FREQUENCY DOMAIN CONSIDERATIONS OF
LSV DIGITAL FILTERS

N. C. Huang
J. K. Aggarwal

TR-80-5 November 1980

Department of Electrical Engineering
The University of Texas at Austin
Austin, Texas 78712

This research was supported by the DoD Joint Services Electronics Program
through the Air Force Office of Scientific Research (AFSC) Contract

F49620-77-C-0101.




Abstract

The present paper develops a framework for the analysis and synthesis
of linear shift-variant (LSV) digital filters in the frequency domain.
First, LSV digital filters are theoretically modeled by the successive use
of linear shift-invariant filters. On the basis of the model, we present
an interpretation of shift-variant spectral modification or filtering.
Further, shift-variant digital filtering is discussed in relation to the
notions of the short-time spectrum and the generalized frequency function.
In addition, we propose an efficient implementation procedure which
reduces the number of filter coefficients and the amount of computation.
The effectiveness of LSV digital filters in processing time-varying signals

is demonstrated by experimental verification.




1. Introduction

Linear shift-invariant (LSI) digital filters have become important
tools in a multitude of diverse fields of science and technology. Often,
the use of LSI digital filters is insufficient to process various kinds
of signals. In seismic data processing, for example, linear shift-variant
(LSV) digital filters have been extensively used [11-[41. Thus, it is of
practical and theoretical interest to study LSV digital filters [11-171.

Two of the most important applications of digital filters are system
jdentification and modeling [81, and spectral modification [9]. In system
identification, the objective is to find some parameters such as impulse
responses and coefficients of difference equations to simulate the
characteristics of practical systems. The representation of the system
in terms of an LSI digital filter follows directly from the assumed
stationarity of the system. In many applications, however, LSV digital
filters may offer a more accurate representation of the system because
of the presence of nonstationary components in some practical systems.

As an example, LSV digital filters have been used to model the vocal tract
in a speech analysis and synthesis system [101.

Alternatively, the objective of spectral modification or filtering
is directed toward removing interference such as noise from the signal,
or modifying the signal to present it in a form which is more easily
interpreted by a human expert. Conventionally, the spectral modification
js realized in terms of LSI digital filters either in time or frequency
domains. In some practical applications, the frequency content of the

desired signal changes significantly with time. Under these circumstances,




the use of an LSV digital filter is more effective than the use of LSI
filters.

The purpose of this paper js to investigate several aspects of
spectral modification using an LSV digital filter. To do so, we charac-
terize a desired signal in terms of a time-dependent spectrum. Then we
modify the spectrum with an LSV digital filter. In this way, the modi-
fication of the spectrum becomes a function of time. A schematic repre-
sentation of a filtering problem is shown in Figure 1. The input signal
x(n) of the filter in Figure 1 can be expressed as x{(n) = s(n) + v(n),
where s(n) is the desired signal or useful information and v(n) is the
noise or unwanted information. The filter is required to produce an out-
put which is some function of the signal with a delay of "o samples. The
desired filter is then defined as the weighting function which minimizes

the mean square of the error function.
e(n) = y(n) - glx(n-ny)1, (m

where e(n) is the difference between the actual and desired outputs.
Thus far, the LSI filter has played a dominant role in dealing with the
problem. The desired characteristics of the optimal LSI filter can be de-
termined either in time or in frequency domains. Often, it is easier to do
so by working with the power spectra of the signal s(n) and the noise v(n).
Although several time-domain techniques for processing time-varying
signals and synthesizing shift-variant filters have been proposed in the
literature [4], little work has been done entirely in the frequency domain.

Recent research [11]-[14] on the theory of short-time spectral




analysis has established a framework for efficient and accurate frequency
domain analysis of time-varying signals. Since the short-time spectrum
of a signal is a function of time, this suggests that shift-variant
spectral modification is desirable and that the frequency characteristics
of the optimal filter are shift-variant. In this paper, the concepts of
shift-variant digital filters and short-time spectrum are brought together
to provide a description of the effects of shift-variant spectral
modification.

