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Abstract

The application of product-form queueing networks to the

performance analysis of store-and-forward packet-switching
networks is considered. Multiple routing chains are used to
model the different routing behaviors of packets. Queueing
networks with open chains are first studied. The mean end-to-end
delay over all chains is derived, and the application of this
delay formula to optimal channel capacity assignment and optimal
routing is discussed. Analytic results for the mean and
distribution of end-to-end delay of each chain are presented.

The issue of fairness among chains is also addressed.

Queueing networks with closed chains are studied next. The
use of a closed chain to model a virtual channel with flow con-
trol window is illustrated. While analytic expressions for
performance measures such as throughput and end-to-end delay are
available, the computation of numerical results is very dif-
ficult. Two approximate methods which are computationally ef-
ficient are presented. Finally, queueing network models with
population size constraints are considered, and the application
of these models to buffer management in a switching node and

permit-oriented congestion control is discussed.

Keywords: Queueing network models, packet switching networks,
throughput, end-to-end delay, capacity assignment, routing,

flow control, buffer management, permit-oriented congestion

control, falrness.



1. Introduction

A store-and-forward packet-switching network consists of a
set of switching nodes interconnected by communication channels.
Host computers and terminals constitute sources and sinks of data
messages to be transported by the network (see fig. 1). The
basic unit of data transfer within the network is a packet*.
Each packet traverses from its source node to its destination
node through a series of communication channels along its path
(or route). Queues are formed for the communication channels in-
side the switching nodes. The progress of packets in the network
is governed by certain communication protocols. The objective
cof this paper is to review recent efforts on the application of
product-form queueing networks [1]1-[4] to model store-and-forward
packet communication networks.

A store—and-forward network can be viewed as a collection of
resources shared by data sources and sinks. There are three
types of physical resources in the network: communication chan-
nels, packet buffers, and nodal processors. 1In modeling such a
network, the nodal processors are often neglected because proces-
sor delays incurred by packets are typically substantially less
than communication channel delays.

To transport a packet from one node to another in a store-
and-forward network, the resources needed along the source-—

* When a data message to be transported is longer than the size
of a packet, it is segmented into several packets which need to
be reassembled later to form the original message. The segmenta-
tion and reassembly functions may be either performed by the
network nodes or by the data sources and sinks.



destination path are communication channels and one buffer in
each node along the path. It is obvious that the set of com-
munication channels and/or the set of nodal buffers can be preal-
located. Preallocation is a "safe" operational strategy.
However, it is extremely wasteful because data sources are
typically very bursty.

A store-and-forward protocol is a means for dynamically al-
locating network resources and thus sharing them statistically.
In a store—and-forward network, a packet can progress from one
node to the next along its route with the allocation of just a
communication channel and two buffers (one at each side of the
channel). If the packet is successfully received and accepted
in the next node, a positive acknowledgement message will be
returned to the previous node, either separately as a short
packet or piggybacked in the header of a data packet traveling
in the reverse direction. The packet buffer in the previous node
can then be freed. I1f, however, no acknowledgement has been
received at the end of of a time-out period, the packet will be
queued for retransmission,

Currently, there are two basic types of packet communication
services: datagram and virtual channel [5]. We shall consider
their differences from the modeling viewpoint only. 1In a
datagram network, each data packet (datagram) traverses the
network as an independent entity. In a virtual channel network,
data packets belong to "virtual channels"™ connecting data sources

and sinks. The admittance of packets into a virtual channel is



controlled. Also, packets in the same virtual channel are
usually characterized by the same routing behavior.

Given a set of external traffic demands, the efficient
utilization of a network's channel and buffer resources depends
on the network's routing algorithm as well as its flow and
congestion control techniques. Measures of network performance
typically include its throughput (in packets delivered per
second) and some measure of the network transit delay. These
performance measures may need to be characterized for all packets
transported by the network or for individual classes of packets
(e.g., packets between specific source-sink pairs).

Product-form queueing network models have been successfully
applied to the performance analysis of store-and-forward networks
with some or all of the above features. To do so, several sim-
plifying assumptions are necessary; they will be introduced in
section 2. Queueing network models also have a number of limita-
tions. One such limitation is that adaptive routing cannot be
modeled. Analytic results are available for situations where a
set of paths is provided between each source-destination node
pair; and these paths may be either chosen deterministically or
randomly, but not adaptively for packets.

The accuracy of queueing network models is affected by the
presence of the various communication protocols, which may impede
the progress of packets through the network but which cannot be
casily modeled (examples are segmentation and reassembly of mes-

sages, some of the data link control functions, etc.). Also,



various network measurement and control traffic are often not ac-
counted for in the models to be described below. Therefore
queueing network models results should be viewed in most cases

as a somewhat optimistic prediction of network performance.



2. Assumptions and Definitions

The key assumption necessary for the application of queueing
network models to analyze a store-and-forward network was

originally introduced by Kleinrock [6,7]:

The Independence Assumption: "Each time a packet joins a

queue in the network, its length is determined afresh from
the probability density function
b({x}) = pyexp{-ux) x > 0

where 1/u 1is the mean packet length (in number of bits).”

The above assumption removes the statistical dependence of the
packet length at the various channels of a route. Without this
assumption, the analysis of store-and forward networks is not
mathematically tractable.

In actual networks, packets usually have & maximum length.
Also, measurement results indicate that packet lengths are not
really exponentially distributed {7,8]. Therefore, analytic
results provided by queueing network models are merely approxima-
tions. However, these approximate results are generally deemed
tc be adaquate and valuable for the design and performance
characterization of store-and-forward packet-switching networks
[771.

We next define the class of gueueing networks suitable for
store-and-forward networks, {This class of network models is
only a subset of network models that have a product—-form solution

[21~-[47.) The notation used throughout this paper is alse in-



troduced.

Servers in the network model are indexed by 1 = 1,2,...,M.
Server i works at a constant rate of Ci bits per second. We
shall only consider first-come first-served (FCFS) servers (to
model communication channels) and infinite-server (IS) servers
(to model random delays). Customers (i.e., packets) belong to
different "routing chains"; these chains are indexed by k =
1,2,...,K. Specifically, the routing behavior of chain k is
modeled by a first-order Markov chain with transition

probabilities

o)

i3 = Prob[to server j | currently at server 1i]

i,9 = 1,2,...,M (2.1)

We note that a first-order Markov chain is adequate for modeling
both the case of a single route and the case of multiple routes
between a given source and destination. Retransmission and
rerouting due to random transmission errors can also be modeled
by appropriate definition of the transition probabilities [9].
Since the routing behavior of packets traveling between dif-
ferent source-destination node pairs are different, a queueing
network model must specify at least one routing chain for each
source-destination node pair. It is sometimes desirable to
specify multiple chains between each source-destination node pair
to correspond to "virtual channels" connecting several data
sources in the same source node to several data sinks in the same

destination node. For a datagram network, it is sufficient to
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define just one chain for each source-destination node pair.

