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1. Introduction

Several recently proposed texture description models have
been based on computing statistics which measure the spatial
distribution of local features in textures. The most
salient local features are the edges of the texture elements
comprising the texture. pavis et al [1,2] have suggested
generalized cooccurrence matrices (GCMs) as a source of such
statistics. GCMs are an extension of gray level
cooccurrence matrices (Haralick et al [31) to sparse edge
arrays. Other edge pased texture models have been proposed
by Nevatia and Price [4] and Marr i51.

The general edge detection problem has received
considerable attention (see;, €.9-. Nahi [6], Modestino and
Fries [7], Shanmugan et al [8], Cooper and Flliot [91, Marr
and Hildreth [101), but the problem of developing robust
edge detectors specifically for textures — which can often
be modelled in terms of texture element size, shape, color
and placement (Schachter et ail [111, Ahuja [12]) - has not
been extensively investigated.

An optimal edge detection procedure for cellular textures
was developed in Davis and Mitiche [13, 14]1. This procedure
is based on a class of one dimensional edge operators and
one dimensional cellular texture models. it involves
thresholding the values of the edge operator, €, and
per forming local maxima selection of the above threshold

values.




Given a one dimensional image, £(i}), i = 1,...,n, ey is

defined as follow :

k
ek(i) = (1/k) [ Z: £(i+3) - Z: £(i-3) 1]
j=1 i=1

The analysis showed the dependence of the wvalues of a
best threshold, in the minimum error sense, and peak
selection radius on k, the neighborhoocd size o0of the edge
detector, P{(w) the distribution of cell sizes in the texture
and the distributions of gray levels in the texture cells.,
Those gray level distributions were éssumed to be completely
specified by their means, m, and their variances, Vv; . This
paper describes the implementation of a system for the
automatic detection of edges in cellular textures based on
the results of the analysis in [13,14] and is organized as
follow : Section 2 contains a decription of the main steps
of the system. Section 3 and 4 are concerned with some of
the most relevant mechanisms used in this system., Section 5
describes applications of the automatic edge detection
procedure to synthetic and real textures. Finally Section 6

contains conclusions.




2. System Description

The main computational steps of the system which computes
the ‘'best possible’ cellular texture segmentation for a
given value k of the neighborhood size are listed Dbelow.
The meaning of the word ‘best' is explained in the

discussion of the motivation for this system.
a) Compute an initial segmentation of the texture

b) Compute a minimum error threshold based on that

segmentation

c) Compute a new segmentation by applying thresholding
and locail max ima selection, using the minimum error

threshold computed in (b)

d) Compare this new segmentation with the previous one
according to sone specific measure of closeness (to be

discussed subsequently)

e) If the segmentations are similar enough then terminate

the process. Else go to step b.

Figure 1 shows 2 schematic diagram of the system
described above. The parameter of the system 1is the
threshold 1level. This threshold could be computed by
selecting a point in the valley of the histogram of e,

values at edges and interior points This would eliminate the

loop back to step b from step e. But 2 threshold computed
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Diagram of a system to compute the segmentation
for a given value of K.




in this manner will be entirely dependent on the method for
selecting the texture edge/interior points and will
therefore be unreliable. Instead, an adaptive threshold can
be computed 1if a form for the distribution of the edge
oprerator values at edges and interior points 1is assumed.
At step b the threshold level is determined as follow :

Let 2z, and z, be the random variables that decribe the
values of e, at edges and interior points and let p(zl) and
q(zz) be the respective probability density functions.
Finally, 1let © pe the fraction of points occupied by edge
points in the set of edge/interior points. Then if £t is the
selected threshold, the overall classification error is

oo

t
Error(t) =0f p(zl)dz1 + (1 --(9)'/‘q(zz)dz2
OO t
The value of t that minimises this error is computed by
differentiating with respect to t and setting the result to

Zer0, obtaining
ep(t) - (1 -oe)q(t) =0

A threshold determined this way will also be dependent on
the selected sets of edge and interior points. But the next
sections describe how the adaptive threshold method weakens
this dependency. In the applications reported in this
paper, Z; and z, are assumed to be normally distributeé with

means and variances computed from the current segmentation.