In Section II, LSV digital filters are thepretica]]y modeled by the
successive use of LSI digital filters. In the model, the effects of
shift-variant spectral modification or filtering can be easily understood
from the viewpoint of usual shift-invariant digital filtering. In
Section III, shift-variant digital filtering is discussed in relation to
the notions of the short-time spectrum and the generalized frequency
function. It is shown that shift-variant spectral modification can be
implemented as the convolution of the input signal with the impulse
response of a nonrecursive LSV digital filter. In Section IV, we formulate
an implementation procedure which is significantly more efficient than the
shift-variant convolution as the computation and storage of filter
coefficients are taken into account. In Section V, the effectiveness of
spectral modification using an LSV digital filter is demonstrated by a

simulation program with a synthetic time-varying signal.




11. A Model of LSV Digital Filters

A linear shift-variant digital filter is conveniently characterized
in terms of the shift-variant convolution. Let x(n) and y(n) denote,
respectively, the input and output signals of an LSV digital filter;

they can be related by

y(n) = ¥ h(n,n-m) x(m), (2)
m=-co

where h(n,m), the impulse response of the filter, is defined as the output

measured at time n due to a unit jmpulse applied at time n-m.

Although the effects of spectral modification by LSI digital filters

are widely known, the problem of applying an LSV digital filter to modify

the spectrum of a signal has not received serious attention. Therefore,

it is advantageous to utilize the theory of LSI filters in investigating

LSV digital filters. Before presenting the general discussion of LSV

digital filters, we first model them in terms of L3I filters. This model

is depicted in Figure 2. What we do is multiply a sliding rectangular
window function w(k-n) to the input signal x(n) and then move the window

one sample ahead each time. As a result, it produces a sequence of

overlapping sections as the window slides in time. Each section uk(n) is
then convolved with a corresponding LSI filter with an impulse response
gk(n). The final output y(n) is obtained by fitting the filtered sections
zk(n) together with a sequentially rotating switch. Our procedure of
segmenting the input signal is slightly similar to the sectioned convolution
technique in the shift-invariant convolution [15]. In our model of an LSV

digital filter, however, each input section is different from the previous one




by one samplie only. In addition, each section is applied respectively to
a corresponding LSI filter associated with its unique characteristic.
Figure 2 illustrates the procedure of segmenting the input signal
and fitting the filtered sections together. To be more specific, let us
decompose the input signal x{(n) into a sequence of overlapping sections,

th

each section having only (2L+1) nonzero points, with the k™ section

denoted by uk(n),

x(n), k-L < n < kil
u(n) = { (3)

o, otherwise.

Here, the time origin for each section uk(n) is defined to be at the
origin of x(n). The segmented section may be viewed as the multiplication

of the input signal x(n) and a sliding window function w(k-n); i.e.,
uk(n) = x(n) w(k-n), (4)

where w(£) is a (2L+1)-point rectangular window function

1, -L<ix<lL
w(g) =
0, otherwise. (5)

In Figure 2, the resulting output signal zk(n) of the LSI filter is a

1inear convolution of the impulse response and segmented signal, i.e.,
z,(n) = I gyln-m)u(m. (6)

The final output signal y(n) is constructed from the filtered sections
by a sequentially rotating switch such that the switch is connected with

the nth section at time n. Then we have the following relation:




y(n) = zn(n). (7)

Substituting (6) into (7). we obtain

i

§ g, (n-m) w(n-m) x(m)

T e CO

y(n)

e o]

¥ h(n,n-m) x(m) . (8)

m: =0

i

The above discussion shows that the configuration of Figure 2 corresponds
to a nonrecursive LSV digital filter with an impulse response determined
from the window function and the impulse responses of LSI filters.
According to (8), the impulse response h(n,m) of the corresponding LSV

digital filter is defined as
h(n,m) = g, (m) w(m). (9)

Figure 3 shows an LSV digital filter having the same characteristics as a
bank of LSI filters i1lustrated in Figure 2. 1t follows from (9) that

the impulse response h(n,m) of the LSV digital filter at time n is
equivalent to the jmpulse response of the nth LSI filter multiplied by the
window function.

The objective of the model is to investigate the effects of
shift-variant spectral modification. To this end, the linear convolution
in (6) is transformed into 2 multiplication in the frequency domain.

