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gbstract

This paper considers the organization of pattern
databases when a formal grammar is available whose language
contains the items in the database. The organization is
- based on.the derivations of database elements, and allows
access to the database given only partial pattern queries.

Algorithms for computing all partial parses of pattern

queries and for database access based on those partial
queries are presented. The database access algorithm is
based on fast string matching algorithms applied to string
representations of the derivations of database items and
pattern queries. The results of some computational experi-

ments on computer generated pattern databases are presented.




1. Introduction

It has become apparent during the past several years
that one of the major impediments towards constructing large
pattern analysis systems is the lack of any practical theory
and implementation of pattern databases. The ©pattern
database problem constitutes an aggravated instance of the
general database problem because not only must access to
data be provided based upon symbolic data queries (e.g.,
retrieve, from a cartographic database, all counties in
California with population greater than 50,000), but access
must also be provided based on non-symbolic and more

pattern—like data queries (e.g., are there any characters in

a Chinese character database which look like this one).

This paper will be specifically concerned with pattern

access to pattern databases. We define the pattern database

problem to be the design of

1) logical storage organization for a class of

patterns, and

2) access algorithms for retrieving that subset of

the database which matches a pattern query.

There are a variety of factors which complicate the
pattern database problem. First, if the patterns in the

database contain geometric information (such as positions,



lengths, orientations, etc.) then the access algorithms may
have to be invariant to certain geometric pattern
transformations - e.g., we might be required to match a

pattern independent of its orientation of size in the query.

Second, the pattern query may not be an exact match to
any pattern in the database. The access methods must then
be capable o¢f computing nearest, or adequately near,
matches. This "inexactness"” often results from nocise and
systematic errors in the perceptual system which constructed
the pattern query. For example, a computer vision system
may imperfectly segment a character from the printed page;
or, the ©pattern query may have been recieved over a noisy
channel. 1In the latter case, one may be able to construct a
precise model of pattern query errors and formally integrate
it into the solution of the pattern database problem. In
the former case, where the errors are probably due to
current technolegical limitations in éomputer vision, a more

informal, ad hoc, situation would have to be advised.

Finally, the pattern query may correspond to only a

subpattern of any pattern 1in the database. In such

situations, the database access algorithms must be capable
of retrieving a pattern which only partially matches the
pattern query. Partial pattern queries can be due to either
systematic errors 1in the pattern percieving system or
inherent properties of the entire pattern perception

environment. For example, recognition o¢f objects in the
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three-dimensional world based on the information in a
single, two-dimensional image will necessarily involve
access to the database by partial pattern queries since not
all of the ©points on the surface of a solid object can be

seen in a single view.

In this paper, we will present .a solution te the
pattern database problem based on a syntactic model of the
patterns to be stored in the database. Syntactic, or
structural, pattern representations have had widespread
application in pattern and image recognition. Fu [1]
discusses scme of these applications which include
fingerprint recognition, character recognition, and
industrial inspection tasks. Many of these applications
utilize only minor modifications of ordinary string
grammars; however, others require generalizations to

grammars whose languages may be trees or even graphs.

Unidentified patterns are often analyied using existing
parsing algorithms from formal language theory. However,
extensions are often required either to parse the
higher—-dimensional Structures, or to allow for inexact
matching. 1In pattern database applications, it would also
be necessary to recognize a pattern based on only partial
information (as discussed above). To our knowl edge, no work
has been reported on parsing algorithms which can be applied

when only a partial pattern is available for analysis.



2.0 Identification of partial patterns

In this section, we consider the design of a syntactic

database. The design will allow pattern queries which

correspond to only partial patterns of any pattern in the

database, but will not support inexact matching.

In what follows, we will assume that we are given:
1) a set, D = {dl""’dn} of StringS, dl' and

2) a string grammar G = <P'VT'VN'S>’ where Dc L(G)

P is the set of productions of G, Vip is the set of

terminal symbols, VN is the set of non-terminal symbols, S

is the start symbol and L(G) is the languagde of G.
We will restrict G to be a stratified context=free

grammar (SCFG). 1In an SCFG, every symbol, Vv, in V. =V, u vy

has a level number (&n) from O tom associated with it. If

veVy, then 2n(v) =0. 1In addition, n(S) =m, and in any

: *
production vi=a e V , if en(v) = K, then every symbol, v',

in a has ¢n(v') = k-1, SCFG's were developed in [2] as the

basis for a pattern analysis system. (Actually, the

grammars used in [2] were much mere elaborate than the SCFG

defined above.)

In section 2.1 we will develer an algorithm for

syntactic analysis of partial patterns. Section 2.2 will

present a database organization where szterns are retrieved



from the database using a modification of a fast string
matching algorithm (Knuth, Morris, Pratt [3]) applied not to
the data strings themselves, but to the strings representing

their derivations. Section 2.3 contains the results of

timing tests of these algorithms as well as baseline timing

data.
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2.1 Partial parsing

In this section we define the problem of the analysis
of partial information and present a solution. Section
2.1.1 presents a formal definition of a partial parse. A
practical method of finding partial parses of a string is

developed in section 2.1.2.

2.1.1 Definition of a partial parse

Pattern gqueries to the syntactic database system
consist of elements of v, 1f 4 = 61""’5r e D, and 1if g =
dyre--9g is a pattern query, then we say that g matches d
if, for some J, d; = 6i+j' i = 1,.0.,5. The task of the
pattern database system is to find all deD such that g

matches d.

In order to perform this task, a "parse" (or "parses”)
of q must be computed, since the database is crganized
around the derivations of strings rather than the strings
+hemselves. More precisely, we must compute ail Eartial
parses of g. Partial parses are defined below using syntax

tree representation of a derivation.

Z be any symbols such that a. £ V.

- |V ]
Let A = {ai}i 1 :
Then the string g' is an extension of g if ¢ =a g B,

& &
where a ¢ A and 8 & A .