The validity of this assumption was discussed in {131. The




size of the interval in which local maxima selection is
performed is not considered a parameter of the system since
it was shown in [14] that it does not significantly
influence the system performance when it is kept small
enough to avoid interference between edges. The motivation
for the design of this procedure is the fact that it
produces a consistent segmentation, A segmentation,®4, is
said to be consistent if it vyields, following the steps
listed above, a threshold value such that thresholding along
with local maxima selection produce a new segmentation,?,,
that is sufficiently similar to d, according to a selected
measure of similarity. The following sections describe the

main components of the system




3. Current and new segmentations

The edge detection procedure requires an initial
segmentation of the texture into edge and interior points.

This initial segmentation is computed by applying e, to the

k
texture and selecting the peaks as edges, i.e., only
applying local maxima selection. This procedure has a high
false alarm rate but a negligeable false dismissal rate.

As noted in the preceding section, in order to compute a
minimum error threshold, and thus a new segmentation from
the current segmentation, it is not only necessary to decide
which points in the texture are edge points, but also which
are interior points. Edge points are the computed edges of
the current segmentation. Selecting interior points is more
difficult.

The first and simplest way to extract interior points 1is
to consider any point at which the wvalue of the edge
operator is below threshold to be an interior point. This
solution generally selects too many points and has a
tendency to slow the convergence of the edge detection
process.

A more efficient method would declare all points in the
texture to be interior points except edge points (points at
which edges have been computed) and points a fixed
distance from these edge ©points. This solution yields
better results than the preceding one. Additional
improvement can be obtained by making this distance a

decreasing function of the neighborhood size. 1In this case



care should be taken to keep the fraction of interior points
from becoming zero when the neighborhood size becomes large.
More specifically, if d(k) denotes this distance, n the
total number of points in the texture and m the number of
edges in the current segmentation then the fraction I of

interior points in the texture can be computed as

1 = max ( Imin ,1 - (m + 248(k))/n )

where Imin is a constant representing a lower bound on I.

As indicated earlier, once a new segmentation has been
computed it is compared for similarity to the preceding one.
The simplest way to compare two segmentations is to compare
the threshold values derived from these segmentations. Then
the segmentations are declared sufficiently similar if these
thresholds differ by less than a given tolerence. The two
segmentations are compared with more precision if they are
checked directly against each other on a point by point
basis with some lag allowed. They are then declared
sufficiently similar 1if they differ by less than a given
fraction of the points. This alternative is of course more

constraining and requires more computational overhead.




4. The Effect Of Neighborhood Size

The system described above takes a given value of
neighborhood size as input and produces a corresponding
"consistent' segmentation. In the following, a method is
proposed for selecting the best overall neighborhood size
from which to compute the final segmentation. The
assumption is that there is indeed a measure of goodness of
a segmentation that is a function of k, the neighborhood
size.

First, the probability of error as a function of Kk,
er(k), as described in [13] can be used as a criteria for
selecting a best k. This would regquire assuming a
parametric form (normal as in [13] for example) for the
distribution of ey at edges and interior points. Al though
the threshold determined by using the normality (or other
distribution) assumption may be nearly correct because the
means of edge operator values at edges and interior points
are expected to be widely separated, the error associated
with it may not be accurate for most real textures.
Therefore the minimum error er (k) should be considered only
of marginal practical value.

A measure that is better suited for natural textures 1is
obtained from the segmentation itself. This measure is the

ratio
r = E2/V

where E is the mean absolute difference in the gray level




average between adjacent intervals of the segmentation and Vv
is the variance of such differences.

More specifically, let £(i) 1 = 1, n be a one dimensional
digitized image function (the string of rows of the two
dimensional texture) and let Xj s =1, mwith X, =1 and

1

X = n be the edge positions of the current segmentation
(Edges are added at the beginning and end of each row of the
2-dimensional texture). The expression for the average gray

ievel, aje for the i-th interval 1in the segmentation Iis

given by
a; = Z £03) /(X5 = X5) 1 <i < ml
23X,
Also let bi = ‘ai+l -y 1 <1< m2

Then E is defined as

M- 2
Z b/ (m-2)