Upon application of the concept of the Fourier transform, it is

straightforward to show that

2,(6) = 6 (¥ u (™). (10)

where
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ACORINEAL) enIme, (11)

Gk(ej¢) = mjzw gy (m) eI, (12)
and

Uk(ej¢) = mj uk(m)e'jm¢. (13)

yA (e3¢) Gk(e3¢) and U (e3¢) are Fourier transforms of sequences z (n),

gk(n) and uk(n) respectively. Substituting (4) into (13), we have

. ) . k+L R
U (e3¢) = §  x(m)w(k-m) eI - T x(m) L (14)
k e m=K-L

Equation (14) shows that Uk(ej¢) can be viewed as the spectrum of the
input signal at time k. At each time, the signal spectrum is modified by
the frequency response of an LSI filter as seen in {10). Thus the spectral
modification becomes a function of time.

By taking the inverse Fourier transform of (10) and substituting

it into (7). the final output y(n) is
i . . .
yin) =& [ 6 (e u (7)Mo (15)
=T

As a result, we conclude that the shift-variant convolution as presented
in Figure 2 is equivalent to the shift-variant modification of the signal
spectrum in the frequency domain. The shift-vafiant filtering process

can be implemented either by a bank of LSI filters as depicted in Figure 2

or by a single LSV digital filter as shown in Figure 3. Thus far, the
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measurement of the signal spectrum is achieved by using a rectangular
data window. It is unnecessary to restrict the data window to the form
(5). Moreover, the rectangular data window usually gives unsatisfactory
results because of its sharp edges. In the following section, the dis-
cussion of shift-variant digital filtering will be generalized to include

the notions of the short-time spectrum as well as the generalized frequency

function.




I11. Spectral Modification Using LSV Digital Filters

The Fourier representation of a signal has proved to be useful in
linear system theory. For an arbitrary signal x(n) which is absolutely
summable, it can be represented by its Fourier transform X(ej¢), wﬁich is
usually interpreted as a measure of the frequency content of the signal.
For example, slowly varying signals have Fourier transforms which are
mostly concentrated near the origin of the frequency axis and rapidly
varying signals have more frequency content near the Nyquist frequency.

For a time-varying signal, its Fourier transform is not so meaningful
as the frequency content of the signal changes significantly with time.
Recently, several techniques have been developed to characterize a time—
varying signal in the frequency domain. In [16], a method is proposed to
derive the instantaneous frequency of a time-varying signal using an adaptive
linear prediction filter. Another method which is of particular interest
to this paper is the short-time spectrum [11]-[14], defined as

X(ej¢,n) = E x(m) w(n-m)e'jm¢ (16)

m=-c

where w(2) is an appropriately chosen window function. According to (16),
X(ej¢,n) is obtained by weighting the input signal x(n) with a sliding

window function w(n-m) and then Fourier transforming the windowed segment.
Without loss of generality, the window function w(£) can be normalized so

as to satisfy the condition
w(0) = 1. (17)

Multiplying (16) by (1/2r) exp (j#m) and integrating over --w < @ < =, we

obtain

x(m)w(n-m) = ‘2_1—]-1: X(ej¢,n)ej¢md¢. (18)

10
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(16)

(17)

(18)

Thus the original signal can also be exactly recoverable from its short-
time spectrum defined in (16). The technique of short-time spectrum has
been widely used in the analysis and synthesis of time-varying signals.
In this section, we are interested in being able to modify the short-time
spectrum of a signal using an LSV digital filter.

Now we illustrate the frequency representations of a time-varying
signal with the following example. The example will also serve to
i1lustrate the ideas to be presented in this paper. Consider a finite
duration time-varying signal of the form:

exp [-wynsz} * COS {2n(vnT-+6n2T2/2)], -128 < n < 127
x(n) =
0, elsewhere. (19)
Expression (19) gives an example of a signal with a varying frequency and
a varying amplitude. The frequency of the signal varies linearly with
time. In order to visualize the frequency representations of the time-

varying signal, we have chosen the following numerical values:

vy = 0.01

g=1.5

v=20

T=0.05 (20)

Notice that the signal specified in {19) and (20) is symmetrical about
the time axis. It varies slowly near the center of the time axis and
gradually becomes a rapidly varying signal as time shifts in both
directions. Figure 4 shows the amplitude of the Fourier transform of the

signal specified in (19) and (20). As shown in Figure 4, the Fourier

11




transform of the signal is not a useful measure of the frequency content
of the time-varying signal. Through the Fourier transform, frequency
js defined over an entire time interval. For a time-varying signal,
however, we are particularly interested in measuring its frequency
content at various values of time.