Let a o, € A, 1 <i< r. Then the function

u’la2o ® ®

m: A -> VT is called a symbol map, and we let m(a) denote

rl

the string m(al)m(az)...m(ar).

Similarly, if R ¢ (V u A), then m(R) is obtained by
applying m to the ay which appear in R.

Definition 1: Let q' = a g8 be an extension of q. Then we

say that the string

S=:>Rl=:>R2=>,_.=:> Rn._._qa

is an e-derivation of g' if there exists a symbol map, m,

such that
S = m(R;) = m(R,) =...= m(R) = m(a)qm(B)
is a derivation of m(a)am(B) .

Definiticn 2: Let T be the syntax tree for an e~derivation

of some extension, gq', of g ¢ VT*' Then the g+reduced
syntax tree of T, T(g), for that e=derivation is obtained by
1) deleting from T all subtrees whose tip nodes consist
entirely of symbols from A, then 2) recursively deleting the

root node if it has only one son.

Finally, we arrive at

Definition 3: The left-to right, bottom-up traversal of a

g-reduced syntax tree for an e~derivation of an extension of

g is a partial parse of g.

To illustrate these definitions, we use the grammar G1
= <P,VT,VN,S> where

Vo = {u, 4}
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{s, v, p}

{(1) s » pv

{(2) 8 = VP
(3) P * ud
(4) P =~ udu
(5) Vv = du}

Consider the strings g=uud, a=qd"', and

=u', Then

g'= agB=d'uudu' is an extension of g. Let m be a symbol

map such that m(@)=m(d')=d and m(B)=m(u')=u. Then

S =+ VP - Vudu' + d'uudu’
is an e-derivation of g' since

m(S) » m{(VP) - m(Vudu') - m(d'uudu’)
which can be written as

s - VP = Vudu - duudu
which is a derivation of m(a)gm{B)=duudu in G1.
tree for the e-derivation is

T:

V//S\¥
/\ /N

d" u ud u

T(q):

5
7\
vioop
\/l

u u d

the g-reduced syntax tree of T.

frobo
1]

q!

m{a)agm(B)

The syntax



In this case, a traversal of either tree yields the

same result since no part of the tree was pruned by the

g-reduction.

A second example uses the grammar G2 = <P,V,,Vy,S>
where

Vo, = {a, b, £, 9, X, Y}

<
1t

y = {8, B, vV, U, D}

{(1y s » PP

lav}
i

(2) § > VVP

(3) P - UD

(4) P » UUD

(5) v -~ DU

(6) U » af

(7) U - bg

(8) U = bxf

(9) D -+ Xg

(10) D - yaf }
Consider the strings g=xfx and
g'=x'g'a'f'x'g'b'g'b'x f x g'. Then the syntax tree for the
e-derivation of g' is

T:

ﬁ/y\h ﬁ/y\b U/P\b
xhg'a)}‘z;g’bhé'b‘>¥xé'

Deleting the subtrees whose tip nodes consist entirely of



primed terminals, we get

192}

\P
e
N\, /

xfx
Since the root node, S, has only one- son, S is deleted,
leaving

T(q):

U

N

xfx

A
/

0

which is a g-reduced syntax tree of T. A left-to-right,
bottom-up traversal of T(q) yields the productions 8 9 3,
since these productions are applied at nodes U, D, and P

respectively.

2.1.2 Generating partial parses

In order to generate all partial parses of a string g,
it is not actually necessary to find all the g-extensions of
g and prune the parse trees of these g+extensions. In this
section we describe a parser which can efficiently find all

partial parses of a given string with respect to an SCFG.

. N %
Given a string 9 ¢ VT , the parser lists the production

(by number) in a left-to-right bottom-up traversal of all

10



g-reduced syntax trees for q. The parser can insert zeroes
in this list at all positions where it is known that one or
more productions would have appeared in a traversal of the

non-reduced syntax tree.

For example, given the grammar G2, one partial parse of
the string bgbxf is 7 8 0 4, corresponding to the q—réduced

tree

In this case the zero corresponds to the D generated by
(4) P » UUD, because the D is a non=terminal which in this

case produces nothing.

The parser uses a structure called a hypograph which
corresponds to the grammar. It is similar to an and-or tree
and contains exactly one node for each symbol (called symbol
nodes) and one node for each production (called production
nodes) . At the bottom of each symbol node are arcs to each
one of the productions on whose left side that symbol
appears. At the bottom of each production node is a set of
ordered arcs each of which points to a node corresponding to
a symbol appearing on the right side of the production;
these arcs are regarded as an "anded" group, meaning that
all the symbols pointed to by those arcs must be matched for

this production to match.

11



In the following we will refer to "downarcs"™ and
"uparcs” of a node. A downarc of a node, N, is an arc which
connects N to a node below it (in the figures), while an
uparc on N would connect N to node above it. The hypograph
for grammar Gl is shown in figure 1. The following example
develops  the method of obtaining partial parses with this

structure.

2.1.2.1 Example: wusing the hypograph

The parser utilizes two stacks. The first stack (which
is displayed in the figures below the hypograph) accumulates
the production numbers which will appear in the derivation.

It is called the derivation stack. The second stack (to the

right of the hypograph) holds backtracking information:
each entry contains a node and (when necessary) a downarc

from that node. This stack is called the backtrack stack.

In this example we will describe the computation of all
partial ©parses of the string uud using the grammar G2. The
following paragraphs are all numbered; paragraph 1l.i 1is

illustrated in Figure 1.1.

1.1. The first two uparcs from node u were searched,
but failed because in the productions they point to (i.e.,
downarc 1 of production 3 and downarc 1 of production 4),

12
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the next downarc from those productions (downarc 2 of
productions 3 and 4) points to node d which doesn't match
the input string of position 2. Uparc 3 from node uis
searched next. Nil is pushed on the backtrack stack to mark
entry into the bottom of a production node. Production 4 is
pushed on the derivation stack.