=1

7
i

and the expression for V is

M- 2
v = Z (b. - E)2/(m2)
iz 1

Intuitively the ratio reflects how well a piecewise
constant function fits the data and thus implicitely
assuming that the texture is composed of pieces of fairly

uniform gray level. The selected value of k is the one that

yields the segmentation with the highest value for this

s




ratio. The higher the number of edges computed at the right
positions and the lower the number of edges computed at the
wrong positions in the image, the higher the value of this
ratio. This ratio thus is an indicator sensitive to the
false alarm and false dismisal rates and is such that it
takes on higher wvalues for lower error rates. As a
gualitative example consider varying the neighbohood size,
k, and computing r(k) for a given texture. The relation
between k and the error rate was described in [13]. This
error rate will have a high value for a small enough k,
decrease to an optimum value and start increasing again for
higher values of k. Therefore r(k) is expected to have a
low value for a sufficiently small k, increase to an optimum
value and then start decreasing for higher values of k.

Although being definitely a better measure than the
minimum error er(k), the ratio r described above is not
sensitive enough to differentiate between segmentations
which differ only locally around their edges. This is
particularly true for dense segmentations in terms of the
number of edges they contain. 1In other words, the ratio as
a criteria will not be responsive to such differences since
small displacements of the edges from their original
position will not significantly affect the value of the
expected value of the gray level average of the individual
intervals of the segmentation.

To make the process of selecting the neighborhood size
more sensitive to these differences, the average absolute

gray level difference around the computed edges £ can be




measured and entered in the ratio r. Formally, let £ be an
image function and {Xi} i=1, m be a set of edges as before,

Then if A is a given constant,

LI ¥
= (1/am) 2{:‘2: lf(Xi - YY) = f(Xi + ¥Y)
y=1 i=71

or simply,

M
= (1/m) Z]eA(xi)]
iz1

This mean,I , contributes to the accuracy of the process
by the fact that it takes a high value for segmentations
whose computed edges are close to true edges. Thus the
measure r'(k) = r(k) . or simply r'(k) = EZ/V should be
used instead of r(k)  as a measure of goodness of a
segmentation.

Now a best overall neighborhood size can be determined by
computing r'(k) for a set of of values of k and select the
one that gives the highest value for r'.

A more efficient method would compute r' for kl' k2 and a
third point k3 between kl and k2 and fit a smooth curve (a
cubic spline for example) through these points. The optimum

value of k would correspond to the integer value that has

the highest value on the fitted curve.




5.Application to synthefic and natural textures

Edges have been computed succesfully in synthetic as well
as natural textures using the automatic edge detection
process described in the above sections. The edge detection
has been per formed in the horizontal and vertical
directions. The normality assumption was used to determine
a minimum error threshold. The interior points were
selected to be all the points of the image exept the edge
points and points distance k from these edges, k being the
size of neighborhood. The fraction of interior points in
the image 1is set to a fixed value when k becomes too large
(i.e. when the number of edges and points distance k away
from these edges approaches the total number of points in
the image). The measure of goodness of a segmentation in
both direction is the ratio © .

Figure 2 shows a synthetic texture which is a 64x64
random checkerboard generated by a constant cell width model
with parameter b = 8 and two coloring processes with means

ml = 30 and m2k 40 and variances vl = v2 = 10 .

W

Figure 3 is a plot of the ratio r' as a function of k,
the neighborhood size, for both the horizontal and vertical
directions. This plot enables the choice of a best k at
k = 6. Table 1 reports the corresponding thresholds. It
should noted that these thresholds are very similar for
k =6 , 7 and 8. It should also be pointed out that although

k

6 gives the best segmentation, the segmentations for

k =7 and k =8 are comparably good. This is because the




Figure 2

64 x 64 random checkerboard Texture

Darker region mean gray level 40
variance 10
mean cell width 8

Lighter region mean gray level 30
variance 10
mean cell width
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Figure 3

r' versus k in the horizontal and vertical directions
for the checkerboard texture of figure 2.




