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Abstzagg

An analysis of the tree convolution algorithm for the solution

of product-form gueueing networks is presented. A probabilistic

model is used to generate networks with M service centers, K rout-

ing chains and N customers in each chain. The routes of chains are

o

sampled from independent Bernoulli trials. The expected time and
space regulrements for the computation of network normalization

constants and the performance measures of chain throughputs, mean
gueue lengths and marginal gueue length distributions of service
centers are derived as functions of M, K, N and the sparseness of
routing chains. We assume that the same tree is employed for all

networks generated by the probabilistic model. Consequently, the

time and space results presented are upper bounds of the expected

time and space requirements of the tree convolution algorithm in it

general form.
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1. INTRODUCTION

An analysis of the time and space requirements of the tree
convolution algorithm [1] for the solution of product-form gueueing
networks is presented. A probabilistic model is employed to gen-
erate gueueing networks with M service centersand K routing chains.
The routes of chains are sampled from independent Bernoulli trials.
We ask the following gquestion. For a large number of networks gen-
erated, what are the average time and space requirements of the tree
convolution algorithm as a function of M, K and the "sparseness” of
routing chains?

It is discussed in [1] that the efficiency of the tree convol-
ution algorithm is derived from (i) the sparseness of routing
chains, and (ii) a tree planting procedure that exploits information
on the routes of chains as well as any locality property present in
the distribution of chains in the network.

The expected time and space requirements of the tree convolu-
tion algorithm to compute the network normalization constant and
the network performance measures of chain throughputs, mean gqueue
lengths and marginal gueue length distributions of service center
are shown. We assume that the same tree is emploved for all net-
works generated by the probabilistic model. In other words, chain
routing information is not utilized to optimize the time and space

requirements of the algorithm for individual networks generated.



Consequently, the results presented below are upper bounds of the
expected time and space requirements of the tree convolution algo-
rithm in its general form (i.e. with a tree planting procedure).

The probabilistic model is described in Section 2. A brief
refresher of the basic ideas of the tree convolution algorithm and
some key definitions is given. However, familiarity with the com-
panion paper [1] would be most helpful for the reader to follow
the development of this paper. The analysis is presented in Section
3 and Section 4. Numerical results illustrating the expected time

and space requirements of the algorithm are shown in Section 5.



2. THE MODEL AND SOME DEFINITIONS

Consider a gueueing network with M service centers and X
routing chains. (Note that only BCMP networks with a product-
form solution [2,3] can be solved by the tree convolution algo~
rithm.) Let CENTERS (k) denote the set of service centers visited
by chain k. We generate a network sample by generating the sets
CENTERS (k) for k = 1,2,...,K according to independent Bernoulli
trials. Specifically, chain k visits center m with probability
P

With probability lum center m is not in CENTERS (k).

k!

The time and space requirements of the tree convolution algorithm

mk’

depend only upon the sets CENTERS (k) and chain population sizes Nk
for k = 1,2,...,K. They do not depend upon other network parameters
such as relative arrival rates and traffic intensities. (This
observation assumes that the same tree is used. Also minor differ-—
ences may arise 1if some of the centers are fixed-rate service cen-
ters and feedback filtering is employed for those convolutions
involving them [17.)

For analytical tractability, we shall assume that Nk = N for

all k¥ and that Pmk = P for all m and k. It is also assumed that

each chain visits at least one service center. This set of assump-

tions will be referred to as the uniform distribution model for

generating networks. In this model, the probability of a chain

visiting exactly 1 of the M service centers is



Prob [a chain visits i centers i > 1]
Mo, M-i
- M = b. 1= 1,2,...,M. (1)
1= {1-p} -

The mean number of centers visited bv a chain is

L

— MP

ncerter" - M
' = 1 - (1-p) -
The ratio
ncenters - P ~ P
M 1 - (1-p)M

may be interpreted as a measure of the sparseness of the routing

chains in the network.

A balanced binary tree and postorder tree traversal are herein
assumed for the tree convolution algorithm. The M service centers
are fixed assigned to the leaf nodes of the tree. To further sim-
plify the analysis, M will be assumed to be a power of 2.

We next review some key definitions and the basic tree convolu-
tion algorithm in [1]. Let SUBNET denote a subset of service centers.

With respect to SUBNET, chain k is said to be fully covered if

CENTERS (k) < SUBNET; chain k is noncovered if the intersection of
CENTERS (k) and SUBNET is null; otherwise, chain k is partially
covered.

Each node in the tree has an array of values associated with it.

The array <3 of a leaf node contains the (improper) marginal proba-

bilities of queue lengths of service center m placed at that node.
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Each node in the tree corresponds to a subnet of service centers
that are descendants of the node in the tree. The array of a

node corresponding to the set of centers SUBNET = {mi,m2,w”.,mgf o

IsusNeT ~ Pp, @ Pp ® - @F (2)

where ® denotes the convolution operation between two arrays.

The nodes in the tree are visited according to some order of
tree traversal (assumed to be postorder in this paper). A branch
node may be visited only after its sons have been visited. When

a branch node (or the root node) is visited, its g array is computed

[as

from convolving h arrays of its sons. Let SUBNET, SUBNETL and

[
o]

SUBNETZ be sets of service centers corresponding to a branch node
and its two sons respectively. Then we have

133

= 9gueneTl ? IsuBnET2- \

oF
SUBNET

The root node is vigited last and the network normalization constant

¥

; for the chain population vector N = (N},sz,au,EKE ig containe

in the g array of the root node.