It is assumed that chain k packets arrive to the source node

of the chain according to a Poisson process with rate Yy packets

per seccond, where k = 1,2,...,K. Define

A O T T I S

2 K
Y is the total external arrival rate to the network. Given Yi

and p§§>, the mean rate Xik of chain k packet arrivals to server

i in the qgqueueing network model is determined from:

M

_ (&) 2.2)
kik Ykaik + ‘z Ajkpji (2.2)
j=1
where

1 if i is source

node of chain k
o = (2.3)

0 otherwise

The arrival rate of packets from all chains to server i is

A= T A, (2.4)

The traffic intensity of chain k packets at server 1 is defined
to be
ik

- 2.5
pik uC ( /
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and the overall traffic intensity of server 1 is

0. = 1 D, (2.6)

Let the state of the queueing network be denoted by
S = (ny, Doy ey Dy
where
D3 = (Njgr Dypr oeer Nyg)

where Ny is the total number of chain k packets at server 1i.

Define

n. = nil + niZ + .. T n.g

and

n = (nl’ Noy eesy nM)

A chain is said to be open if it allows both external ar-
rivals and departures to occur freely. As a result, the number
of packets in a chain can range from 0 to ®. For a network with
open chains, the equilibrium probability of the network state S

has the following product form solution [2]:

pi(_r_li)

1 Gi

=R

P(S) =
i

(2.7)
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where
X Qiknlk
nd I —— server 1 is FCFS
* k=1 "k
pylny) = (2.8)
o,
% Pik ik server 1 1is IS
7
k=1 ik
and
1/(1—pi> server 1 is FCFS
¢ = (2.9)
exp(pi) server i is IS

The equilibrium probability of n also has a product form [2]:

M p.{(n,)
P = 1 ——- (2.10)
i=1 i
where
n, . -
Qi i sexrver 1 dis FCFS
Pi(ni) = . (2.11)
04 i
server 1 is IS
ni!

A routing chain is said to be closed if the number of
packets in the chain is fixed. Queueing networks with closed
chains and networks with chain population size constraints are

useful for modeling flow and congestion control in store-and-
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forward networks. These models will be discussed in sections 4

and 5 respectively.

Given a set of traffic demands modeled by the rates {Yk’ k
1,2,...,K}, the basic performance measures of interest are the
network throughput and mean end-to-end (or source-to-destination)
delay. Define

T = mean end-to-end delay over all packets transported by the
network
y* = network throughput in packets per second
These two measures may be adequate by themselves or it may be
necessary to characterize the performance of individual routing
chains. Define
Tk = mean end-to-end delay of chain k packets transported by
the network
Y: = throughput of chain k in packets per second
We note that sometimes mean delays are not adequate for network
design purposes and it is desirable to characterize the higher
moments or percentiles of the delay random variables. Results
on the distribution of end-to-end delay will be discussed in sec-
tion 3.5.

If the network switching nodes have adequate buffers so that
flow and congestion controls are not needed (a situation modeled
by queueing networks with open chains), the chain throughput is

the same as the chain arrival rates, i.e.,

Y = Yy k=1,2,...,K (2.12)
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Otherwise, some external arrivals are rejected due to buffer,
flow or congestion constraints and the throughput is smaller than

the corresponding arrival rates, or

Yk < Yk k=1,2,...,K (2.13)

*
The difference between Yk and Yk is the rate at which chain k ar-
rivals are rejected. Since rejected packets are retransmitted
. * . .
later, the ratio yk/yk can be interpreted as the number of trials

needed for a packet to gain admittance to the network.
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3. Open Queueing Network Models

We consider in this section the efficient utilization of
communication channels-in-a packet network wvia routing assign-
ments. Various performance criteria are addressed.

Queueing network models with open chains are employed. The
number of buffers at each node is assumed to be very large (in-
finite) so that flow and congestion controls are not needed. The
effect of packet transmission errors is also assumed to be

negligible.

3,1 A Formula for Mean Network Transit Delay

The mean end-to-end delay T for an arbitrary packet tran-
sported by the network was first derived by Kleinrock {(6,71. 1t
can be obtained as follows. By Little's formula [10], the mean
number of packets in transit within the network is equal to YT.

Let E[ni] be the mean number of packets at channel i. We have
M
i=3

Since the communication channel delays dominate most other
delays, we shall assume that the M servers are all communication
channels modeled by FCFS queues. The marginal queue length
distribution from eg.({2.11) gives rise to the following mean

queue length:

Py

1-p

Eﬁ%} = 1= 1,2,...5H {3.2)

i
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Thus
M D.
YT = ) = (3.3)
i=1 ~ "1
Since Py = )i/(uci) {see egs. (2.4} to (2.6)), we have
M A
1 i
Te z = (3.4)
Y g2y MO
which is sometimes written as
M f
1 i
T== ] — (3.5)
Y 32 GF
where fi = Xi/u {in bits per second) is called the channel i
iow [117.
: *
Recall that under our present assumption, Y = Y. Using T,

as given by eqg.(3.5), as our performance measure, we shall con-
sider next the problems of channel capacity assignment and op-
timal routing.

In practice, it may be advisable to refine the model con-
sidered above by including delays due to channel propagation
times, nodal processing times, and any control message traffic.
The reader is referred to [7] for more details. However,
eq.(3.5) is the basic formula used in the capacity assignment and

optimal routing problems.
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3,2 Capacity Assignment
Suppose we are given the traffic requirement

{Yk, k=1,2,...,K}. The network topology is fixed and routing has

been specified in the form of eq.(2.1). A meaningful question

to ask is: given a fixed budget for communication channels, how

do we select the set of channel capacities {Ci, 1i=1,2,c00.,M}?

This problem was addressed by Kleinrock [6,7] and to keep the

problem simple, he made the following assumptions:

(a) channel capacities can be selected from a continuum of
values;

(b) the cost of channel capacity is a linear function soc that the

network cost is

M

1

d.C, + a fixed cost (3.6)
i=1 * *

Let D be the available budget for channels after the fixed cost
has been accounted for. One can then pose the following op-

timization problem:

; ¥
uwa T=3 IgTr
{Ci}, i=1"i i
(3.7)
M
subject to .E diCi =50
i=1

Note that T is a convex function and the set of feasible channel

capacities 1s a convex set. Hence, a unique optimal solution
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exists. The above constrainted optimization problem can be con-
verted to an unconstraint optimization problem by the Lagrange

multiplier method which yields the following solution for optimal

capacity assignment [6,7]:

" D, \jf.d,
¢ = f. +— —_— 1 (3.8)
i i di M
LNE,d,
jal J -~
where
v
D =D~ ) £.d, >0 (3.9)
e 3=1 33

1€ Dei 0, a feasible capacity assignment does not exist to
achieve a finite T. The minimum mean delay corresponding to the

above capacity assignment is:

M -
 auran il BV
T*==—%~ { EQf,d,J (3.10)
YD, j=1 3 3
The dual of the optimization problem in eg. (3.7} can also be

formulated to minimize the network cost subject to a mean delay

constraint as follows:

M
Min ) d.C,
{c,} i=1
i
(3.11)
subject to 1 § fi =T
J Y é C.~f, 7 "max
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Again, applying the Lagrange multiplier method, the optimal

capacity assignment is

M
IJEd,
. i3 L,
® _ =1 i (3.12)
c, = £, + -
i i YT ~ d.
max i

The minimum network cost for channels is then

& M 1 f'M 2
p = J f.d, + Lz.ff_d,:i (3.13)
j:

j=1 N YT

The optimal capacity assignment given by eq.(3.8) or (3.12)
provides a network designer with some initial guidance for
selecting channel capacities. 1In reality, channel capacities are
limited to a discrete set of capacity values that are available
from common-carriers. Also, as a result of economy of scale, the
cost function di(ci) of a channel with capacity Ci should be a
concave function in Ci instead of a linear function assumed
above. To incorporate the above considerations into the capacity
assignment problem, one must then resort to numerical solution
techniques [11]. Finally, we also note that most communication
links available from the common-carriers are full-duplex with the
same capacity for each of the channels in opposite directions.
The usual assumption that enables us to apply the above optimal
capacity assignment result is to consider a symmetric network
traffic pattern. If, however, the network traffic pattern is
highly asymmetric, then one must again resort to a numerical

solution technique to account for this additional constraint.
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3.3 Optimal Routing
In the capacity assignment problem above, the routing was

assumed to be pre-specified. Suppose the channel capacities have

already been selected, we now consider the problem of assigning
routes to satisfy a set of traffic requirements {Yk, k=1,2,...,K}
so that some performance criterion is optimized. This is known
as the optimal routing problem.

Operationally, optimal routing is difficult to achieve. Due
to the geographical distribution of network nodes, fresh informa-
tion on the global status of a network is generally not
available. In the ARPANET, for example, each node exchanges
status information with its neighbours periodically. Con-
siderable time delays, however, are needed for such information
to propagate throughout the network [1271.

With most performance objectives, optimal routing can be
formulated as a shortest path problem with an appropriate
distance metric for the communication channels within a path. 1In
the ARPANET, the distance metric is simply the {estimated) mean
delay of a communication channelk. Each packet, regardless of
its origin, is routed to an outgoing channel along the path with
the shortest (estimated) mean delay to the packet's destination
node. Note that this particular routing strategy minimizes the
(estimated) mean delay of each individual packet. It has been
shown that such an individual optimization does not necessarily

* The mean delay includes both the expected waiting time and
packet transmission time. 1In practice, a fixed bias term is also
included to reduce looping behavior.
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lead to a globally optimized situation; specifically, the mean
transit delay T for all packets transported by the network is not
optimized. In order to optimize T, the following result was ob—
tained [11,13].

Given the traffic requirements {yk} and a specific routing

assignment {pfg)}, the channel arrival rates {Ai} can be deter-

17
mined using eq.(2.4). Recall that the flow in channel i is

fi = Ai/p in bits per second. Denote the set of channel flows

by the flow vector
£ = (fl’ f2' oo fM)
A flow vector f is said to be feasible if

0 < £, <Cy for 1 = 1,2,...,M

and if it is the result of a routing assignment which satisfies
the traffic regquirements.

Necessary and sufficient conditions for f£ (hence, indirectly
for the routing assignment) to minimize T are obtained as fol-
lows. Let T(f) be the mean hetwork delay corresponding to the
feasible flow vector f. Let v be another flow vector. Given £,
a feasible flow vector f' near f can be represented as a convex

combination of f and v, i.e.,

£' = (-e)f + ev

= £ + e (v-£) 0=e<l (3.14)

Note that the flow vector v can be chosen without satisfying v,
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< Ci for any i. In this case, a sufficiently small € should be

used for f' to be feasible. Suppose € << 1 so that the change

in the flow vector (in the v direction) is small-and is given by:

Af = e(v-£) (3.15)

The resulting change in the mean network delay is

zéz aT(L)
AT(f) = (v.-f )e
i=1 afi i i
(3.16)
M
= g Z Li(vi~fi)
i=1
where
3T(L)
Li = af, (3.17)
i

Eg.(3.17) above requires that the function T(f) be differen-
tiable. 1If, moreover, the function T(f) is also convex, then we
know that a unigue minimum exists among the set of feasible flow

vectors {which is a convex set [11,131). Thus, a necessary and

sufficient condition for a feasible flow vector f to be optimal

is

AT(f) = C for any v (3.18)
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or
§
S Y- a £3,19)
iil hl\Vi Li) - Y A 7
or
M , M
min ] Loyv, 2z [ Ljf (3.20)
v i=1 i=1

If the condition in eg.(3.20) is not satisfied then f (and
the corresponding routing assignment) is not optimal. Moreover,
eg.(3.16) indicates that if a "small" amount of source-
destination traffic is to be rerouted (or if some new traffic is
to be added to the network) then that traffic should follow a
shortest path from its source node to its destination node using
{Li} as the distance metric to minimize its impact on the mean

network delay. Recall that with the open queueing network model,

from eg.(3.5),

1 i

T(E) == | 7o (3.21)
Y 42y 678

Hence
aT(f) c

— 1 i

L, = = = (3.22)

i afi Y (C.-f )2

Given the traffic requirements {Yk}, the optimal flow vector

f {(and hence, route assignments) can be determined by a downhill
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search technique using any feasible flow vector as a starting
point. The reader 1is referred to [11,13] for details.

Finally, we comment that in practice; instead of doing
capacity assignment and optimal routing as separate problems, it
is desirable to do both optimizations together. The resulting
problem is much more difficult than each of the above, and one
must resort to heuristic search techniques for optimal solutions.
The reader should consult the excellent thesis of Gerla [{11] for

this and other network design problems.

3.4 Mean End-to-End Delay for each Routing Chain

Our discussion so far has been based on the mean end-to-end
delay over all packets transported by the network. The key
result, as given by eqg.{(3.5), provides a gross characterization
of network delay. It is useful in the formulation of variocus op-
timization problems for network design. For various reasons, one
might be interested in a more detailed characterization of
network delay than the mean over all packets. For example, users
sending packets from node A to node B will be interested in the
end-to-end delay from A to B.

In sections 3.4 to 3.6, we shall consider only networks
which employ path-oriented routing. This is alsoc known as source
routing. As the name suggests, when multiple paths exist between
a given source~destination node pair, the source node selects the
complete path for each packet to follow in order to reach the
destination. A notable example of path-oriented routing is the

explicit path routing technique of Jueneman and Kerr [14]
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proposed for IBM's System Network Architecture [15]. The
ARPANET, on the other hand, is a notable exception where routing
decisions are made by intermediate store—and-forward nodes.
Path-oriented routing has the advantages that (a) routing deci-
sions are decentralized, (b) packets are guaranteed to arrive in
FCFS order along each path, (¢} loops can be avoided, and (d) the
impact of bad decisions made by a source node is limited. A
simple example of path-oriented routing is fixed routing where
there is a unique path for each source-destination node pair.
Another example is "random routing"™ where one or more paths are
set up for each source-destination node pair and the path of each
packet is selected independently’according to a probability
distribution. For a virtual channel network with many virtual
channels between each source-destination node pair, fixed or ran-
dom routing can also be used for each virtual channel.