To illustrate the short-time spectrum of the signal specified
in (19) and (20), an appropriate window function has to be selected.
In the remainder of the section, we choose a Hamming window of the

form

| ‘ 0.54 + 0.46 cos (é%%%) , -L<t<lL
w(L) =

( 0.0 elsewhere, (21)
with L=16. Figure 5 shows the amplitude of the short-time spectrum as

a function of ¢, with n as a parameter. As shown in Figure 5, the time-
varying frequency content of the signal can be observed from ‘X(ej¢,n)}.
Therefore, the short-time spectrum is a more usefd] measure of the
frequency content of a time-varying signal.

To demonstrate the need for shift-variant digital filters, we now
consider a simple filtering problem as illustrated in Figure 6, where the
filter input x{(n) is represented as a combination of a desired time-varying
signal s(n) and an unwanted interference v(n). Here the objective of the
filtering is to remove the interference from the input signal. Suppose
that the Fourijer transform of the desired signal is concentrated within a
particular freguency band, then an appropriate frequency selective shift-
invariant filter can be chosen to remove undesirable freguency components

outside this band. For a time-varying signal as shown in Figures 4 and 5,

12
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however, the frequency content of the signal changes with time. To achieve
better results, it may be desirable to employ a shift-variant filter where
the frequency characteristics change with time in a prescribed manner. In
this aspect, our concept is similar to that of the dynamic tracking filter
used to demodulate an f.m. (freugency modulated) continuous signal [17].[18].
However, the discussions in [17] and [18] are restricted to the analysis of
particular circuits which can perform dynamic filtering operation.

In an attempt to generalize the discussion of shift-variant filtering
in the frequency domain, we characterize the LSV digital filter by its gen-
eralized frequency function H(ej¢,n), which is defined as [5]

By = T hinme ™. | (22)

==

From (22), it can be observed that H(ej¢,n) is the Fourier transform of
the sequence h(n,m) with respect to the variable m. With this observation,
it follows that the inpulse response h(n,m) can be evaluated from H(ej¢,n)

by means of inverse Fourier transform, regarding n as a constant,
T e N
h{n,m) = -2-—3; I H(em,n)e‘]m’sdgﬁ. (23)
=T

In case that the filter is shift-invariant, both the generalized frequency
function H(ej¢,n) and the impulse response h(n,m) would be independent of n.
As shown in Figure 5, X(ej¢,n) represents the spectrum of the input

signal at time n. Suppose that the spectrum js subjected to a shift-

variant modification H(e3¢,n), then let us define an output spectrum Y(e3¢,n) as
Y(ej¢,n) = X(e3¢,n) H(e3¢,n). (24)

By comparing (24) with (10), it is clear that Y(eJﬁ,n) corresponds to the output
spectrum Zn(ej¢) of an LSI filter as shown in Figure 2. With the help of the

relation (15), the output signal y(n) can be exactly recoverable from Y(e3¢,n).

13




Then we have

il : .
y(n) = & [ (eIt Mo, (25)

Substituting (24),(16) into (25) and using (23), we show that

fee)

y(n) = _X x(m) w(n-m) h(n,n-m) (26) ;
= cf x(m) h(n,n-m) (27)
m=—00
where E(n,m) js defined as

B(n,m) = h(n,m) w(m). (28)

In the proposed approach to the shift-variant filtering process. the
output signal y(n) is obtained by convolving a windowed segment of the
input signal centered at time n with the impulse response h(n,m) as
shown in (26). This process can also be realized as the shift-variant
convolution of the input signal x(n) with an jmpulse response g(n,m)
which is the product of the sequences h(n,m) and w(m) as derived in (27).