The efficiency of the tree convolution algorithm is made

possible by the use of partially covered arrays in (3). Let o©
I € Y pC

be the set of partially covered chains in SUBNET. A partially

|

vered for r sentis . 17 gionality
covered array for repre ting IS UBNET has dimensionality }Gpcj
and the set of index values {ik = Oglg,a.,Nk, k€0pc}@ In a network
of sparse routing chains, it is very likely that |o__| is much

pc’

smaller than ¥ for each node {(subnet) in the tree. {The tree



planting procedure in [1], not congidered in this paper,

ns

ting information on the routes of chains.)

o reduce the number of partially covered chains further

Note that at

o

attempts
by exploi-

the root

node, all chains are fully covered and the g array degenerates

to a single value, namely, G(N).
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3. EXPECTED TIME AND SPACE FOR EVALUATING THE NETWORK NORMALTIZATION

CONSTANT

With independent Bernoulli trials, the selecticn of centers
visited by a chain is performed independently for all k chains.

Let us consider an individual chain and calculate the prob-
abilities of its being fully covered, noncovered or partially

covered by a subnet of x service centers. These probabilities

are dencted P_ (x), P_ (x) and P_ (x) respectively and are given
g
fc nc pC
by
X
P (x) = L bi Probf{all i centers are in the subnet]
Ao s »
i=1
X
_or o U o
= 7 b, i {4
i=1 ( : )
M-x
P C(x) = 7 bi Problall i centers are not in the subnet]
- i=1
Me-x ( M;X y
] lil bi ({ M ) v
i
and
Py = - S - ? Ps {
Poe () = 1 =P (x) = P () (6)

where bi in (4) and (5) is given by (1}.

Since the number of partially covered chains in a subnet
determines the dimensionality of its g array, it is of interest
to note that

Probla subnet of x centers has k partially covered chains]

= koo K-k
= ( k} [Ppc(x)} (1 Ppc(x)] . (7)



The mean number of partially covered chains in a subnet of x

centers is XKP  (x).
jole

Lemma 1. For any integer M > 2, PDC(X} increases monotonically
————— I
with x for 1 < x <|M/2] and decreases monotonically with x for
M/27] < x < M. P@C (%) equals zero at x = M.
The notation |b| in Lemma 1 denotes the largest integer
smaller than or egqual to b while the notation [b] denotes the

smallest integer larger than or equal to b. Lemma 1 is proved

Note that if M is an odd integer then the maximum of Ppc€x§
occurs either at [M/2] or at [M/2]. But if M is an even integer
then the maximum occurs at M/2. We shall assume M to be even from
now on. In fact we shall assume it to be a power of 2.

The above lemma implies that the mean number of partially
covered chains is maximized in a subnet of M/2 centers. Recall
that the dimensionality of a partially covered g array for
a subnet is equal to the number of partially covered chains in it.

When there are j partially covered chains, the space requirement

of the partially covered g array is (N + 1)7.

Lemma 2. For a subnet of x service centers, the expected
space requirement of its partially covered g array is

Elspace|x] = [1 + NPpc{xHK (8)

which is maximired at x = M/2.
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To prove Lemma 2, we have from (7)

e

Elspace|x] = z (+1)I ( Xy () 17[1-p__(x) 1573
2o j ' pe pC
and (8) follows. E[space|x] is maximized at x = M/2 since P oo (x

is maximized at M/2 from Lemma 1.

With postorder traversal of a balanced binary tree, the
maximum number of g arravys needed at the same time is (1og2M}+2.
This situation is illustrated in Fig. 1 for M = 8. ©Part (i) of
Theorem 1 below is immediately obvious. {(Note that the expecta-
tion of a sum of random variables is equal to the sum of the

expectations of the random variables [4].)

Fig. 1. Maximum number of nodes requiring
g arrays at the same time.

Thecorem 1. {1) The expected space reguirement of the tree
convolution algorithm to calculate the normalization constant
G(N) is

, K
E[space for G(N)] < {2+1eg2M}§1+NPpC(M/2)E“,

(ii) There exists a positive integer K' such that for K > K'



EEN
O
St

X
; )]
+ 271 + NPPC{M/4,] .

Part (ii) of Theorem 1 is proved by noting from Lemma 1 that
there exists a positive integer X' such that for K > K'

1+ NP (M/27)
joie

—
1o+ NPpﬁ(M/Zj’l}

b

or

3, LK J4+1, LK
- > 2[1 + N 277
)] (1 + NPPC{M/g )]

o

for 1 < 3 < {1og2M)m1a

=

rhis last inequality at the expected space requirement of

n

)
o

n

ot
oy

a branch node in the t is larger than the sum of the expected

!
D
0]
}a..k

s two sons. To perform the sequence of

‘LJ
t

space requirements of
convoluticns corresponding to a postorder traversal of the binary
tree, it is easy to see that the expected space requirement of g
arrays needed at each step of the tree traversal increases mono-
tonically, and reaches the maximum value when the convolution at
the root node’s right son takes place. At this time, four g
arrays are needed; two for the root node's sonsg and two for the
sons of the root node's right son. (See Fig. 2.) We have thus
proved part (ii) of Theorem 1. With a little thought, it should
also be obvious that (9) depends upon the use of a binary tree

and does not depend upon the order of tree traversal.
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Fig. 2. Maximum expected space requirement
of tree algorithm for K > K'.