For path-oriented routing, each path can conveniently be
modeled by a routing chain. In this section, we consider the
mean end-to—-end delay of each routing chain in the network. The
results can then be used to obtain the mean end-to-end delay for
any given source-destination node pair (or any virtual channel)
which employs multiple paths. It is also possible to get the
probability density function of end-to-end delay for a class of
routing algorithms. These results will be presented in Section
3.5,

Let ﬂk be the path (or ordered set of channels) over which

chain k packets are routed. The transition probabilities of
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chain k take on values of 0 and 1 only, i.e.,

1 if 1 and j are successive
(%) pd
P;j) = channels in K (3.23)
o otherwise

With this definition for pgg), it is easy to verify that the

13
solution to eq.({(2.2) is
Yk if 1€ﬂk
Ak T (3.24)
it otherwise

Since each channel in the network model is a FCFS server and
all routing chains are assumed to be open, the equilibrium state

probability has the following product form [2] (see eqg.(2.7)):

M K piknik
B(S) = 1 (Lpi)niz I —— {3.25)
i=1 k=1 ik’
where pik and pi are given by egs.(2.5) and (2.6} respec-

tively. From eq.(3.25), we get the following expression for the
marginal queue length distribution at channel 1i:
n,,
.4 Qik ik

P(n.) = (1-p)n ! T :
-3 i 1 k=1 nik,

(3.2h)

The mean number of chain k packets at channel i can then be
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obtained from:

E{nik} = Z 3 % P(Ei) (3.27)

where

Rj = {B‘i: nikz‘]} {3.28)

Substituting eg.(3.26) into eq.(3.27) and after some simplifica-

tions, we get:

E[nik] ='i:—: (3.29)

Applying Little's formula [10], the mean delay of chain k

packets at channel 1 is

1

T = Eln, My W e
ik’ 'k uci(l~pi)

ik {3.30)

Tt is of interest to note that the mean delay at channel i is
determined by the total utilization of channel i, and is the same
for all chains that are routed through this channel. Finally,

the mean end-to-end delay of chain k is:

1
7= ] (3.31)
k 1ém_ HC; (1-p.)

As a remark, the mean end-to-end delay over all packets can be
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obtained from:

"

.
L (3.32)

N Yk

i1

k=1

and it can be verified that egs.(3.4) and (3.32) are identical.

We now illustrate how the result in eg.(3.31) can be used to
obtain the mean end-to-end delay for each source-destination node
pair. For convenience, we refer to packets sent from source node
s to destination node d as (s,d) packets. Let Ys,4a be the mean

arrival rate of (s,d) packets and AS g be the set of routing
¥

chains for these packets. Also let aéké be the probability that
4

s,d) packet is sent along the path corresponding to chain k.

-

<

(
o K) is zero if chain k £ AS ai and for the case of fixed
7 14

[F) RN
3,

th

routing, there is only one chain in each A_ 4 and the o (K for
7

s,d

this chain is one. From the above definitions, it is easy to see

that the mean arrival rate of chain k is glven by:

} ()
Yk Ys,d OLs,d (3-33)

and the mean end-to—end delay of (s,d) packets is:

a(k) T

T = é o.d Tk (3.34)

k As,d

Similar results can also be obtained for a virtual channel
network where fixed or random routing is used for each virtual

channel.
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3.5 Distribution of End-to-End Delay

In this section, we consider the distribution of end-to-end
delay given path-oriented routing. -This. is.a detailed charac-
terization of end-to-end delay and the results are useful for
calculating statistics such as variance and 90-percentile.

Our discussion is based on the work reported in [16,17].
Let tk(x) be the probability density function (pdf) of chain k

*
end-to—end delay and Tk{g) be its Laplace transform, i.e.,

() = SO exp(-Ex)t, (x)dx (3.35)

Let Nk(z) be the generating function of the number of chain k
packets in the network. As a result of the product form solu-

tion, Nk(z) can be written as:

Nk(z) = ‘H Ni {(z) (3.36)
1€ﬁk

k

where N., (z) 1s the generating function of the number of chain

k packets at channel i. Nik(z) is by definition, given by:

o

N, = [ ] @) (3.37)
j=0 n. €R,
—i 3

where Rj is given by eqg.(3.28). Substituting eg.(3.26) into

eqg.(3.37), and after some simplifications, we get

1I-p,
i

Nik(Z) = (3.38)
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It then follows from egs.(3.36) and (3.38) that

l-pi
l-oi+oik(l—2)

Ro{zy =T
k
iéﬂk

Since the arrival process of chain k packets is Poisson and
the number of chain k packets in the network changes by unit

steps, we also have [18,19]:

N (z) = Dy (2) (3.40)

where Dk(z) is the generating function of the number of chain k
packets left behind in the network by a chaln k departure.
Consider an arbitrary "tagged"™ chain k packet. Let its end-
to-end delay be t, (Laplace transform of pdf is T;(g)). With
path-oriented routing and FCFS discipline at each channel, the
number of chain k packets left behind when the tagged packet
departs is equal to a, ., the number of chain k arrivals during ty -
Dk(z) is then the generating function of ay - For chain k ar-

rivals following a Polsson process, Dk(z) is given by [18]
—n * - 3
DR(Z) = Tk(Yk Ykz> (3 @ 41}

provided that t, and a, are independent. Substituting & for

Yk—Ykz, eg.(3.41) is reduced to:

Ti(i) = Dk(l-E/Yk} (3.42)
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Finally, using egs.(3.39) and (3.40) in eq.(3.42), we get

* K, (-p,) (3.43
Ty (&)= .43)
k iem &+uc,; (-p,)

Let §ﬂki be the number of channels in My = Eg. (3.43) in-

dicates that the end-to-end delay of chain k is given by the sum
of lwkl independent random variables; the i-th random variable
is exponentially distributed with mean l/[uCi(l—pi}], This

ocbservation allows us to write the following expression for the

variance of chain k end-to-end delay [16]:

-7 L (3.44)

, "2
1€ﬂk {uCi(l 01)3

%
To obtain statistics such as the 90~-percentile of end-to—-end
delay, one must first obtain tk(x) by inverting T;(i). This can
easily be done by the technique of partial fraction expansion
[1i871.

I+ should be noted that eqg.(3.41) (and therefore eq.(3.43))
is true only when t, and a, are independent. 1In a packet-
switching network, these two random variables are not independent
in general, as illustrated by the example shown in fig. 2
[17,457. Suppose a "tagged" chain 1 packet arrives at channel
i at time 0. In the time interval (O,tl), if ay is large, then
most packets leaving channel 1 (after the tagged packet) are from

chain 1 and the tagged packet is expected to find a small number

of chain 2 packets when it arrives at channel j. On the other
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hand, if a; is small, then most packets leaving channel is are
from chain 2 and the tagged packet is expected to find a large

number of chain 2 packets at channel j. The delay experienced

by the tagged packet at channel j is therefore affected by ajy.

Consequently, tl and a, are not independent. A similar argument
also applies to tz and 8y

“From the above discussion, we observe that £, is dependent
on a, whenever *'it is possible for packets (belonging to other
chains) arriving after a tagged chain k packet at one channel to
overtake this tagged packet at another channel. This dependency
would not be present if the paths in the network are such that

no such overtaking is possible. We can therefore give the fol-

lowing sufficient condition for €y and a, to be independent [17]:

Non-passing condition: "For each pair of channels i, 3 in

T, Packets arriving after any tagged chain k packets at

channel i never overtake this tagged packet at channel j."

The Laplace transform of chain k end-to-end delay is given by
eq.(3.43) if the above condition is satisfied.