, 1.2. The search continues up to node 1 where entry 1is
again marked by pushing nil on the stack. The parser
prepares to match the remaining downarc(s) ‘of node 1.

1.3. The only symbol found down arc 2, node 1 was a d
with no alternatives, causing backtracking. Returning to
node 1, nil was popped, indicating that a failure return
should be made rather than a search for alternatives down
the return arc. The parser returned to uparc 1, node P, and
followed uparc 2 to node 2. Nil was pushed on the backtrack
stack and production 2 on the derivation stack, since P 1is
the last symbol in production 2.

1.4. The parser moves up to node S, but there are no
uparcs to investigate, and there are symbols left in the
input string. The parser is searching for alternatives but
has none. A failure return is made.

1.5. The production stack 1s popped, and now the
parser attempts to back through production 2's downarcs
looking for alternatives. But nil 1is popped from the
backtrack stack, so the parser makes a failure return
instead.

1.6. Returning to uparc 2, node P, the parser has run
out of uparcs and must make a failure return from node P
(this is the same situation as in 1.4 at node S). Backing
into node 4, the derivation stack is popped. Nil is popped
from the backtrack stack, so node 4 makes a failure return.

1.7. Uparc 4, node u is searched up to node S, which
again fails. However, productions 5 and 1 are pushed onto
the derivation stack.

1.8. Backing through node 1, the derivation stack 1is
po pped and nil is popped from the backtrack stack.
Returning failure to node V, the parser investigates uparc
2, pushing nil as it enters node 2 at downarc 1.

14
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1.9. Searching downarc 2 from node 2, the parser
pushes nil as it enters downarc 1, node 3. This will be
used later to stop backtracking through the downarcs of node
3. Node u is entered and found to match the input string.
{u,+) is pushed on the backtrack stack.

1.10. (3,1) and (4d,+) are pushed on the backtrack
stack.

1.11. (3,2) is pushed on °‘the backtrack stack.
Production 3 1is put on the derivation stack since we have
successfully matched production 3. (P,1) is pushed,
indicating that downarc 1 of node P has matched.

1.12. Returning successfully to node 2, (2,2) is
pushed and production 2 is put on the derivation stack.
Since there is no input left, the parser does not need to
move any higher up the tree, because the symbol above this
production coculd be part of many preductions which would all
be found as alternatives. The derivation stack can be
output since it just accounts for the input. However, there
may still be alternatives to be found below this node: a
substring may have more than one parse even though the
grammar 1is non-ambiguous. After the derivation stack is
printed, therefore, an artificial failure is forced so as to
cause backtracking.

1.13. The derivation stack is popped and (2,2) and
(P,1) are popped from the backtrack stack.

1.14., Production 3 1s popped from the derivation
stack. (3,2), ((4,=), (3,1), and (u,+) are popped, with nec
alternatives being found. The parser is preparing to return
from node u.

1.15, Backing into node 3, the parser tries to
backtrack through any previous downarcs. Popping nil from
the stack, however, it sees that no alternatives remain. it
executes a failure return.

1.16. Returning to downarc 1, node P, the parser tries
to see if a P can be accounted for in any other ways, so it
looks at dewnarc 2 to production 4,

18
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1.17. The first two downarcs of node 4 match, and
there is now no more input. Thus, the parser has not seen
anything so far to cause 4 to fail, but 1is has partially
succeeded. Since the input could be partial information, we
cannot rule out the possibility that if more input had been
available, production 4 would have matched. So production 4
is pushed on the derivation stack and a success return 1is
made.

1.18. (p,2) and (2,2) are pushed on the backtrack
stack. ‘Production 2 1is ©pushed  on the derivation stack.
Again, the derivation stack is printed, and a mock failure
is forced.

1.19. No alternatives were found at downarc 2, node 2,
so backtracking occurs.

1.20. Nil is popped, so a failure return is made to

uparc 2, node V. There are no more uparcs, so a failure
return is made to node 5. Nil is popped, causing a return
to node 4. There are no more uparcs here either, so the

parser is finished.

The two derivations which the parser produced, 5 3 2
and 5 4 2, correspond to the syntax trees
78\

v
/
d

A\
d

ga u

and
S

/ N\

v P

N\ /IN

d uudu

Although for this simple grammar the partial parses actually
charcterize the entire language strings of which the input

string is a substring, for more complex grammars (such as G2

used in section 2.3) this will not ordinarily be the case.
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2.1.2.2 Development of the algorithms

We will now develop the algorithms for partial parsing
by categorizing the actions described in example 3. Each of
these actions will then be described in terms of the

procedures which perform them.

There are two types of nodes, symbel nodes and
produc tion nodes. For both types there are three ways in
which the path can enter a node, each with 1its associated

actions:

1) entering from above (not backtracking)

a) symbol nodes

* In example 1.1, node d is entered £from
above twice: once from production node
3, and once from production node 4.

* 1.3: the path enters node V, then node d.

* 1.9: node P 1is entered as the parser
searches node 2, downarc 2. The path
then enters node u.

* 1,10: node d is entered.

x 1,17: the first two downarcs of neode 4
point to nodes u and d, which are
entered.

Upon entering a terminal symbol node from

above, the parser must compare that node's

symbol with the current input symbol. Upon

26




entering a non-terminal symbol node from
above, the parser must scan the downarcs of
that symbol node; we will refine the

definition of this action later.

b) production nodes
* 1.3: the path enters production node 5
from above.

* 1.9: node 3 is entered from above

* 1.,17: node 4 is entered

Upon entering a production node from above,
the parser must scan the downarcs of that
node, starting with the first downarc; we
will refine the definition of this action

later.

2) entering from below

a) symbol nodes

* 1,1: the parser starts by entering node u
from below.

1.2: node P is entered from below on the
way up to node 1.

'S

* 1,4: node S is entered.