We next study the expected time requirement for performing the
convolution operation to merge 2 disjoint sets SUBNET1 and SUBNETZ
into a set SUBNET. Consider the set of outcomes (sample space) in
the sampling of centers visited by a chain according to independent

Rernoulli trials. The chain is said to be overlapped by SUBNETL

and SUBNET2 if it is partially covered by each. First, partition

the sample space of the chain outcomes into 4 events E E., and

or F1r Fa
EE depending upon whether the chain is partially covered by SUBNET

and whether it is overlapped by SUBNET1 and SUBNETZ2 (see Table 1).
Event EO is further partitioned into events E4 and ES where E@ is

the set of outcomes of the chain being fully covered by either SUBNETL
or SUBNETZ2 and ES is the set of outcomes of the chain being non-
covered by SUBNET. Note that the union E1UE3 consists of the out~
comes of the chain being partially covered by SUBNET while the union

EZUE4 consists of the outcomes of the chain being fully covered by

SUBNET.



not partially covered partially covered
by SUBNET by SUBNET
not overlapped EQ = EgUE5 E1
overlapped E2 E3

3
ity
o
ot
(
bt

Partitioning of a chain's sample
space into 5 events.

The number of centers visited by a chain is a random variable
with value 1 = 1,2,...,M. Suppose SUBNET]l and SUBNET2 have x cen-
ters each. The numbers of centers in SUBNETL and SUBNETZ visited
and 1

1 2

ely over the range {0,1,...,x}. The five events in Table 1 are

by the chain are random variables with values i regpectiv-

given by:

+ o : —_ b s - 1 Y . ) . . i ’ 9
El ({11 OIULlZ @J;Q{%i;1+12£x}n{lil ll l‘EM 2k}!
E2 = {Eiiii}{}ﬁ{lii}}i}{}ﬁ{i:iz‘?iz};
E3 = {E—iilf’x}ﬂ{}'iizi}i}ﬂ{lf_iwil”iziﬁ’IMZX};
- L= =01 N{i=1i. +i Sexde

E, ({i;=0}uli,=ob)n{i=i, +i Jn{l<i<x]
E. = {i,=0}n{i =0In{l<i<M-2x}. (10)

5 1 5 <i<

The union of the five events is

E = {1<iMIn{0<i, <xIN{0<i <xin

{QiiwilwiziM~2x}

which is the universal event with probability 1.



The conditional probability of the event that the chain visits

il centers in BUBNET1 and i? centers in SUBNET2 given that it visits

i centers altogether is

(T {1,11,12)85

otherwise

def.
fo(x = ProblE 1
y ) [ -
M
= ¥ b, ; S ;
b7 hi  i,[1,x)
i=1 P i) eE
\1‘?11; 2 - }7
for v = 0,1,2,3,4,5
where bi is from (1). ©Note that we have the relationships
R S 5
fo(x) = Léax) fS{x%
Txr Y o
pnc(bk) fS(x)
Dpcizx; = fl(x) + fB(X}
and
= ) £ .
PfC(ZX) fg(x; + 44(x)
Next define the random variable KV for v = 1,2,3,4,5 represent~

bl

ing the number of chains whose outcomes are in event E - Let X de-

note (KE;KE,K3,K4,K5) and k denote <k1’k2’k3’R4’k Define

k)
57"
p(k|x) = Prob[K = k|x]

for keo, = {k|k =0,1,...,% for y=1,2,3,4,5 and

ky = K}. TIts
Y

K

1wt

1

moment generating function is
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*/_‘ Y = (& s 4 4 4 g g 1
p*(z|x) 12 p(kix) 7y TZy 7y "7, 7g (11)
keo
- K
where 7z = (71,?2,?3F74,75}, Since the sampling of centers is
performed independently for all k chains, we then have
5 X
pr*(zlx) = [ £ f (x)z ] (12)

from the fact that the moment generating function of a sum of in-
dependent random variables is egual to the product of moment gen-

erating functions of the random variables [4].

Lemma 3. The expected time requirement to perform a convolution
using partially covered arrays corresponding to the merger of two

disjoint subnets each containing x service centers is

Eltime|2x] = [1 + (1-£,(x)) N + £, (x)N(n+1) /21K, (13)

Lemma 3 is proved as follows. The time +to perform a convolution

using partially covered arrays is
ko + k k

(N+1) T 21 (w+2) (N+1) /27 2

given by (8) in [1]. Hence the expected time is

k k k

Eftime|2x] = §  p(k|x) (N41) T(N+1) 21 (N+2) (N+1) /2] 2

= [fG(x) + £ {x) {(N+1) + fzgx}{N+1) + f3(x){(N+2}(N+l}f2}}K
E N
which simplifies to (13).

