Instead, a Vorenoi construction {Shamous [331) was
used to provide an efficient implementation. For a set of N
locations a Voronoi construction tessillates the plane into N

polygons (some possibly infinite in size). Fach polygon is

R
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associated with exactly one of the locations in the set and
bounds the area containing all the points for which the associ-
ated location is the clousest element of the set. Thus to deter-
mine the clusest locatiovn to a point, one need only ask which
polygon of the Voronoi construction contains that point. Tn
Rashid [2] a Voronoi construction was performed for the set of
predicted 1locetions from a given frame, then each token of the
new frame was matched to the clousest predicted location by find-
ing which polygon included the token. If more than one tuken was
within a2 single polygon then the token nearest to the associated
predicted 1location Y?s chosen as the match for'that locaéion.
The matched location was deleted from the set and a2 new Voronoi
construction was computed. The efficiency lies in the fact that
given a Voronoi construction for N points, computing 2 new con-
struction wusing N=1 of those puints is linear in the number of
puints.

The problems that occur with this scheme are twofold
and concern the initialization and updating of the velocity pred-
iction functions. Tirst, since the prediction is wused to furm
the correspondence, the mapping from the first frame of the
sequence to the second frame must depend on expectations supplied
to the system or on scme default expectations. The validity of
these initial expectations is important because an incurrect vyet
cunsistent mapping between the first pair of fremes will generate
errvnecus predictions for mapping the third frame, and so on.

The second problem might occur when a token changes its

velocity. This was partially accounted for 1in Rashid [8] by
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making the expected velocity be the average of the two velocities
measured from the immediately previcus frames. This works well

* as assumed in [R]. However,

if the velocity "varies smoothly,
abrupt changes 1in velocity would invelidate the prediction and
leave the system with the problem of determining an initial pred-
iction again. These are crucial points for any predictive
scheme: the prediction mechanism must have an initialization
phase, a normal updating phase, and an error detection and
correction phease.

A similer sort of predictive analysis'was used in the
top level of the’hierarchical matching system.describedﬂin Roach
and Aggarwal [34]. The input domain for this system was that of
images of polyhedra moving in three-cimensional space. The
images were processed to yield the edges of the wvisible planar
sur faces, with 1line and vertex descriptions derived from these
extracted edges. These descriptions were then segnented into
preliminary object interpretations based on jgeneral domain con-
straints. The domain, however, did allow ambiguities which gen-
erated multiple interpretations of given line-vertex groups.
These interpretations were maintained by the system until con-
clusive evidence was obtained to decide which was correct.

The correspondence between consecutive images was esta-
blished by a hierarchical system which invoked the lower level
processes only as the upper levels failed. The top level process
calculated & centroid for each object interpretation and using

information from preceding images determined a predicted location

for every centreid. These predictions were then matched by a
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hearest neighbor rule to the centroids found in the succeeding
image, As long as the predictions remained velid this level was
sufficient, otherwise the system invoked the second level match-
ing process.

at the second level, covarse descriptions of relative
object positions, e.g. object » is to the left and below object
P, were used to match object interpretations. The couarseness of
the feature ensured that the description would remain constant
for fairly long intervals of time. However, upon failure, the
third and lowest level matching process was activated. This pro-
cess matched object intefpretations based on the relative poéi—
tions of the polygonal faces in each interpretation. 1In this
manner several different levels of processes used information
from various object descriptions and relationships to establish
the correspoundence between images.

This section has described several methods for woperat-
ing upon points of interest extracted or abstracted from the gray
level information in the images to form an inter-image correspon-
dence., These methods employed scene domain constraints, struc-
tural information from object models, constancy features of the
moving objects, and predictive analysis based on movement expec-
tations. The complexity of the movements analyzable by the
methods is greater than those of Sectiun 2, while, the analysis
requires the images to contein distinct and discrete features

from which the tukens can be created.




4., Summary

ve have discussed procedures for sovlving the correspon-
Gence proublen based on both iconic and structural representations
of the image parts to be matched from frame to frame. The iconic
representations lead to fast meatching algorithms, but are not
general enough to be applied to all correspondence problenms,
vatching algorithms based on structural representations, while
ordinarily more demanding computationally than iconic-based algo-
rithms, can tolerate a wider variety of pattern transformations
(e.g., rotations, scale changes, etc.)

The cogrespondence problem, is, of éourse onl; one in a
seguence of problems that must be solved in dynamic scene
analysis. The principal other problems, which this survey did
not address, 1include the detection of motion, the grouping of

moving parts into uvbjects, and the recognition and tracking of

those objects from frame to frame.
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Figure 2.

First image of pair to be
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Figure 4.

Edge points and points of interest
derived from the image in Figure 2.
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