1t is also possible 1o implement the shift-variant convolution in terms

of the recursive shift-variant difference equétion, as is discussed in [51.
With respect to the frequency domain, this approach is equivalent
to a shift-variant modification of the signal spectrum by a generalized
frequency function as shown in (24). By modifying the spectrum of the
input signal, the filter can remove undesirable freguency components from
the input signal. The proposed technique allows the spectral modification
to be a function of time abreast with the changing frequency content of

the signal. The overall advantage is that the resultant bandwidth of the

14




shift-variant digital filter is, in general, much narrower than that of
the shift-invariant filter. Consequently, an LSV digital filter can

contribute to removing more undesirable frequency components to obtain

petter result [171,[18].

5].
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IV. Implementation of LSV Digital Filters

In previous sections we have pointed out that two approaches can be
employed to directly implement the shift-variant filtering process.
Although these two approaches have been proved to be useful for theoretical
considerations, they may not be efficient for practical implementation.
The major disadvantage of direct implementation is that a great number of
filter coefficients need to be computed and stored. In some practical
applications, it is desirable to filter an input signal with very long
duration. While theoretically we can compute and store the filter
coefficients for each sampling instant and then implement the procedure
as discussed in Sections II and III, such a shift-variant filter is not
feasible in practical use. In this section we formulate an implementation
procedure which is significantly more efficient than the direct procedure.

By reference to the model shown in Figure 2, we note that the window
function w(£) is moved one sample ahead each time. From the viewpoint of
implementation, the redundancy in the amount of computation and storage
of filter coefficients is obvious due to the overlap between two
successive sections. To reduce the overlap, one would expect to move the
window N samples each time. In this way, it is important to determine an
optimum value of N so that the output signals of LSI filters can completely
specify the desired output signals. In addition, an appropriate technique
is required for constructing the desired output signals from those of LSI
filters. A conventional approach to achieve this aim is to apply a linear
merging technique to the overlapping region of two successive sections

[1],[2]. With this approach, however, the transitions in overlapping

16




regions may be apparent due to the stepwise changes in the characteristics
of the corresponding LSI filters. Based on the preceding analysis, we now
explore an jmplementation procedure which allows the outputs of LSV digital
filters to be computed from those of LSI filters using an interpolation
scheme.

To start with the discussion of the jmplementation procedure, let the
short-time spectrum X(ej¢,n) defined in (16) be rewritten as the linear

convolution of the signal x(n)e'mn with impulse response w(n):
x(e3®n) = [x(n)e—3¢n}<*w(n), (29)

where * is used to denote discrete convolution, and the window function
w(L) is generally chosen to approximate the impulse response of an ideal
Towpass filter with cutoff frequency wl. By considering ¢ as a parameter,
the short-time spectrum X(ej¢,n) defined in (29) may be viewed as an
output sequence of a lowpass filter. From (29), it is clear that X(ej¢,n)
js an approximately bandlimited sequence in n with bandwidth 2W; (121. In
several practical situations, the desired characteristics of LSV filters
usually change slowly with time. In this case, it is reasonable to assume
that the generalized frequency function H(ej¢,n) approximates a bandlimited
sequence for any constant value of ¢. Under this condition, let the
bandwidth of the sequence H(ej¢,n) be ZNZ. Then, with the value of ¢ fixed,
it is easy to show that the output spectrum Y(ej¢,n) as defined in (24)
will have a bandwidth 2ZW where

W= w1-+w2. (30)
According to the sampling theorem, Y(ej¢,n) can be expanded in terms of

jts sampled function Y(e3¢,mN) with respect to the variable n as follows:

17




Jo - pt jo sin m(n-mN
CADREIIP IR (C ) STRTinmi (31)

where N is an integer less than or equal to m/W. It is clear from (31)
that the output spectrum Y(ej¢,n) is completely characterized by its
sampled function Y(ej¢,mN). In addition, the equation provides an
interpolation formula for recovering the output spectrum from its samples.