Let p(kpC, kfh]x) be the probability of having kpc partially

covered chains and kfc fully covered chains in a subnet of x ser-

vice centers. The moment generating function of pikmc’ kfcix} is
I

P¥(z]x) = [P __(x) + Poe Rz + Pro(x)z g% (14)



The time requirement to calculate the g array of a leaf node using

o

k + k
(9) in [1] is 4(+1) P€  TC e then have the following result.
Lemma 4. The expected time to calculate the g array of a leaf
node is
X
Eltime|leaf] = 4[1 + NP__ (1) + NP_ (1)1 . (15)

pc fc

If the leaf node corresponds to a fixed-rate service center and

feedback filtering using (A4) in [1] is used, then the time

k + k
reguirement is <kcc + kﬁc)(N + 1) P€ fe and the following result

A
is obtained.
Lemma 5. The expected time to calculate the g array of a leaf node

using feedback filtering is

F+1 = J I 3 r x Ty
E[time]|leaf] K(N+1}LPPC(1, + P (LT[ + NPpc(l) + NP, (1)

(16)
The theorem below immediately follows from the preceding three
lemmas.
Theorem 2. The expected time requirement of the tree convolu-
tion algorithm to calculate the normalization constant G (N) is

Elitime for G(N)]

}..-J
O
=

i

E{time|leaf m]. (17)

1 Q
[\
o~ =

=1

ke
fod
[N
fnd
=
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4. EXPECTED TIME AND SPACE FOR EVALUATING NETWORK PERFORMANCE

MEASURES

We shall consider the computation of G(N - ;k} for evaluating

chain throughputs, Gm+{N - 1,) for evaluating mean queue lengths of
0t o

~k

fixed-rate centers and Gm for obtaining the marginal distribution of

queue lengths of a service center. The methods are discussed in [1].

Chain throughputs (MetHod 1}

To calculate the throughput of chain k we need G(N - ék} in addi-

tion to G{ﬁ}.

Suppose the entire tree of g arrays from the computation

of G(N) 1s stored. The expected space requirement of the tree is
logzM L x
E[space for entire tree] = I M {1 + NPPC(23)} . (18)
3=0 53
Define
P* (2x) = Prob[chain k is fully covered by a node of 2x centers and

23X
= 3
i=1
where
B.
i
Define
Yo 7T
o
M
= 2j
P

fc

ncot fully covered by either of its two sons]

% .
B, (°¥%y — 2 5 =, (% for x = 1,2,...,M/2
1 1 . 3 3
i=1
Pl(1~P}Mml
1 - (1-p)™

Prob[chain k is fully covered at level j and not fully

covered at level j-1]

* j T =
Pfc(2 } 3 1,2,,..,10g2M

(1) M i =0
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where level 0 denotes the leaf nodes of the tree and level (1og2M)
denotes the root node.
Suppose that a chain, say k, is fully covered for the first

time at a level j node of the tree. To compute G(N - 1 the

10,
convolution at this node needs to be redone to obtain g array

elements with the index wvalue ik = N - 1. The convoluticons at
nodes along the path from this node to the root node are then re-
done seqguentially. The expected time of one such convolution is
given by

-]
E{time|2x, K-1] = [1 + (1~f6(x))N+ fg(x)N{N+l}/2]K -

If chain k is fully covered at a leaf node, then recomputing the
g array of the leaf node for ik = N ~ 1 using {15) in [1]1 reguires
only 4 time units (2 multiplications and 2 divisions). The expected

time to compute G(N - }k} given that the tree of g arrays from

computing G{N) has been saved is

legzM :
Eltime for G(N - ék}}tree} = 4y6 + N Oz yj E[time}2ji K-1]
o 3=1
legzm log2M i
+ Oz Y, I Eltime|27, K-1]
3=0 ©oi=i+l
1OQZM i
= I v¥ E{time|27, K-1]1 + 4y (19)
je=1 1 0
L
where
1-1
Yy*¥ = I .+ Ny
{1 Y} i



Work space for two partially covered arrays is needed for the
sequence of convolutions. We summarize the above results in the
following theorem.

Theorem 3. Given the tree of g arrays from the computation of
G(N), the expected time and work space needed by the tree convolution
algorithm to calculate G(N - 1,) for all k are: )
(i) Eltime for G(N - ék) for all kl|tree] =KE[time for G(N - ;k)]tree};
(ii) E[work space for G(N - 1) for all k|tree]

= E[space| (M/2)] + E[space| (M/4) ].

Suppose that some g arrays from the computation of G(N) are not
saved and stored for the subsequent computation of G(N - £R}°
Specifically, if g arrays at levels 0 to 3* of the tree are not

saved, then the tradeoff between expected time and expected space

is as follows:

J* :
expected space reduction = 7 32 L+ np C(ZJ}}K; (20}
j=0 2 P
expected additional time
S e ATVTE IR SR
=K (3% 2 Eftime[27] - ¢ Y. E[time|271) (21)
3=0 §=1 -
. 1,0 . - J
where E[time|2 ] = Ef{time|leaf] and Yy = Loy,
i=0

Chain throughputs (Method 2)

G(N) and G(N - £k> for all k can be computed together in the
same tree traversal. In this case if a node has Rfc fully covered
chains then kfc + 1 partially covered arrays need to be computed

and stored at this node. Given alsoc that the node has kpc partially
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covered chains, the space regquirement for the arrays is (1 + k_ ).

k
(N + 1) pc, which together with (14) vield the following result.