Despite the fact that £ and a, are not independent in
general, eq.(3.43) is very useful in practice for characterizing
in detail the end-to-end delays of routing chains. For a given
network model, it is likely that the non-passing condition is
satisfied for a large fraction of routing chains. The result is
then applicable to each of these chains. For those chains where

the non-passing condition is not satisfied, simulation experi-
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ments have shown that eq.(3.43) gives accurate approximations to
the variance as well as 90-percentiles of end-to-end delay 171 .
Furthermore; in some networks, the network topology and path as-—
signments are such that the overtaking phenomenon shown in fig. 2
is not possible. Consequently, eqg.(3.43) is applicable to all
chains in the network. Obvious examples of such networks are
tree networks and ring networks. Another example is the class

of networks where the routing algorithm does not use any path
with more than three channels. One such network is the example
shown in fig. 1 under shortest path routing.

As a final remark, one can also obtain results for the pdf
of end-to-end delay for a given source-destination node pair (or
a given virtual channel). Following the developments which lead
to Ts,d in eg.(3.34), the pdf of (s,d) end-to-end delay can be

obtained by inverting

uc, (1-p.)

* (k) i i

T () = ) a I = (3.45)

5,d kea . 509 gep Gy

s,d k
and the corresponding variance is
2 _ (k) 1
5,d *Me e, (1-p,) ] :

where T, and T are given by egs.(3.31) and (3.34) respec-
k s,d

tively.
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3.6 Fairness Among Chains
The results for end-to-end delay presented in Sections 3.4

and.- 3.5 .are. .based.on.a. FCES discipline at each. channel. ..One can

easily observe from the result in eq.(3.31) that the mean end-to-
end delay of chain k is affected by the number of channels in L
and the utilization of these channels. It is therefore unlikely
for the Tk‘s to bear some desired relationship with respect to
each other (e.g., Tk is the same for all k, or Tk is propocrtional
to the number of channels in M) A natural question to ask 1is
whether a network with FCFS discipline at each channel is falr

or not.

One approach to study the fairness of a network is to relate
the mean end-to—-end delay with network tariffs [20]. Some
networks, e.g., Datapac [21], have an uneven tariff structure.
For these networks, one can argue that subscribers who are paying
more due to their physical locations should not be penalized with
a longer end-to-end delay. A reasonable strategy is then to make
Tk the same for all k. In other networks, e.g., Telenet [227,

a fixed tariff is applied regardless of location. A reasoconable

strategy is to have Ty proportional to the number of channels in

T

It is easy to observe that FCFS may not be flexible enough
to implement either strategy mentioned above. OCne needs a
parameterized queueing discipline which enables the chain delays

to be adjustable by changing the parameter values. An example

of such a discipline is Kleinrock's time-dependent priority
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discipline [7]. Under this discipline, a chain k packet has

priority level zero when it enters a node, and this priority

level increases with rate Bk while waiting for service. The
product form solution for open queueing network models does not
apply when such a discipline is used. However, approximate
analysis may be employed, and in [20], an approximate expression
is obtained for Tk’ the mean end-to-end delay of chain k. This
expression is in terms of the Ris.

Suppose it is desirable to have T, the same for all k, the
following fariness measure is used in [20] to determine the op-
timal setting of the Bk's.

F = % z%‘(Tk—T)z (3.47)
k=1
The optimal Bk‘s are obtained by minimizing F with the con-
straints that Bk > 0 for all k. The solution to this optimiza-

tion problem for some example networks can be found in [20].
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4. Queueing Network Models with Closed Chains
Most packet networks nowadays provide virtual channels

between data sources and sinks. The virtual channels are end~to-

end flow controlled. Examples of end-to-end flow controls are
SNA pacing [23], RFNM in the ARPANET [24], and various window
mechanisms [25,26]. An important function of end-to-end flow
control protocols is the synchronization of the data source input
rate to the data sink acceptance rate. All of them work by
limiting the number of packets that a virtual channel can have

in transit within the network. Hence, they alsoc provide, to some
extent, a congestion control capability for the network as a
whole. However, when the number of virtual channels supported

by the network is very large, a separate congestion control
mechanism for the network is often necessary.

In this section, we shall consider the case that each flow-
controlled virtual channel 1s modeled by a closed chain. The
chain population size corresponds to the "window size" of the
virtual channel. The effect of virtual channel window sizes on
the throughput—-delay characteristics of the network can be
studied.

We shall continue to make the assumption that the number of
buffers at each switching node is very large (infinite). But
with flow control windows, new packet arrivals may sometimes be
rejected because the window of a virtual channel is full. These
packets are assumed to be lost. Thus the throughput Y; of a vir-

tual channel (modeled by routing chain k) is less than its exter-—
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nal arrival rate Yyi the latter is often referred to as the of-
fered load of the virtual channel. ©WNote that in reality, packets

that are rejected are not really lost as assumed by the model

herein. These packets are merely delayed and stored external to
the packet network and resubmitted later. The ratio YK/Y;
measures the mean number of trials for a packet to gain admit-
tance into the network.

Alternatively, the following interpretation of lost arrivals
is also appropriate. Whenever the window of a virtual channel
is full, the data source is notified and prevented from sub-
mitting any packet to the network; the arrival rate of packets
to the virtual channel is thus zero. When the virtual channel
window is open again, the data source is notified, and packets
will then arrive at rate’Yk. With either interpretation, the
above model assumptions enable us to focus our attention upon the
network behavior only and ignore the behavior of queues external

to the network.

4.1 The Product-Form Solution of Closed Queueing Networks
A closed chain has a fixed number of circulating customers.
However, it is sometimes physically meaningful to think of a
closed chain as an o?en chain with the following two mechanisms
in place at all times [1,4]:
(a) a loss mechanism whereby an external arrival is rejected and
lost foreover;
(b} a trigger mechanism whereby a departure from the network

triggers an instantaneous injection of a new customer into
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the same chain as the departed customer (from an infinite

source of customers).

For a closed chain (say k), its packet arrival rate to
server i in the queueing network can only be determined to within
a multiplicative constant (called the scaling factor of the
chain) from

M
= (k) .
Ay = _Z Ajkpji i=1,2, ..., M (4.1)
C3=1
This is due to the fact that the matrix of transition
probabilities of chain k is a stochastic matrix.
Consider a network consisting of closed chains only. Let N

k

be the population size of chain k and define:

Nzy s o @ 7 NK)

The equilibirum network state probability has the following
product form [2]:
1 M
P(S) = Ezﬁj“ﬁ pi(Ei) (4.2}
-~ i=1
where pi(ni) is given by eq.(2.8) and G(N) is the normalization

constant and is by definition

M
¢ = J T p,

(n.) (4.3)
s€y i=1 * *
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where

We mentioned earlier that the Aik*s can only be determined to
within a multiplicative constant. This multiplicative constant
is absorbed into G(N) and will be taken care of in the normaliza-
tion process.

Similar to eg.(2.10), we also have:

1 M

P(n) = Ezgj'igl p, (n) (4.4)

where P; (n;) is given by eqg.(2.11).