By substituting (31) into (25), the output signal y(n) is

_ % 1 LRI sin m(n-mN) _Jjo¢n
y(n) = § == Y(e'",mN) ——~—~%-——% e’ " d¢ . (32)
M oo ZTrLT m{n-mN

As mentioned in Section III, Y(e3¢,mN) corresponds to the output spectrum
sz(eJ¢) of an LSI filter in Figure 2. Interchanging the order of
summation and integration in (32), we have

y(n) = 1 zpy(n) éﬂ’—g{%:,—“;%% . (33)
where sz(n) are the output signals of an LSI filter applied at time mN as
shown in Figure 2. Thus y(n) can be uniquely determined from the output
signals of LSI filters applied at any time which is an integer multiple of
N. However, it is impossible to evaluate y(n) from (33) because the
interpolating function sin(mwn)/mn has infinite duration. Rather than
simply truncate the interpolating function, it is more reasonable to
design a finite duration interpolator. Notice that the function sin(mn)/mn

is the impulse response of an ideal lowpass filter Fideai(ea¢)

il

oy
Fidea](e ) = (34)

0, %<{¢}iﬁ.
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Therefore, we may employ one of the techniques in [19] for designing the
finite impulse reseponse (FIR) Towpass filters to design the finite
duration interpolator. Let f(i) be a (2M+1)-point sequence which
approximates the impulse response of the jdeal lowpass filter Fidea1(6j¢)’
then equation (33) can be approximated by
M

§(n) = }_M z y(n) fln-m\), (35)
where y(n) is an approximated value of y(n) and the approximation is
attributed to the substitution of a finite duration sequence for the
infinite duration interpolating function. By proper choice of the
duration of the interpolator, the difference between y(n) and ¥(n) can be
made negligible. Notice that the number of multiplications and additions
required in (35) is proportional to M/N.

The notion of the implementation technique 1is best explained with

the use of the example i1lustrated in Figure 7. Figure 7a shows a finite
duration interpolating function f(i) and Figure 7b shows an array on
which the output signals zk(n) of LSI filters are computed. In considering
zk(n) as an array, we will refer ton as a row index and k as a column
index. In this fashion, the kth row of the array represents the output
signals of the kth LSI filter. It is clear from (7) that the output
signals y(n) of an LSV digital filter are identical to the diagonal
elements of the array. In this section, we present a technique for
interpolating sz(n) to obtain y(n). For the i1lustration of the
interpolating procedure, it may be instructive to define the concept of
a mask as in Figure 7b. Let the duration of the mask be the same as that

of the interpolating function. To compute the output value y(n), the

19




mask is placed over the appropriate samples of the array. Each sample
sz(n) in the mask is then multiplied by the CGrresponding sample of the
interpolating function and the products are summed to give y(n).
Successive output values of §(n) can be obtained by shifting the mask

one sample ahead in both horizontal and vertical directions, and repeating
the process.

One major advantage of the present approach is that the number of
filter coefficients computed and stored is reduced by a factor of N. To
conclude this section, we summarize the present implementation procedure
as follows. First, the input signal x(n) is decomposed into a number of
overlapping sections umN(n) where the beginning of each input section is
separated from that of its neighbors by N samples. Each input section
umN(n) js then filtered with an impulse response [gmN(n)- w(n)] and thus
we obtain an output section sz(n). The final output y{(n) is constructed

from sz(n) using a finite duration interpolator.

20




V. Numerical Results

To investigate the result as discussed above, we apply the time-varying
signal specified in (19) and (20) to the filter illustrated in Figure 6.
In general, the freguency characteristics of a linear filter are specified
from the characteristics of both signal and noise. In the following
examples, we assume that v(n) =0, i.e., the noise is not taken into account.
In this situation, the objective is to design an ideal shift-variant
bandpass digital filter which allows the signal passing without any distortion.
The cutoff frequencies of the jdeal bandpass filter are determined from the

short-time spectrum of the input signal. To do so, we define

i

em) = [ 1xel®m % as (36)
0
and
s(n)
g = [ B xieMn Pas (a7)
¢, (n)

i.e., E(n) is the integration of frequency components of lX(e3¢,n)§2 from
0 to m, while ﬁ(n) is that of frequency components from lower to higher
cutoff frequencies. In our example, we specify the cutoff freguencies

¢H(n) and ¢L(n) so that at each time n,

£(n) > 0.98 E(n) (38)
and the bandwidth

BH(n) = ¢,(n) - ¢ (n) (39)

is minimized. Figure 8 presents the resultant cutoff frequencies which

change with time n. With the cutoff frequencies of the jdeal bandpass filter

21




specified, the impulse response h{n,m) can be derived from (23) and (28).
The output signal y(n) is implemented as a shift-variant convolution of
the input signal with ﬂ(n,m) as shown in (27).