Lemma 6. The expected space reguirement of the partially covered

arrays for a subnet of x centers needed to compute G(N - ;k) for all
k is
E[space|x, all k] = E[space|x] + K Pfc(x)[l + N Ppc(x)]K-l.

Note that Pfc(x} is egual to 1 and PPC(X) is equal to zero at
x = M. Hence, the expected gpace is equal to K + 1 at the
root node {(i.e., one leocation for each of G(N) and G(N - ék) for
k=1,2,...,K). Since Ppc(x} ig maximized at x = M/2 while Pfcix}
is a monotonically increasing function, we have the following
theorem that is analogous to Theorem 1.
Theorem 4. (i) The expected sgspace requirement of the tree con-
volution algorithm to compute G(N} and G(N - lk} for all k is
Elspace for G(N) and G(N - £k> for all k]
< (2 + log,M). max{E[space|M/2, all k], K+1}.
(ii) There exists a positive integer K' such that for K > K'
E[space for G(N) and G(N - ;k) for all k]
= 2E[space|M/2, all k] + max{K+l, 2E[space|M/4, all k1}.

We next determine the expected time reguirement for computing

G(N) and G(N - ;k) for all kK in the same tree traversal. Suppose

that ky chains have outcomes in event EV for 1 <y < 5. The time

requirement of conveoluticons performed to compute the (1+k2+k4}
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arrays for the node is

K, k k
[k, N_+ Kk, + 1](N + 1) N+ 1) Lo+ 2y o+ 1y/2) 3

N+1 4

which results from a simple extension of (8) in [11 to include the
time requirement of the additicnal o arrays. The expected time re-

quirement is then given by the following expression

9 s 9 %
N, Pzl o+ 5z, “4F (z]x)

evaluated at z, = 7z = N+1, 7, = (N+2) (N+1}) /2 and 7y = 7o = 1, which
L

bt

o N

yields the following lemma.

Lemma 7. To compute G(N) and G(N - ;k) for all kK in the same tree

traversal, the expected time reguirement at a node of 2x centers is

E[time|2x, all k]
, ) K-1
= E[time|2x] + K[, (x)N + E () TI1+ (A-£(x)N+E5 (x)N(N+1) /2] .

The following theorem can now be stated.

irement of the tree convolution

Theorem 5. The expected time regu
algorithm to calculate G{N) and G(N - gk) for all k is

Eltime for G(N) and G(N -~ }k) for all k]

log. M .
2 M omreimel27, all k]

i=1 27

+ MI{E[time|leaf] + 4x<ppc<1) + pfc(1}>}.



Marginal distribution of queue lengths at a service center

To get the marginal distribution of gueue lengths at center

m, we need Gm_(ﬁfgm} for 0 < < N. Given that the tree of g

n
—m
arrays from computing G(N) is s

tored, the array Gm~ is obtained by
first deleting center m from the tree and then redoing the convolu-
tions along the path from center m to the root node. Note that
chains that are partially covered by center m are partially covered
at the root node (since center m has been deleted).

Consider the merger of SUBNETI-{m} and SUBNET2 to form

SUBNET-{m}. There are x-1 centers in SUBNETl-{m}, x centers in
SUBNETZ and 2x-1 centers in SUBNET-{m}. Given a chain partially
covered by {m}! or noncovered by {m} the conditional sample space E
of chain outcomes and events El’ EZ, EB’ E, and E5 defined in Table
1 are specified in the Appendix. The conditional probabilities of
these events, f;{x) for a noncovered chain and f;(x} for a partially
covered chain where 1<y<5, as well as results in the following
lemmas are derived in the Appendix.
Lemma 8. The expected time to perform a convolution corresponding
te the merger of a subnet of x-1 centers and a disjoint subnet of
% centers in the evaluation of Gmw is

Eltime|2x,m~]

(x) N (§+1) /238

where
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- ) 3 b
= = £ -+ ~ 1
I@(X} Pncil}_gxx} P? (i)fOxX) + Pfc§l>
and
- a b
{ = 1 { {l .
fB\X} *ﬁc{”)fB‘X) + Pp { }fg( )

Lemma 9. The expected space requirement of the partially covered

array of a subnet of 2x-1 centers (where center m has been deleted)

is _ .
Elspace!Zx,m~1 = [1 + N P C(Zx}}

where P
P (2x) = (1) 1£2 0+ £2(x)7 b coeP
e ! X pnci }{”1_>, o () ]+ Ppcil}{fl{x} + fg{x}j

which is maximized at 2x=M/2 or 2x=M.
The following theorem is now immediately cbvious.
Theorem 6. Given the tree of g arrays from the computation of

G(N), the expected time and work space of the tree convolution algo-

rithm to compute the array of QP for all m are:
a-
(1) E[time for G__ for all m|tree]
log. M
95 .
=M I Eftime 27 ,m~1;

(ii) E[work space for G__ for all mltree]

= E[space|M/2,m-] + max{E[space|M,m-], E[space|M/4,m-1}.
& LD | {

e

The tradeoff between time and space is as follows. Suppose
g arrays at levels 0 to j* from the computation of G(N) are not

-~ p——

saved. Then we have:

J* K
expected space reduction = 7§ g? [1 + mp {23}} : (20)
=0 24 pc
7=0
R 3
expected additional time = M3 L2 Eltime|27] (22)
3=0 i=0

i

where E[time§20§ = E[time|leaf

bresnd
)