Note that the normalization constant G(N) is the sum of an
extremely large number of product terms when K is large and also
when the chain population sizes {Nk} are large. There are two
difficult problems in the evaluation of G(N). First, depending
on the scaling factors selected in the determination of {Xik} in
eq.(4.1), G(N) may become very large (causing a floating point
overflow) or very small (causing a floating point underflow).
This problem has recently been successfully solved by the
discovery of a simple dynamic scaling technique [27]. The second
problem is the extremely large computational time and space re-
guirements to evaluate G(N) even for moderate values of K and
{Nk}. For example, if the convolution algorithm is used [3,2871,

an array of G values indexed from 0 to N 1s necessary; and the



40

storage requirement for the array alone is proportional to the

product N1N2...NK. The time requirement of the convolution al-

gorithm is also very large with an operation count of

O(MKN1N2°..NK).

Below we first illustrate how one can model a virtual chan-
nel by a closed chain, and then discuss two approximate ap-
proaches that avoid the large space-time computational require-
ments when the number of virtual channels is large. The first
approach is to focus upon a single closed chain and replace all
other closed chains by an equivalent open chain [29]. The second
is a heuristic solution technique [30] that is a natural exten-

sion of the mean value analysis (MVA) algorithm of Reiser and

Lavenberg [31].

4.2 Modeling a Virtual Channel with a Closed Chain

Fig. 3 depicts a model of a single virtual channel between a
packet source and a packet sink. The flow control window of the
virtual channel is modeled by a closed chain with a fixed number
of customers equal to the window size W. An IS server is in-
serted and joins the packet sink to the packet source to "close"
the chain. It models a random delay corresponding to the time
for an acknowledgement to be returned from sink to source. The
service time at the source (or sink) represents the time delay
to generate (or absorb) a data packet. Note that the source
queue is empty when the number of unacknowledged packets is W.

This models the behavior that the source is not authorized to
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generate its next data packet until an acknowledgement is
received. Note also that the source server is an exponential

server. This accurately models the assumption that new packets

are generated from a Poisson source.

We shall not consider the explicit modeling of the acknow—
ledgement (ACK) traffic for two reasons. First, most of the
time, ACK messages are piggybacked on regular data packets;
stand-alone ACK packets are typically very short and transmitted
with priority. Thus the impact of ACK traffic on the delay
performance of data traffic is minimal. {In [30], Reiser sug-
gested that ACK traffic may be accounted for by reducing the ef-
fective channel capacities by an amount equal to the throughput
of ACK packets.) Secondly, from a modeling viewpoint, the
distinction of ACK packets as a separate class of packets with
a smaller mean packet length than the data packets and possibly
priority queueing service cannot be accommodated by product-from
gqueueing networks. With the above considerations, the model il-
lustrated above is deemed to be an adegquate representation of a

virtual channel that is also simple to use.

4.3 Analysis of a Single Virtual Channel

As mentioned in section 4.1, one approach to avoid the large
computational requirements of closed networks is to approximate
a number of closed chains by an equivalent cpen chain. We thus
have a queueing network model where some routing chains are open

while the others are closed. This is referred to as a mixed



42

network model [2]. In this section, we first present analytic
results for mixed networks and then illustrate how these results

can be applied to a model which focuses on a single virtual chan-

nel.
The equilibrium state probability of a mixed network also
has the product form solution [2], i.e.,
M

I p.(n) (4.5)
j= 1%

p(S) = —é—

The normalization constant G is now obtained by summing over the

open and closed chains. G can be written as [3]1:

o .C
G=6 G () (4.6)
Let pz = Z pik and pg = P 1= 1,2,000,M,
all open all closed
chain k chain k

G° is given by:

M o)
¢®= 1 G, (4.7)
i=1
where
1/(1—9;) server 1 is FCFS
O-—.
Gi = . (4.8)
o
eXp(Qi) server 1 is IS

GC(§) is the normalization constant of a network mcdel with
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closed chains only and with the following modification to the

traffic intensities of closed chains:

Qik/(l—og) server i is FCFS
pik = (4.9)

pik server 1 is IS

We now apply the results to the single virtual chain model
shown in fig. 4. This model is based on the abstraction of all
other network traffic into a single open chain, an approach used
by Pennotti and Schwartz [29]. There are two routing chains:
chain 1 is closed and models the virtual channel, and chain 2 is
the open chain mentioned above. For simplicity, the time for the
sink to absorb a data packet and the acknowledgement delay are
both assumed to be zero (these details can be included without
much difficulty). The service time at the source server is as-
sumed to be exponentially distributed with mean 1/y1. As
discussed in section 4.2, this assumption models the behavior
that new packets are generated from a Poisson source. Without
loss of generality, packets belonging to the open chain ({(chain
2} are assumed to depart from the network after receiving service
from one channel.

For chain 1, a solution to eqg.(4.1l) is Ail =1 for all i.
The equilibrium state probability is then given by:

n,
2 pik ik

P(S) = n,!

i (4.10)

n——
k=1 ik’

G
B R

i=1
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where
! l/Yl i=1
Qil = { (4.11)
ll(uCi) i>1
and
0 i=1
Pip = {(4.12)
Aizl(uci) i>1

Applying eg.(4.6) and recognizing that ny, =0 {(chain 2 packets

never visit the source server), G is given by:

G = [ T (i-p, >} c® (W) (4.13)
. i2
i=2

where G® (W) is the normalization constant for a closed network

o in 1 ., .. . 't _ .
with chain only and with traffic intensity 911 pil/Clpiz)

From the equilibrium state probability, the marginal queue

length distribution of chain 1 can be shown to be given by

[3,297:
M p. il
P(n,) = GS(W) T {*&] (4.14)
t 1=1 L1P5)

This is identical to a network model with a single closed chain
and with the service rate of channel 1 reduced to Uci(l_piz)'

Finally, the throughput seen by the virtual channel is given by:

*
Yy, = Prob[source server is busy] HCy
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%
Using Buzen's result [28], Y, can be conveniently expressed as:

E _GS(W-1)
1 GC(W)

(4.15)

The mean number of chain 1 packets at channel 1 can be ob-

tained from:

Eln ] = Y n ,P(n,) (4.16)
n, €V
-1
where
%
V =3 T o ., == W
1 4=1 il

The mean number of chain 2 (cpen chalin) packets at channel i has
the following simple form [297:

A

i2
[ S -+ .

Eln, ;] = oo by D (4.17)
i 412

Note that eq.(4.17) can be interpreted as the mean gqueue length

with chain 2 only multiplied by 1 + E[nil]’ a factor due to the

presence of chain 1 packets.

4,4 A Heuristic Solution Technique based upon the MVA Algorithm
The time and space complexity of the MVA algorithm [31] is
on the same order as the convolution algorithm. However, it has

an intultively appealing extension to an efficient heuristic
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solution technique that is shown to be asymptotically valid as
the chain population sizes become infinite [31].

Let Q(ky be the set of servers visited by chain -k and C{(i)
be the set of chains that visit server i. Alsc define the fol-

lowing notation for a closed queueing network with population

vector N.