* 1.7: The path enters node V and node S.

When a symbol node is entered from below, the

27



parser must then search all the uparcs of
that node. For example, in 1.1 node u 1is
entered and its first two uparcs are
searched, and the search of the third uparc
is begun; in 1.7 the search of the third
uparc ends and the search of the fourth uparc
begins. All the uparcs are searched, even if
a successful partial parse was found 1in the
search of an earlier uparc; the search of a
later uparc might reveal an alternative

partial parse.

b) production nodes

* 1.1: Node 3 is entered through the first
downarc. Node 4 is also entered through
its first dcwnarc. Then node 4 1s
entered through its third downarc.

* 1,2: Node 1 is enterethhrough its first
downarc.

* 1.7: Node 5 is entered through its second
downarc. Node 1 is also entered through
its second downarc.

# 1.8: Node 2 is entered through its first
downarc.

Upon entering a production node from below,

the parser must scan the downarcs following

the one through which that node was entered.

In 1.7, there are no downarcs following the

one through which node 5 was entered, SO

28




there 1s nothing to scan. 1In 1.8, however,
there is a downarc following the cne through
which node 2 was entered, and this remaining
arc must be "scanned". This scan is almost
identical to the scan of preduction downarcs
when the. producion node is entered from
above, the only.difference being the downarc
at which the scan is initiated. Again, we
will defer the detailed description of this

action until later.
3) entering from above (backtracking)

a) symbol nodes

* 1.13: The parser pops (P,1) from the
backtrack stack and enters node P from
above. More importantly, the downarc
popped at the same time (downarc 1 of
node P) tells the parser which downarc
to backtrack through upon entering node

P.

#= 1.14: Node d is entered from abov e
{backtracking}; there are no
alternatives to be taken at a terminal
symbol node. Node u 1is also entered

from above (backtracking).
* 1.19: Nodes d and u are again entered,
this time from production 4.
When backtracking into a symbol node from
above, the parser must search for

alternatives through the downarc that 1is

23



popped with that node from the backtrack
stack. If ne alternatives are found, the
remainder of the symbol downarcs must be
scanned. This is almost the same as the scan
of the symbol docwnarcs when the symbol is
entered from above {(not backtracking) ,
differing only in the downarc with which the

scan is started.

b) production nodes

* 1,14: Node 3 1is entered from above
(backtracking) .

* 1,19: Node 4 is entered from above, while
backtracking down from downarc 2, node
2.

Upon entering a production node from above

(backtracking), the parser performs a

backtrack scan of that production's downarcs;

this happens to be a natural part of the

production scan already mentioned, and a

discussion of this will also be left until

later.

30




Corresponding to these actions are six procedures:

SFA - enter a symbocl from above

PFA

|

enter a production from above

SFB

enter a symbol from below
PFB - enter a production from below
SFAB - enter a symbol from above, backtracking

PFAB - enter a production from above, backtracking

There are also two auxiliary procedures:

SCANS - scan symbol downarcs (called by SFA and

SFAB)

SCANP - scan production dewnarcs (called by PFA,

PFB and PFAB)

The parser prepares for a partial parse by finding the
first input symbol (and a pointer to the corresponding
symbol node) in a list of terminal symbols of the grammar.
The pointer to this terminal symbel ncde is passed to SFB to
start the parse by entering this node from the bottom; a
return from this call means that all possible partial parses

have been output.

31



refore describing these procedures in detail, we will

define some hypograph data structure terminology.

A hypograph is made wup of two types of basic

structures: nodes and half-arcs. Each node contains

1) a pointer to the first uparc in that node (call this

pointer UPARC) and

2) a pointer to the first downarc in that neode {(call

this pointer DOWNARC) .

In figure 2, which represents part of the hypograph for
grammar Gl, UPARC for node P points to the structure
corresponding to uparc 1, node P; DOWNARC points to the
structure correspending to downarc 1, node P. In addition
to these two fields, each production node contains the
number of this producticn in the grammar (this item is
called PRODNUMBER), and each terminal symboi node contains

the symbol it represents (this item is called SYMBOL).

There is one half=arc in the data strucure for each of
the two ends of each arc in the hypograph. In figure 2
there is a half-arc for downarc 2, node P, and a half-arc
for wuparc 1, node 4; this pair of half-arcs represents the
arc between node P and node 4. Each half-arc contains three

pointers:
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1) A pointer to a node (this pointer 1is called
NEXTNODE) . Note that 1in figure 2, NEXTNODE of

downarc 2, node P points to node 4.

2) A pointer to the other member of this half-arc pair
(this pointer is called ARCINNEXTNODE). Thus,
downarc 2, node P points to uparc 1, node 4, and

vice versa.

3) A pointer to the next half-arc in the same node as
this half-arc (this pointer is called NEXTARC) .
A1l the downarcs in a node are connected in a
linked 1list; the DOWNARC pointer of this node
points to the head of the list, and the NEXTARC of
the 1last half-arc 1is nil. (Node 4 in figure 4
points to a 1list of three downarcs.) All the
uparcs of a node are connected in a similar
fashion, except that the UPARC pointer of the node

points teo the head of the list.

2.1.2.3 Procedure listings and descriptions

We now describe the eight procedures of the partial
parser. When a reference is made to a specific line in a
precedure, we will include, in parentheses, the procedure

name and line number. A listing of each procedure, with
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line numbers, can be found after the description of that

procedure.

A description of the auxiliary scan routines, which has

been thus far delayed, will now be presented.

SCANS is passed a pointer to a downarc in a symbol node
(call this parameter ARC) (SCANS 1, called from SFA 14 and
SFAB 15). It then calls PFA with the node pointed to by ARC
{(SCANS 5}. If PFA fails, SCANS makes ARC the next downarc
(i.e., NEXTARC) (SCANS 7). SCANS then repeats from the
beginning 1if it 1is not vyet at the end of the list of
downarcs (ARC<>nil) (SCANS 4 to SCANS 8). If a call to PFA

is successful, SCANS returns the ARC which was successful.