To evaluate the performance of this new spectral technique for
shift-variant filtering process, we define a measure criterion as

T Iy(n)-s(n)1?

pASE = 1 5 , (40)
1 I[s(n)]
n

which is obtained as the summation of the squared error divided by the
summation of the square of the signal. Examining the input and output

signals, we compute the value of ASE for direct implementation and obtain
ASE = 0.00451177 (41)

Equation (41) demonstrates that our proposed spectral technique for the
shift-variant filtering process is promising and significant. The
resultant small error is attributed to the specification of the cutoff
frequencies in (38) because only 98% of the frequency components of the
signal are allowed to pass the filter.

To verify the simplified implementation and to compare its result
with that of the direct implementation, we implement the above example
with the procedure presented in Section IV. The interpolating function
f(n) used in (35) is a 33-point nonrecursive Towpass filter designed by
using the McClellan algorithm [20]. The value of N in (35) is chosen
equal to 8. Following the implementation procedure and using (40), we
compute the value of ASE for.the simplified implementation and obtain

ASE = 0.00348408. (42)
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The simplified implementation is particularly useful for those signals
where the frequency content changes very slowly with time.

In this example, although a shift-invariant digital filter can also
be designed to pass the time-varying signal without much distortion, its
bandwidth is much wider than that of the shift-variant filter, as can be
observed from the signal spectra shown in Figures 4 and 5. Therefore,
we conclude that the shift-variant filter is more effective in processing

time-varying singals.
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VI. Discussion and Conclusion

In conventional signal processing applications, the signal spectrum
is measured through Fourier transforming a large number of samples. The
desired frequency characteristics of the LSI digital filter are then
specified from the resultant spectrum. However, as discussed in this
paper, this technique may not work under the circumstances where the
frequency content of the signal varies with time. In our approach, the
time-varying signal is first analyzed in terms of its short-time spectrum.
Thus the desired frequency characteristics of the LSV digital filter are
determined from the short-time spectrum. In the present technique, it is

essential that the performance of an LSV digital filter be closely related

to the extent that the short-time spectrum represents the frequency content
of a time-varying signal.

The short-time spectrum may be viewed as measuring the infinite-
time Fourier transform of the signal, seen through a window. In general,
the width of the window function exerts an influence on the characteristics
of the short-time spectrum. As we increase the width of the window, or
equivalently, the number of signal samples, the short-time spectirum will
encompass more frequency components of the time-varying signal. In this
way, the outcome is undesirable due to the increase of the bandwidth of
the corresponding LSV digital filter. Decreasing the width of the window,
on the other hand, may raise another issue concerning the resolution of
frequencies. This phenomenon is a consequence of Gabor's uncertainty
relation [21], which states that if the number of signal samples used in

the spectral analysis is small, its spectrum will be obscured and diluted.
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This will also result in an increase of the bandwidth of the corresponding
LSV digital filter. From the intuitive concept, one would expect a
narrower window when the signal frequency is changing rapidly, and a
wider window when the signal frequency is changing slowly. Therefore,
techniques may be available by which the width of the Qindow could be
chosen on the basis of a priori knowledge of the signals being studied.
The characteristics of the short-time spectrum will also depend on the
window shape [22]. Up to now, however, the question of what the optimal window
is in a particular situation is not well understood. In the absence of
systematic techniques for choosing the window function, it is necessary
to rely on the subjective judgment of the investigator. In most cases one
would expect that the width and shape of the optimal window are functions
of time since the frequency variation rate of the signal may be distinct
at different instants of time. Developing a technique for selecting a
proper window function is a matter of further research.

In summary, the objective of this paper has been to develop a
framework for considering LSV digital filters in the frequency domain.
It has been shown that the shift-variant modification of the short-time
spectrum can be implemented by an LSV digital filter. From our point of
view, LSV digital filters show promise for successfully processing time-
varying signals, and they deserve further investigation.
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