Tik(§) -- mean delay of a chain k packet at server i
qik(§) ~— mean number of chain k packets at server i
y;(§) -—- throughput of chain k in packets per second (this

throughput is measured either at the source node or the

sink node)

We first introduce the MVA algorithm which is based upon the

following recursive equation:

T., [1+ Z q. (¥-1)1] server i is FCFS
ik |
c€C(i)
- 4.18
T ke 6] ( )

Tik gserver 1 1is IS

where Tk is the mean service time of server i. It is equal to
l/uCi for any k if server 1 is a communication channel (FCFS
server). 1, is a K-element vector with the k-th component equal
tc one and all others egqual to zero. qic(N~£k) is zero if Nk in
N is zero.

Using Little's formula first for chain k, and then for chain

k at server i, the following are also derived for the MVA
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%* Nk
Yk(ﬁ) = Z T.. () (4.19)
ik
i€Q(k)
and
%
qik(;j_) = Yk(E)Tik(;N—') (4"20)

Starting with qik(g} for 1 =

1,2,...;M and k = 1,2,...,K, Tik(ﬁ),

y;(g) and qik(ﬁ) can be solved recursively using egs.(4.18) to

(4.20) .
A heuristic technique was proposed
the above set of equations iteratively.

the difference

eic(k—)A qic(E) - qic(ﬁflk)

f(i,c,k,N)

with some function f.

ten as:

T, {1+ Z [q. e, (k=)1}
k c€C(1) ic Tic
Tix =
Tik
* Nk
Yk -

by Reiser [30] to solve

Suppose we can calculate

Then the MVA equations above can be writ-

server i is FCFS
(4.22)

server 1 1s IS

(4.23)
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and

*
9k = T Tik (4.24)

where the argument N has been omitted from Tik’ YZ, and S
Egs.(4.21) to (4.24) form a set of nonlinear simultaneous
equations. A simple method for solving them is by a successive
substitution technique starting with an initial set of mean gqueue
lengths {qik} and iterate sequentially through the four equations

until convergence is observed.

The space requirement is now substantially less since we
%
only need to keep a single set of values for Tik’ Yir 94, and

g. (k=). The time requifement is also significantly reduced with

ic
the following heuristic method for evaluating €io(k=), 1 =
1,2/00e,M, ¢ =1,2,...,K, in eq.(4.21) [30].

{a) Assuming that the chain with one less packet is affected the

most, use the estimate
Eic(kﬁ) = 0 for any ¢ # k (4.25)

{b) €5 (k=) is estimated by a single chain network with suitably
redefined parameters as follows. The mean service time for

all FCFS servers in the single chain network is

(4.26)
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where {YZ} is the set of chain throughputs at the current
iteration step. Eqg.(4.26) suggests that a chain k packet

sees only a fraction of the channel capacity and it is con=

sistent with the interference effect of the open chain traf-
fic on closed chains at a FCFS queue considered in the last

section. Let qi(Nk) denote the mean queue size of server i

in the single-chain network. The following estimate is used
in conjunction with those in eq.(4.25) for the heuristic

procedure
sik(k—) =q, N - q; (N -1) (4.27)

The complexity per iteration step in the heuristic soltuion
is of the order KM(N1+N2+...+NK) which is affordable even for
large population sizes provided that convergence is achievable
within a small number of iterations. It was observed empirically
by Reiser [30] that the above iterative procedure converges
rapidly from any initial values for {qik} and {Yz}. The only re-

quirements to be satisfied by the initial condition are

q,, = all k (4.28)
1€Q(K) ik Nk

and

v
o)

3
U all i,k (4.29)



It was also argued that the iterative procedure is asymp-
totically valid as population sizes becomes infinite. This

heuristic technigques has also been generalized to gueueling

network models that do not have the product-form solution [30].

50
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5. Queueing Network Models with Population Size Constraints

In this section, we shall consider the modeling of conges-

tion control and buffer management strategies in packet networks.
To do so, we need results for the class of queueing networks with

population size constraints.

5.1 The Model
Routing chains in queueing network models considered prior
to now are either open or closed. Recall our discussion in sec-
tion 4.1 that a closed chain can be viewed as an open chain with
the loss and trigger mechanisms in place at all times. Suppose
the loss and trigger mechanisms are invoked or revoked as a func-
tion of the network's population vector N = (N,, N

1 »2, e 3 8 g K)o

Such gqueueing networks are said to have population size con-

N

straints. Given the loss and trigger mechanisms as functions of
N, let V be the set of feasible network population vectors. A
sufficient condition for the equilibrium network state
probability P(S) to have a product-from solution is {47]:
"For any chain k and population vector N and N + ik in V, the
loss mechanism is invoked for a chain k external arrival in
any network state with population vector N if and only if the

trigger mechanism is invoked for a chain k external departure

in any network state with population vector N + 1k.“

This is equivalent to the condition that feasible transitions
between population vectors in V are paired.

By permitting V to be a singleton set as well as an infinite
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set, both networks of closed chains and networks of open chains

are included here as special cases. It is shown in [27] that the

improper equilibrium probability of N is equal to the normaliza-
tion consfant G(N) of an equivalent closed network with popula-
tion vector N and chain arrival rates to individual servers given
by eq.{(4.1) for cldsed chains and eq.(2.2) for chains that permit
external arrivals. For constant external chain arrival rates,

a queueing network model with population size constraints has the
product form solution given by eqg.(4.2) with the following ex-

pression for the normalization constant:

¢= )] G (5.1)
Nev

In the next three sections, we analyse strategies for buffer
management and congestion control using queueing network models

1

with population size constraints.

5.2 Finite-Buffer Single Node Model

When a packet is in transit in a packet switching network,
it occupies buffer space in the intermediate store—and-forward
nodes. When nodes with finite buffers are considered, the al-
location of buffers to the various chains will affect the node's
performance {(and hence, the network®s performance).

To model a packet switching network with finite buffer
space, one must consider the situation when a packet routed to

a node finds no available buffer in that node. The usual
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protocol is to require the sending node to keep the packet until

an acknowledgement is returned from the receiving node. If the

acknowledgement is not received within a time-out interval, the
packet is retransmitted. Buffer space in the sending node is
therefore occupied by this packet until the acknowledgement is
received.

Exact analytic results for a network model with finite
buffers at each node is not presently available. Models for a
single switching node, however, have been successfully analyzed
[32]-136]. 1In this section, the general buffer allocation schene
of Kamoun and Kleinrock [33] is discussed. Thelir model does not
include any form of acknowledgement. When a packet is trans-
mitted on an outgoing channel, the buffer space it occupies 1is
assumed to be released immediately. A single node model with
acknowledgement and time-out [9,35] will be discussed in section
5.4. An approximation technique to analyze a network model with
finite buffers will also be described in that section.

The single node model analysed by Kamoun and Kleinrock [33]
is shown in fig. 5. It is a queueing network model with M
servers, one for each outgoing channel. There are M routing
chains: packets routed to the same outgoing channel are in the
same chain. The arrival process of chain 1 packets to the node
is assumed to be Polisson with rate Ai' i=1,2,...,M. The
population size constraints for the various routing chains are
determined by the buffer management scheme used.

Packets from the various chains are sharing a total of B
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puffers. Depending on the buffer allocation scheme, an arriving
packet may be rejected from entering the node. This packet is

assumed -to-be—lost—and-will-never return. In . a network with

finite buffers, rejected packets are not really lost, but are
retransmitted later; hence, the arrival process to each node 1is
not likely to be Poisson. The Poisson arrival assumption men-
tioned above is therefore only an approximation.