Threshold

S S horizontal __ ___ vertical ____
2 2.55 2.50
3 7.46 2.39
4 10.36 5.36
5 11.96 6.86
6 13.36 8.53
7 14.86 10.76
8 15.12 11.08
9 15.06 10.01

10 14.56 9.16
Table 1

Horizontal and vertical thresholds for
the checkerboard texture of figure 2.




error rates corresponding to these values are very similar.,

Figure 4a 1is the edge map that resulted from the
application of the automatic edge detection procedure to the
entire image. Figures 4b through 4e show the segmentations
obtained when the procedure is applied to the four 32x32
quadrants of the checkerboard individually. It can be seen
that the performance of the procedure is still very good on
these small windows. Table 2 lists the thresholds and the
optimal values of k corresponding to these windows.

The images in figures 5a through 5e are textures of
orchards, gratings, concrete, pebbles and bricks
respectively. It can be noticed that the texture elements
are not well defined in some of the textures and that there
are several levels at which discontinuities in image gray
scale occur, making the process of detecting edges more
difficult. The results of segmenting these texture 1in the
horizontal and vertical directions is illustrated in figures
6a through 6e. Table 3 shows how, for k = 10, the number of
the above threshold points and the number of edges in the
gratings texture vary as a function of iteration.

Figure 7 is a plot of r‘ as a function of k for the
gratings of figure 5b and figure 8 is a plot of er(k) for
the same texture. It can be noticed that wer(k) does not
allow a confident choice of a best k.

To emphasise the importance of k in the performance of
the edge detection process it has been applied to the same

natural textures with the common value k = 6 and the same

thresholds as before. The results are illustrated in figure




9a through 9e. ©Notice that the edge map for the pebble

texture 1is acceptable while the edge maps for the other

textures are totally inaccurate with a high rate of error.




1]

(a)

Figure 4

(a) edge map for the texture of figure 2.
(b) (c) 1d) (e) edge maps for the 4 32 x 32
windows of the texture of figure 2.
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Optimal k Threshold

__window__  _horizontal __vertical _borizontal _ vertical
(1,1) 4 6 8.1 8.8 |
(1,2) 5 7 8.2 13.0 §
(2,1) 6 6 9.9 11.0 .
%
(2,2) 7 6 14.5 5.8 %
%
| |
Table 2

Optimum values of k and corresponding thresholds
for the 4 windows of figures 4b - 4e.
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(a)

Figure 5

Orchards
Gratings
Concrete
Pebbles

Bricks
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Figure 5 (cont'd)




a)

1

d

(

)
igure 5 (cont

F




)

e

(

d)

t

{cont

Figure 5




T
w

L o

wpad § b 1
prpupeponp

(b} Gratings
Bricks

g

0

ol

MO

v~

o Rugie)

0.Q

o O

o Q My

- o)

© m o~ g
- -rd © O
F Sz S

MO

o

4

b

1

B O

U

0]
T o

o
EI:\




(b)

Figure 6 (cont'd)
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(d)

{cont'd)

Figure 6



(e)

Figure 6
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Above

_Iteration_ _Threshold _Edges_
1 399 77
2 1201 173
3 956 142
(a)
Above
_Iteration _Threshold _Edges_
1 243 86
2 1226 322
3 1678 377
4 2310 430
(b)
Table 3

Number of points avove threshold and number of
edges in the texture of figure 5b after each
iteration of the system of figure 1 and for k=10.
(a) Horizontal direction (b) vertical direction
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Figure 7

r' versus k in the horizontal and vertical
directions for the gratings of figure 5b.
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er (k) versus k in the horizontal and vertical
directions for the gratings of figure 5b.




(a)

Figure 9

Edge maps with k=6 for (a) Orchards (b) Gratings
(c) Concrete (d) Pebbles (e) Bricks




(b)

Figure 9 (cont'd)
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6.Conclusion

This paper was concerned with the problem of applying the
results of the analysis in the [13,14] to detecting edges in
natural textures. An automatic edge detection procedure was
used that was based on applying an edge sensitive operator
to the texture and then thresholding the results of the edge
operator and finally computing peaks from the above
threshold points. The notion of segmentation consistency
allowed automatic computation of the best possible
segmentation for a given value of the neighborhood size. A
measure of goodness of a segmentation was proposed to select
the best overall neighborhood size from which to compute the
final texture segmentation. Examples of choosing optimal
edge detectors for natural textures given in this paper
stress the importance of obtaining a good edge map for image

analysis systems that use edges as a basic image description

component.
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