SCANS 1 Erocedure SCANS (var ARC, var SUCCESS);

SCANS 2 (¥ scan symbol downarcs *)

SCANS 3 begin

SCANS 4 repeat

SCANS 5 PFA {(ARC” .NEXTNODE, SUCCESS);

SCANS 6 (* if the search down this ARC failed,
get the next downarc *)

SCANS 7 if not SUCCESS then ARC:=ARC™ .NEXTARC;

SCANS 8 until SUCCESS or (ARC=NIL);

SCANS 9 end (% SCANS *);

SCANP has two modes, forward and backtracking. On

entry SUCCESS=true indicates forward mode and SUCCESS=false
indicates backtrack mode. At exit SUCCESS=true means the
production downarcs successfully matched, and SUCCEsSS=false

means the downarcs failed to match in order and there are no

alternatives.
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When called with forward mode, it is also passed ARC, a
pcinter to the first of a list of production downarcs to be
searched (SCANP 1, called from PFB 5 and PFA 5). Nil is
pushed on the backtrack stack to mark the beginning of the
scan (SCANP 6). SFA is called with ARC.NEXTNODE (SCANP 20),
and if successful, this ARC is pushed on the stack (SCANP
25), ARC is set equal to ARC.NEXTARC (SCANP 26), and the
process 1is repeated (SCANP 13 to SCANP 30); if SFA fails at
any point, SCANP enters backtrack mode (SCANP 28,29). While
in forward mode, SCANP will exit if ARC=nil (all arcs have
been scanned) cr if there is no input 1left (SCANP 14 to
SCANP 17). If SCANP finishes with ARC<>nil (this implies
forward mode and no input left) then zero is pushed on the
derivation stack if ARC” .NEXTNODE points to a non-terminal
(SCANP 31 to SCANP 33); this means that if there had been
more input, there would be one or more additional preoducticn

numbers on the derivation stack upon exiting SCANP.

When called with backtrack mode (SCANP 1, called at PFB
13 and PFAB 7), SCANP pops the derivation stack if there 1is
a zerc on top (SCANP 10 te SCANP 12). When SCANP 1is in
backtrack mode it pops ARC from the backtrack stack (SCANP S
and SCANP 28,29) and calls SFAB (SCANP 21,22); this 1is
repeated until SFAB succeeds or ARC=nil. 1In the first case
SCANP enters forward mode (SCANP 24 to SCANP 27). In the

second case SCANP exits, indicating that there are no more

alternatives to be found.
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SCANP 1 procedure SCANP (ARC, var SUCCESS);

SCANP 2 scan procedure downarcs *)
SCaANP 3 begin
SCANP 4 if SUCCESS
SCANP 5 ““then begin (* forward mode *)
SCANP © PUSHBACKTRACK(NIL,NIL);
SCANP 7 end
SCANP 8 elSe begin (* backtrack mode *)
SCANP 9 POPBACKTRACK (DUMMYNODE, ARC) ;
SCANP 10 ié ARC<>NIL
SCANP 11 (* if zero was left on the derivation
stack last time, pop it *)
SCANP 12 then iﬁ DERISTACK[DERISTACKLOC] =0
then POPDERI;

SCANP 13 while (ARC<ONIL)

and not(SUCCESS and NOINPUTLEFT) do egln
SCANP 14 T* ive., quit looping only if
SCANP 15 ARC=NIL
SCANP 16 or
SCANP 17 we have SUCCESS and

there is no input left #*)

SCANP 18 i; SUCCESS
SCANP 19 then (* forward mode *)
SCANP 20 SFA(ARC™ .NEXTNODE, SUCCESS)
SCANP 21 else (* backtracking mode *)
SCANP 22 SFAB(SUCCESS);
SCANP 23 if SUCCESS (* of SFA or SFAB *)
SCANP 24 then begin (*forward mode: get next ARC¥)
SCANP 25 PUSHBACKTRACK(NIL, ARC) ;
SCANP 26 ARC:=ARC" .NEXTARC;
SCANP 27 end
SCANP 28 elSe (*backtrack mode: get previous ARC*)
SCANP 29 T POPBACKTRACK (DUMMYNODE, ARC) ;
SCANP 30 end (* while etc. *);
SCANP 31 if (ARC<>NIL)
SCANP 32 " then ié (not TERMINAL (ARC”™ .NEXTNODE) )
SCANP 33 then PUSHPROD(0);
SCANP 34 end (¥ SCANP *);

Each of the procedures SFA, PFA, SFB, and PFB is passed
a pointer to the node to be entered (this parameter is

called NODE).



s

SFA has a part for processing terminal symbol nodes and
a part for processing non-terminal symbol nodes. It is

called from SCANP 20.

If this is a terminal node, and NODE" .SYMBOL does not
match the current input symbol, SFA returns SUCCESS=false
(SFA 11). 1If it dces match, this NODE is pushed on the
backtrack stack (SFA 7), the <cursor 1is advanced one

character (SFA 8), and SFA returns SUCCESS=false (SFA 9).

If this is not a terminal node, then SCANS 1is called
with a pointer to the first downarc of this node (SFA
13,14). If SCANS is successful, then the current ARC (i.e.,
the one SCANS was successful with) is pushed on the
backtrack stack and SFA returns SUCCESS=true. If SCANS

fails, SFA returns SUCCESS=false.