23

Mean gqueue lengths for a fixed-rate service center

We need Gm+(§ - gk} in addition to G(N) for center m and all
partially covered chains in center m. First assume that the tree
of g arrays from the computation of G(N) is saved. To get
Gm+{§ - ik)’ the g array at the leaf node for center m is recom-

puted by performing a convolution between the original g array and

itself for the population vector N - 1 1f feedback filtering is

ok
used then the expected time for this convolution is given by (16}.
(Actually, a few extra additions are required. However the number
of multiplications is the same.) Next, convolutions along the path
from center m to the root node of the tree are redone for the popu-
lation vector N - ik’ Suppose that multiple g arrays are computed
and stored at each node in the path so that Gm+(§ - ik) for all
partially covered chains in center m are computed tegether in the
same traversal.

Consider a node in the path and the events defined in Table 1.
The conditional probabilities of these events, f?(x) for a chain
noncovered by {m} and f;(x} for a chain partially covered by {m}

where 1 <y < 5, as well as results in the following lemmas are

derived in the Appendix.

Lemma 10. The expected time to perform convolutions at a node of
2x centers in the evaluation of Gm+(E - }k) for all partially

covered chains in center m is
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Eltime]|2x,m+]

= Eltime|2x] + KP__ (1) [£5 (x) N+E, (x) JFN T

c

e}

where

Ee

F =1+ [1-f,(x)]N

f3ix)N{N+l}/2,
Lemma 11. The expected space requirement of the partially covered
arrays for a subnet of 2x centers in the evaluation of Gm+(§ - 1)

for all partially covered chains in center m is
i P4

Elspace|2x,m+]
1

S S

| 5 c C , K-
= Elspace|2x] + KPpn(lj{fz(x} + fé(x}}{l + Nppcgzx}g

which is maximized at either 2x = M/2 or 2x = M.
We then have

E[time for G_ (N - 1.) for all k|tree]

;‘u+ . *“k
lquM - ,
= Eltime|leaf] + %° Eltime|2”, m+] - E[time|M]
j=1

where E[time|leaf] is given by (16). The following theorem is
easily proved.

Theorem 7. Given the tree of g arrays from the computation of
G(N), the expected time and work space of the tree convolution algo-

rithm to calculate Gm+{§_+ Ek} for all m and all partially covered

chains in center m are:

- i 4
(1) eltime for éw‘{N - ik} for all k and mitree]
) [ s
= M Eltime for ¢_, (N - 1,) for all k|treel:
[ o B
(ii) Elwork space for Gm%<§," 1,) for all k and m|tree]

- | , . +KP , Fl: |M/4, m+1}.
= Elspace|M/2, m+] + max{l+K oe (1) [space |M/4, m+]
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The tradeoff between time and space is as follows. Suppose g

arrays in levels 0 to j* from the computation of G(N) are not

saved. Then, we have:
J* :
. _ M I, 1K

expected space reduction = 7 — [1 + NP___(27)]1; (20)
- 7 pc
=0 2

expected additional time

B ST R ) 1o
=M (I 2 Eltime|2°] - © Eltime|2-°7]) (23)
=0 i=1

where E{time{ZO} = E[time|leaf].



5. NUMERICAL RESULTS

The expected time and space regquirements of the uniform
distribution model are illustrated below with numerical results

for M = 64, K = 16 and N =

(%]

In Table 2, we show the probabilities ?pci2j), fo(zjmi), -
fg{zjml} and v. as well as the expected reguirements E{timelEjE and
.
E[space|27] at different tree levels for P = 0.05.
In Table 3, the expected time and space reguirements needed to
compute G(N) are shown for values of P from 0.03 to 0.12 where P is

a measure of the sparseness of routing chains in the network. {We
have assumed that K > K',)

In Table 4, the expected time and space reguirements to com-

pute GI(N} as well as related guantities needed for the evaluation
of network performance measures are shown for P = 0.05.

— b3

In Table 5, the sgpace-time tradeoffg in the evaluation of
network performance measureg for P = .05 are zhown.

For comparison, the time and space requirements to compute
the normalization constant G(N) of a network using the (seguential)

convolution algorithm are shown in Table 6 (see [5]). Two cases are con-

-

-

sidered: (1) the general case of a network of gueue-dependent

service centers; and (ii) the special case of a network of fixed-

ct

rate service centers. Note that the tree convolution algorithm

applies to the general case of a network of gueue-~dependent servers.
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Also, as discussed below, the time and space requirements in Tables
2-5 are actually loose upper bounds of the expected time and space

requirements of the tree convolution algorithm in its general form.
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P Eltime for G(N) ] Elspace for G(Q)}
.03 2.47E+08 1.98E+06
0.04 8.97E+09 1.96E+07
0.05 1.558+11 1.08E+08
0.06 1.50E+12 3.78E+08
0.07 9.14E+12 9.55E+08
0.08 3.908+13 1.898+09
0.09 1.25E+14 3.128+09
0.10 3.20E+14 4.53E+09
0.11 6.85E+14 5.99E+09
0.12 1.27E+15 7.40E+09

Table 3. Expected space and time reguirements for different
values of sparseness of routing chains.
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time space
; \ K K

network of MI(NA+1)Y (N+2) /2] 2 (N+1)
gqueue-dependent = 4.19E+22 = 8.59E+09
service centers

K K
network of MK (N+1) (N+1)
fixed~rate = 4.40F+12 = 4,30E+09

service centers

Takble 6.

of the

Time and space requirements
(sequential) convolu~—
tion algorithm.