SFA 1 procedure SFA (NODE, var SUCCESS) ;

SFA 2 (* symbol from above *)

SFA 3 begin

SFA 4 it TERMINAL (NODE)

SFA 5 then if CURRENTCHAR=NODE" .SYMBOL
SFA 6 then begin

SFa 7 PUSHBACKTRACK (NODE,NIL);

SFA 8 MOVCURSORFORWARD;

SFA 9 SUCCESS:=TRUE;

SFA 10 end

SFA 11 else SUCCESS:=FALSE

SFA 12 else begin

SFA 13 ARC :=NODE” .DOWNARC;

SFA 14 SCANS (ARC, SUCCESS);

SFA 15 iﬁ SUCCESS then PUSHBACKTRACK (NODE,ARC);
SFA 16 end;

SFA 17 end (* SFA *);
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PFA is called at SCANS 5 or SFAB 11. PFA first calls
SCANP with the forward mode and a pointer to the first
downarc of this node (PFA 5). If SCANP is successful, PFA
pushes the production number of this node on the derivation
stack (PFA 8) and pushes this node on the backtrack stack
(PFA 9),. It then returns (returning the value of SUCCESS

that SCANP returned).

PFA 1 procedure PFA (NODE, var SUCCESS);
PFA 2 (* production from above *)

PFA 3 begin

PFA 4 SUCCESS:=TRUE; (* forward mode *)
PFA 5 SCANP (NODE" .DOWNARC, SUCCESS);
PFA 6 if SUCCESS

PFA 7 "“then begin

PFA 8 PUSHDERI (NODE” .NODENUMBER) ;
PFA 9 PUSHBACKTRACK (NODE,NIL);
PFA 10 end;

PFA 11 end (¥ PFA *);

SFB is called to initiate a partial parse. It is also
called at PFB 10. SFB calls PFB once for each uparc in this
node. PFB is passed a pointer to the node to be entered and
a pointer to the arc in that node through which the node is
to be entered (SFB 6). After all uparcs have been searched

(SFB 5 to SFB 8) SFB exits.

SFB
SFB
SFB begin

SFB ARC:=NODE”™ .UPARC;

1 procedure SFB(NODE) ;
2
3
4
SFB 5 while ARC<>NIL do begin
6
7
8
9

(* symbol from below *)

SFB PFB (ARC” .NEXTNODE, ARC”.ARCINNEXTNODE);
SFB ARC:=ARC” .NEXTARC;

SFB end:;
SFB end (* SFB *);
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PFB is called (at SFB 6) with a pointer to a node
(parameter NODE) and a pointer to the downarc through which
the node is to be entered (parameter ARC). Since this arc
has already matched, SCANP is called in forward mode with a
pointer to the next downarc (PFB 5) (note that SCANP in
forward mode takes care of pushing nil on the backtrack
stack to mark the beginning of a scan). If SCANP 1is
successful, then PFB pushes the production number of this
node on the derivation stack (PFB 7); if there is no input
left the derivation stack is printed (PFB 9), otherwise SFB
is called with a pointer to the node pointed to by the only
uparc of this production nede (PFB 10); the derivation stack
is popped (PFB 11) (to remcve this production number); and
SCANP 1is called in backtrack mode (PFB 13). This block
(from the pushing cf the procedure number on, i.e. PFB 6 to
PFR 14) is repeated until SCANP fails, i.e. there are no

more alternatives. PFB then returns.

PFB 1 Erocedure PFB (NOCDE, ARC);

PFB 2 (* production from below *)

PFB 3 begin

PFB 4 SUCCESS:=TRUE; (* forward mode * )
PFB 5 SCANP (ARC™ .NEXTARC, SUCCESS) ;

PFB 6 while SUCCESS de¢ begin

PFB 7 PUSHDERI(NODET.NODENUMBER);

PFB 8 ié NOINPUTLEFT

PFB S then PRINTDERIVATIONSTACK

PFB 10 else SFB(NODE“.UPARC".NEXTNODE);
PFB 11 POPDERI;

PFB 12 SUCCESS:=FALSE; (* backtrack mode *)
PFB 13 SCANP (DUMMYARC, SUCCESS);

PFB 14 end;

PFB 15 end (* PFB *};




The backtrack procedures are now described.

When called from SCANP 22, SFAB first pops (NODE,ARC)
from the backtrack stack (SFAB 4) and then determines

whether this is a terminal node (SFAB 5).

If this is a terminal symbol node, then there are no
alternatives; the cursor is backed up one character (SFAB 7)

and SFAB returns SUCCESS=false (SFAB 8).

If this is a nonterminal symbol node, then SFAB backs
down the last successful downarc by calling PFAB (SFAB 11);
if this is not successful, then SCANS 1is called with a
pointer to the next downarc (SFAB 15). 1If either PFAB or
SCANS is successfgl, then the ARC which matched and the

current NODE are pushed onto the backtrack stack (SFAB 17) .

SFAB 1 Erocedure SFAB(var SUCCESS);

SFAB 2 (* symbol from above, backtrack *)

SFAB 3 begin

SFAR 4 POPBACKTRACK (NODE, ARC);

SFAB 5 iﬁ TERMINAL (NODE)

SFAB 6 then begin

SFAB 7 MOVCURSORBACK;

SFAB 8 SUCCESS:=FALSE;

SFAB 9 end

SFAB 10 else begin

SFAB 11 PFAB (SUCCESS);

SFAB 12 if not SUCCESS

SFAB 13 then begin

SFAB 14 ARC:=ARC” .NEXTARC;

SFAB 15 ié ARC<>NIL then SCANS (ARC, SUCCESS);
SFAB 16 end; —

SFAB 17 if SUCCESS then PUSHBACKTRACK (NODE, ARC);
SFAB 18 end;

SFAB 19 end (* SFAB *);
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PFAB, called from SFAB 11, pops NODE from the backtrack
stack (PFAB 4) and pops one item from the derivation stack
(PFAB 5)., It then calls SCANP with backtrack mocde (PFAB 7).
If SCANP is successful, PFAB pushes the production number of
NODE on the derivation stack (PFAB 10) and NODE on the
backtrack stack (PFAB 11). It then returns (returning the

value of SUCCESS that SCANP returned).