6. CONCLUSIONS

We have presented an analysis of the tree convolution algorithm
for the solution of product-form gueueing networks [1]. The analvysis
is based upecn two assumptions. First, networks are generated by the
uniform distribution model. Second, a balanced binary tree with
postorder tree traversal is used for all networks. The expected
time and space requirements for the computation of normalizatior
constants and the network performance measures of chain throughputs,
mean queue lengths and marginal distributions of gueue lengths are
derived as functions of the parameters M, X, N and the sparseness
of vouting chains.

Since the same tree is used for all networks, the expected time

and space regquirements shown herein are upper bounds of the expected

time and space requirements of the tree convolution algorithm in its

general form, i.e. one that employs a tree planting procedure [1] to

B

241 the space and time computational requirements of individual

Q
0]

networks with the use of different trees (balanced or unbalanced).
It has been our experience with tree planting procedures [l, 6]
that the time and space results shown in Tables 3 and 4 are extremely
loose upper bounds.

Another reason for the bounds to be loose is that we assumed
Pmk = P for all m and k in the uniform distribution model. 2ddi-
tional space and time reductions are possible for networks with a

strong locality property (i.e. the routes of chains are clustered in



certain parts of such networks) that facilitates the tree planting
procedure's efforts to reduce the numbers of partially covered chains
at tree nodes.

Results in Table 2 indicate that the space and time of the tree
algorithm are dominated by the space and time of high-level nodes in
the tree {(nodes near the root). In practice, however, since these
nodes correspond to large subsets of service centers, very large
reductions in space and time can be obtained at these nodes. Con-
sequently, the tree is typically not as "top-heavy” as indicated by
the results of Table 2. This observation will affect the space-time
tradeoffs illustrated in Table 5; the space and time reguirements
at low levels of the tree will become more significant (as a
fraction of the total reguirements) when a tree planting procedure 1is
used than not. The above observation also has the following impli-
cations.

First, with a tree planting procedure, the ratio of work space
to tree sgspace is smallexr than that of the results in Table 4.

Second, note in Table 2 that without a tree planting procedure,
Y = 0.675. With a tree planting procedure, more chains will become
fully covered at low-level nodes of the tree. As a result, the
time and space requirements of network performance measures will
become rvelatively larger than those of G(§) shown in Table 4. In
particular, the time and space requirements of Gm~ will become

i

relatively the largest.
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APPENDIX

Proof of Lemma 1

Consider the difference A(x) = P (x+1) =~ Ppc(x) for

x = 1,2,...,M~1. Define

B M pt(1-pyMt
B. =b./( 7. ) 7
i i i 1 - (1-p
We then have
M-x M=-x~1
A(x) = 5 B, (WX y o 3 o, ( Mxl
. i i . i i
i=1 i=1
b4 ®+1
+ 2 By (Y) - T B, ( le )
i=1 i=1
M~x~1 X
_ M=-3~-1 _ X _
= L E B Uy ) o T By (T ) By - By
i=1 i=1
Case 1 1< x < [M/2]

In this case, we have the inequality x<M-x-1 and thus

M=-x~-1
M-’X'—i X 3 M—.X—l
g PalCan ) 7 e By (507

N M-x~1. _
F By FB O ) 1]

Alx) =

o1 X

i

The inequality x<M-x-1 also implies that

M-x-1, _ X M-x~1

i) (21> 0 and ( L ) 1.
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Hence, we have shown that

Alx) > 0 for 1 < x < [M/2]

Case 2 [mM/2] < x <M

In this case, we have the inequality x > M-x-1 and

Mex-1 M-x~1 X X 3
Y = - )
A (x) sil B, LOE = (%)) iEM—erl B, (;7)
X
+ BM”X{l B (M—x—l)]* Bx+1°

The inequality x>M-x-1 also implies that

X

M-x-1, (X
M-x-1

LI ;21) <0 and 1-{ )< 0.

Hence, we have shown that
A(x) < 0 for [M/2] < x < M.
The lemma is thus proved.

Corollary. As x increases from 1 to M, Pfc(x) increases

monotonically to one and Pnc{x) decreases monotonically to zero.



Proof of Lemma 8 and Lemma
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9

Consider a chain that

covered by {m}. Let i, i,

in SUBNET-{m}, SUBNET1-{m}
the chain.

i>1.

is either noncovered or partially
and iz denote the number of centers

and SUBNETZ respectively visited by

For a chain that is noncovered by {m}, we must have

Also, for a chain that is partially covered by {m}, we

must have i>1; otherwise, the chain would be fully covered by

{m?}.
case is

E =

{Oiilix”l}H{GiiziX}Q{liiEM"l}ﬂ{oii“il"i

The conditional sample space of chain outcomes in either

2§M~2x}

Let E be partitioned into the following events:

eg = {1;=030{i,=0}N{1<iM~2x];

e, = {il=0}ﬂ{lii2ix}ﬁ{i:il+i2};

e, = {iz=@}ﬂ{l£i1~¥“l}“{izil+iz}?

ey = {liy<x~1}0{1,=0}N{1<i=i ~i <M-2x};
e, = {lii‘ix}ﬂ{ilzo}ﬂ{liimil~12§M~2x};

eg = {led ax-13N{1<i <x}N{i=i +i_};

e, = {1iilix—l}ﬂ{1ii ix}ﬂ{lii—il~i2iM~2x}.