PFAB 1 procedure PFAB(var SUCCESS);

PFAB 2 (* production from above, backtrack ¥*)
PFAB 3 begin ,

PFAB 4 POPBACKTRACK (NODE, DUMMARC):;

PFAB 5 POPDERI;

PFAB 6 SUCCESS:=FALSE; (* backtrack mode ¥)
PFAB 7 SCANP (DUMMYARC, SUCCESS);

PFAB 8 if SUCCEss

PFAB 9 then begin

PFAB 10 PUSHDERI (NODE”™ .NODENUMBER) ;

PFAB 11 PUSHBACKTRACK (NODE,NIL);

PFAB 12 end;

PFAB 13 end (* PFAB *);




2.2 Database organization and access

In this section we develop the database organization
and access algorithms. Let D={dl,d2,,,,,dn} be the set of
database strings and let P={P;,P,,...,P,} be the parses of
those strings. FEach P. is a sequence of productions

1
N,
1

Given P and a partial parse p, of a string x, we need
to determine all strings A €D such that x is a substring of

A. There are two cases to consider.

1) If p, contains no zeroes, then we need only to

find all strings d; such that p, is a

contiguous substring of P;.

2) If there are r-1 zeroes in p, such that

px=pi 0 pi 0 ... 0 pi then we determine

all strings A such that

1 = o - .

Px = Pi,5; Pi,jp;e1 o0 FiLig

2 2

Px = Pi,j, Pi,j,e1 cot Fil3l

pi = Pi 5 P‘ 2 & e @ P' 28
IS % I3 i.35

Jepy > JLtls 1<s<r=1

Je < it 1<t<r

(Note that we cannot have two zeroes adjacent in pg. The
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parser outputs a zero if input is exhausted while scanning
the downarcs of a production; the production is then
considered (partially) matched so the parser outputs the

production number immediately after the zero.)

The database access algorithm proceeds by first finding
p'cpP such that for each P e P', every non-zero production
number in p . is also in Py . This is accompiished as
follows. For each production j we define QjE_P such that
Pks Qj if and only if Py contains production J. Each of
the sets Qj is stored as part of the database. The

algorithm computes P' by taking the intersection of all Q's

whose associated productions occur in Py -

Now that the search has been narrowed to P!, the

algorithm considers each P, e P'. P, is searched for the

A

first occurrence of pi = Pp 3 e s p (as defined
1

A3
above); 1f no such substring is found then x is not a
substring of A, so P, is discarded and the next element of

p! is considered. 1f pi is found to be a subpart of Pn,
then the identification algorithm attempts to find the first
occurrence of pi in PA, starting at PA'ji+2. We could
have started at PA'ji+1' but since the zerc in p, between
pi and pi means that at least cne production 1is missing in
P,, we can skip over one production before starting the

2 1

search for py. As with py, if pi is not found in Py,
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then P, is discarded; otherwise the process 1s continued
with the remaining parts of Py . If pi through pi match,

then x is a substring of A.

The identification algorithm is implemented in
procedure IDENTIFY. The procedure has a bit vector for each
production in the grammar, with a bit for every database
string. A "1" means that this production is in the parse of
the corresponding string; these vectors implement the sets Q
above. The array PRODNUMS contains the partial parse of the
string to be identified. The procedure INTERSECTPRODUCTIONS
intersects all the bit vectors corresponding to the nonzero
production numbers in PRODNUMS; the resul tant vector
(corresponding to P') is stored in POSSIBLESET. Members of

POSSIBLESET are indices to parses of known strings.

The procedure GETPRODNUMS also breaks up PRODNUMS into

PATTERN{1], PATTERNI[Z], eo e PATTERN [NPATTERNS]
(correspending to pi,pi, oo pi). The procedure

MATCHPARSE tries to match these PATTERNsS in order against
DB [SENTENCENUM], for each SENTENCENUM in POSSIBLESET {the
array DB corresponds to the set P, with DBR[i] being the
parse of the ith database string). GETNEXTSENTENCENUM is a
function which performs the task of picking a SENTENCENUM

from POSSIBLESET to pass to MATCHPARSE.
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IDENT 1 grocedure IDENTIFY;

IDENT 2 begin

IDENT 3 GETPRODNUMS;

IDENT 4 INTERSECTPRODUCTIONS;

IDENT 5 while GETNEXTSENTENCENUM gg MATCHPARSE;
IDENT & end (* IDENTIFY *);

K, the po$ition at which MATCHPARSE starts trying to
match DB[SENTENCENUM], is initially 1 (MATP 3). I, also
initially 1 (MATP 4), is the index of the database PATTERN
to be matched. MATCHPARSE then starts a loop (MATP5): it
calls the Knuth-Morris-Pratt algorithm [3] (KMP at MATP 6 to
MATP 12) to match PATTERN[I] starting at position K in
DB [SENTENCENUM] , then 1i.crements I (MATP 13); the locp
continues until either MATCH fails, or all the PATTERNs have
matched (MATP 15). After each successful return of MATCH,
the value of K 1s one plus the position of the last
character to match in DB [SENTENCENUM] . This is where the
next PATTERN might start matching, but since there is a zerxo
between this PATTERN and the next, there 1is at least one
missing production; on the next loop MATCH will skip over at
least one production in DB[SENTENCENUM], so K is incremented

(MATP 14).