Consider a chain noncovered by {m}.

in Table 1 are given by:

E1 = 63ue4,

E2 = e5,

E3 = 86,

By = epUeyy
and

ES = eO.

The five events defined

(A2)
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Define the conditional probability

a
Yy

Fox) = Prob[Eyfchain noncovered by {m}]

for 1<y<5, which is given by

M-1 M-1-1 (x—l X M-2x

Pt (1-P) .
1 o1-a-pMt : iyer
:J-lr 2 > %

). (A3)

Il ™

i
Consider a chain partially covered by {m} which has been dele-

ted from SUBNETl. The five events defined in Table 1 are given by:

E, = ejUe,uezue,,

E, = { } (null),
E3 = esueG,
E, = 1 1,
and
Eg = e,-

Define the conditional probability

2 (x) = Prob[E_|chain partially covered by {m} which is not
Y in SUBNET1]

for 1<y<5, which is also given by (A3).

(Note that the outcomes of a chain fully covered by {m} are
always in ES.)

The probability of having k o Chains noncovered by {m} and
koc chains partially covered by {m} has the moment generating

function

. K
[Pnc(l)znc + Ppc(l)zpc + Pfc(l)] .

Given knc and kpc’ the conditional moment generating function of

p(klx) is



5 X
[ ¢ £25(x)z ] "¢
y=1 ¥ Y y=1

k
£2(x)z 1 PC,
Y Y

1 IOy

Unconditioning on knc and kpc we get the moment generating function

of p(k|x) to be
h 5 - 5
)2 fy(x)zy} + Ppc(l){ r f

p*(z|x) = {P__(1)[ T b
y=1 y=1 ¥

K
1
(x)zy} + P (1)} .

fc

(A4)

As in the proocf of Lemma 3, the expected time in Lemma 8 is obtained

by evaluating the above moment generating function at zozl,
21222=N+1 and 23=(N+2)(N+1)/2,

P*(E{x} defined in (14) can be obtained from (A4) with zpc
replacing zq and Zyr Zgg replacing z, and Zye and setting Zg egqual

to 1. The result in Lemma 9 is then readily obtained in the same

manner as that in Lemma 2.

To show that E[space|2x,m-] is maximized at 2x=M/2 or 2x=M,

it i1s sufficient to note that

(i) fi(x)+f§(x) is the same as Ppc(2x—l) in Lemma 1 but with M-1

instead of M centers:
M1~
(i1) £000+E0(x) = 1 - 3 -
i=1 1-{(1-P)

pr1-p)MITh gy
Y

1

which increases monotonically with x and is equal to one at

x = M-1.
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Proof of Lemma 10 and Lemma 11

Given a chain that is noncovered by {m}, both the conditional
sample space E and the events Ey for 0<y<5 are the same as those
given in (Al) and (A2). Hence, the conditional prcbability f;(x)
of event Ey for 0<y<5 is also the same as before.

Given a chain that is partially covered by {m}, the condition-
al sample space E is the same as (Al) but the events {Ey} are now
given by
E, = egues-

E2 = ejUeg:

By = e4uegy

4 0 2
and
Eg = { } o (null). (A5)
The conditional probability of event Ey is
f;(x) = Prob[EyIchain partially covered by {m}] 0<y<5

which can be computed using (A3).

Let k; be the number of chains partially covered by {m}, that

a

have outcomes in event EY for 1<y<5; similarly define ky for chains

noncovered by {m}. Thus, ky defined earlier is equal to k; + k;

C

for 1<y<5. Redefine k to be {k;, ky for 1<y<5} and z to be {73,

z° for liyiS}. In a manner similar to the derivation of (A4), the

moment generating function of p(k|x) is obtained to be

priz]x) = (P__(1)[ 3 ;

Y

a a c c
Fy(x)zy] +:Dpc(l)[ fy(x)zy} + Pnc(l)}

1 1

Y
(A6)

K
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Conditioning on k, the time requirement to compute the necessary

partially covered g arravs at a node of 2x centers is
k k k

¢ N 2 1 3

> WET [ (N+2) (N+1) /2]

[k + kz + 17(N+1) “(N+1)

which together with (A6) yield Lemma 10. We have made use of the

relationships

- a C —
fy(x) = Pnc(l) fy(x) + Ppc(l) fy{x) yv=1,2,3,5
and
£ = (1y 72 (x 1 Cre {
L4(X} Pnc“’ @4{x) + Ppc{i} fé(x) + Pncxl),

Similarly, conditioning on k, the space requirement of partially
covered g arrays at a node of 2x centers is

K
(1 + k5 + ky) (w+1) PC

which together with (A6) yield the expected space reguirement in
Lemma 11. 7o show that E[space]Zx, m+] is maximirzed at 2x = M/2 or

2% = M, note that fg{x) + fi(x) is monotonically increasing with x.
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