1f all the PATTERNS match, then SENTENCENUM is an index

to the name of a string of which the input is a substring

(MATP 16) .
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procedure MATCHPARSE;
begin
K:=1; (* start matching at character 1
of DB[SENTENCENUM] *)
I:=1; (* start with PATTERN([1l] *)
repeat
LASTMATCH := KMP (PATTERN([I],

PATTERNLEN([I], (* length of PATTERN[I] ¥*)

NEXT[I], (* artifact of
Knuth-Morris-Pratt *)
DB [SENTENCENUM],
‘DBITEMLEN[SENTENCENUM}, (* length of
' DB [SENTENCENUM]
K (* position in DB[SENTENCENUM]
at which to start *)

)
I:=I+1; (* next PATTERN *)
K:=K+1; (* skip over an item
in DB[SENTENCENUM] ¥*)
until (not LASTMATCH) or (I>NPATTERNS);
ig LASTMATCH then PRINTNXME(SENTENCENUM);
end (* MATCHPARSE *);

*)
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2.3 Results

Timimg tests were made wusing grammar G2, which
describes a language of 1440 strings. Databases of 200,
500, 800, 1100, and 1400 strings were constructed. For each
database size, strings were selected at random to construct
the database. This was done five times for each size
database. From each of these 25 databases 4 sets of 100
substrings were chosen at randem. One set consisted of
entire sentences (100% of each string chosen), and the other
three sets contained fractions of 75%, 50%, and 25% of each
string chosen. The substrings were picked at random from

within each string chosen.

The 100 substrings of each of the 4 sets were
identified relative to the database from which they were
chosen. Two methods were used and average timing data was
recorded in both cases. The first method was the one
presented in sections 2.1 and 2.2. In the second method,
the strings, rather than their derivations, formed the
database, and the Knuth-Morris-Pratt algorithm was applied
directly to the strings themselves. Thus, the comparative
timing results should indicate the advantages {or
disadvantages) of using the syntactic model, i.e., computing.

the partial parses of the pattern queries.

For these tests we employed a modification of the

procedure IDENTIFY (which was discussed in section 2.2).




Since for each partial parse of a query string one pass is
made on the database, it is possible that the algorithm will
reconsider database strings which were previously identified
(relative to a different partial parse) as containing the
query string. The modification consists simply of removing
from considerapion any database. string already identified as
a superstring of the current query string. This
modification was found to improve performance by 25% for
small string fractions. The improvement for compl ete

strings was almost negligible.

Times from the five runs were combined to calculate an
average for each of the twenty combinations of database
sizes and string fractions. The results are presented 1in
table 1. These times, in milliseconds, represent average
time to process a single query string. Four different

timing values are indicated in table 1:

1) Tp, the time to find all partial parses

2) Ty, the time to identify these parses using the

method of section 2.2

3) Tg, the sum of (1) and (2), that is, the total

time to identify the query string

4y T the time to identify the guery string using

S’

the Knuth=-Morris-Pratt method applied

directly to the string, rather than to its

49



50
Database §1ize
200 00 800 1100 1400 String Fraction

Tp 18.07 17.38 18.70 17.85 18.30
Ty 50,75 120.11 199.13 269.77 343.13

.25
TG 68,82 137.49 217.83 287.62 361.42
Tg 29.49 73.08 117.58 159.62 205.19
Tp 28.96 28.66 29.41 2%.60 28.79
T 28.07 65.74 110.66 145.92 180.51

K .50
TG 57.03 94.40 140.07 175.52 209,30
Ts 33.21 81.95 132.04 180.98 229.86
TP 34,91 34.61 34.61 35.79 35.49
T 15,21 32.94 54.00 74,36 89.53

K .75
TG 50.12 67.55 88.60 110.15 125.02
Ts 33.92 83.04 133.56 182.60 233.42
Tp 25.87 26.05 24.96 25.71 25.91
T 8.05 18.33 27.79 38.28 48,98

K 1.00
TG 33.92 44,38 52.7% 63.99 74.89
T 32.94 81.00 128,41 176.69 224.79

Table 1. Execution times in ms. per string
for various random databases,
access strings, and string fractions




We

1)

2)

3)

derivation.

These results are represented graphically in figure 3.

make the following observations about the results:

For a fixed string fraction, Ty increases 1linearly with
the size of the database, which 1is, of course,
consistent with the complexity analysis of the

algorithm given in [3].

For a fixed string fraction, Tg increases slower than
linearly with the size of the database. This may be
due to the intersections descibed in section 2.2 which

restrict the search of the database.

As the string fraction increases, TG and TG/Ts decrease.
This 1is because small string fractions tend to have
more partial parses than large string fractions, and

one database pass must be made for each partial parse.
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3. Conclusion

The identification of strings using partial parsing and
a production oriented database 1is, on the average over
string fraction, slightly faster than identification by a
Knuth=-Morris—Pratt search of a database of strings.
Nonetheless, when the query string is small, the method of
this paper requires 75% more time than the more direct

method.

With the grammar used in our test cases, the time to
perform partial parsing was relatively inconsequential’to
the total identification time, but realistic two~dimensional
grammars will be much more complicated and might cause the
partial parsing time to dominate. Methods of speeding up

partial parsing will become important.

For example, one simple improvement might consist of
keeping at each symbol node a list of positions in the input
string at which that symbol has already been found not to
match. Since the parser can backtrack and match the leading
part of the string in a different way, it can return later
to a symbol node which previously failed at the same string
location. By checking the list at that node the parser can
avoid repeating its previous failure (note that this is
similar to some of the improved backtrack procedures
described by Gaschnig [4] and Haralick and Elliot [5] and

suggests that constraint propagation, as used by Davis and




Henderson [2] might be useful for partial pattern parsing) .

Major improvements might also be possible. The parsing
algorithm we have presented is a reasonably intuitive,
straightforward solution to the partial parsing problem.
Perhaps the techniques of more advanced methods, such as LR
parsing, could be extended to partial parsing. In addition,
stochastic methods might be applied to not only speed up
partial parsing, but allow for inexact matching as well

(Fua,[6]) .

In conclusion, we have studied the partial=pattern
database problem. The problem was formally defined in terms
of the partial parse of a query string, and a sclution was
presented. The performance of the algorithm was compared to
that of a standard string-matching algorithm and found to be
competitive. Finally, we sketched possible methods of
improving the speed of our database access algorithms and
discussed extensions for handling more realistic

partial=pattern database problems.
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