The general scheme for sharing buffers [33] can be specified
by the following rules:
{a) the number of buffers dedicated to chain i is bi (bi > 0.
(b) the maximum number of buffers that chain i packets can occupy

is Bi (Bi < B).

M M
We must have b, < B; for all i, izlbiSB ; and ileizB .

It is often desirable to use an over—commitment strategy such

M )
that ZB.>B .
i
i=1

Let a state of the single node model be
m = (ml,mz,...,mM)

*
where m s is the number of chain i packets in the node .
The general buffer alocation scheme can be modeled by a

queueing network model with population size constraints. The set

*# In a gueuelng network model, n., is the number of chain k
packets at channel i, Since the single node model has the simple
behavior that chain i packets only visit channel i, n, = 0 for

k # 1. n.; is therefore the only non-zero element in the vector
n;. We use m; instead of (O,,..,nii,...O) for convenience.
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of feasible states can be written as:

M M
Y. = m: m,SB., all i and Z max(O.ml-bl) = B~ z b (5.2)
0 i=1 i=1

Applying the product form solution, the equilibrium state

probability is given by:

I p. i (5.3)

(23]

P(m) =

where 0. = Xi/(UCi) and

M
c= ) T 0.,% (5.4)
méV i=1 °©
Some special cases of the general scheme have been ex-
plicitly studied by Kamoun and Kleinrock [33]. They are:
M
(a) Complete partitioning (bj > 0 and z bi==B )y —-- the B
' i=1
buffers are partitioned into M groups, the i-th group (with
size b;) is allocated to chain i. There is no sharing of

buffers among chains. Hence, Bi is equal to bi’

M
and we also have 2 BE. =B .
i=1 T

{b) Complete sharing (bi = 0 and B; = B} ——- The B buffers are
completely shared by the M chains. Buffers are allocated on

a FCFS basis.

(c}) Sharing with maximum allocation (bi = 0 and B, < B) -~ the
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B buffers are shared by all chains with the restriction that
the number of buffers occupied by chain i cannot exceed Bi’

(d) Sharing with minimum allocations (bi > -f--and Bi =B chain

i packets are guaranteed at least bi buffers, and the
M

remaining B = Z bi buffers are shared by all chains.
i=1

We now illustrate how one can obtain analytic expressions
for performance measures such as blocking probability, throughput
and mean delay. Let Vi C V be the set of states in which a
chain i arrival is rejected. For the general buffer allocation
scheme, V; is given by: |

M

M
¥V, = {m:m, =B, or (m=b, and Z max{0,m.~b. ) = B- Z b.) {(5.5)
- iTi =1 i 3 j=

Let PBi be the blocking probability of chain i packets.

PB, = } P(m) (5.6)

meV,
-1

The throughput of chain 1 packets is then given by:
¥ = A, (1-PB.) 7
Ti T AT -7

To get the mean delay experienced by chain i packets, we

must first get the mean number of chain i packets in the node.
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This can be obtained from:

-5 ) \ (5.8)
E {mi } z miP (?2_1 X 7
méV

Little's formula [10] is then used to get the following expres-

sion for the mean delay of chain i:

* -
T, = E[mi]/Yi (5.9)

1t should be noted that the mean delay in eg.({5.9) is for packets
which are accepted into the node. It does not include those that
are rejected.

Egs. (5.6) to (5.9) are expressed in terms of a summation
over a set of network states. Very often, they can be simplified
and expressed in terms of the normalization constant G. The
reader is referred to reference [33] for more details. Numerical
examples showing the relative merits of the four special cases
are also provided in [33]. The general conclusion is that the
best scheme and the best setting of parameters (b, and Bi) depend

1

upon the values of the pi's,

5.3 Permit-Oriented Congestion Control
A packet switching network can be viewed as a set of
resources shared by a population of users. Examples of such

resources are channels and buffers. If the resources are not

managed properly, an increased demand from a single user or a
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group of users may cause degradation in network performance.

This degradation is usually in the form of reduced throughput
37538} ~When-this-happens;-the network is-said to-be-in-a state
of congestion. The objective of congestion control is then to
prevent the network from going into the congestion state.
Congestion control schemes usually involve some form of restric-
tion on the amount of network resources allocated toc each exter-
nal user. The window flow control mechanism discussed in section
4,1 is an example of congestion control because it places a limit
on the number of packets belonging to a virtual channel in the
network. However, if the number of virtual channels is large,
the combined load can become excessive, and some additional
congestion control may be required.

A basic congestion control technique is to apply control at
the point of entry to the network. An example of such a tech-
nique is the isarithmic control scheme suggested by Davies [39].
This scheme places a limit on the total number of packets in the
network, no discrimination is made on the basis of routing
chains. It can be implemented by circulating a number of “"per-
mits"™ in the network, and requiring a packet to secure a permit
before it can be admitted into the network. Another example is
end-to-end window control which places a limit on the number of
packets belonging to each source-destination node pair.

We observe that there are similarities between permit-
oriented congestion control in a network and the buffer alloca-

tion problem in a switching node. The permits are analogous to
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the buffers shared by the routing chains. Hence, the general
scheme (based upon the concepts of maximum and minimum alloca-
tions) -discussed—-in-section-5+2-can-be-extended to -permit~-
oriented congestion control for the whole network. 1In this sec-
tion, we present the work reported in [40] which consider the
case of maximum permit allocation only.

The routing chains in the network are assume to form dis-
joint groups, and the number of permits used by each group cannot
exceed some pre-specified maximum. The notion of group allows
us the flexibility of imposing control on selected sets of
routing chains. The resulting congestion control scheme is es-
sentially a two-level isarithmic control [40]. At level 1, a
1imit is placed on the total number of packets in the network;
and at level 2, separate limits are placed on each group. Let
L be the total number of permits, D be the number of groups, and
Lu be the limit for group u, u = 1,2,...,D. The general scheme
can be implemented by two types of permits. Type 1 consists of
L permits corresponding to level 1 control. Type 2 permits are
distinguishable by group number, and the number of permits for
group u is LU. A packet must acquire both type of permits before
it can be admitted into the network.

Tt should be noted that the two types of permits are not al-
ways necessary. For example, the complete sharing scheme (i.e.,
Lu = L for all u) is the same as Davies isarithmic control [39],
and it can be implemented by the L type 1 permits only. Also,

in the complete partitioning scheme (i.e., L1+L2+,B,+LD = L),
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type 1 permits are not required.

The implementation of permit-oriented congestion control is

~

substantially more complicated than schemes for-buffer-alloca=
tion. A packet acquires one or more permits when it enters the
network and releases its permit{(s) when it reaches its destina-
tion node. The distribution of free permits is an important
implementation issue. One would like to minimize the probability
that when a permit is needed at a particular node, all the free
permits are somewhere else in the network. Davies [39] suggested
that each node may keep up to a maximum number of free permits,
and extra permits are sent to randomly-selected neighbors.

We now illustrate how one can use a queueing network model
with population size constraints to study permit-oriented conges-
tion control. For reasons of mathematical tractability, we as-
sume that the buffer space at each node is unlimited. We also
assume‘that there is no delay in circulating the permits through
the network, and the permits are allocated to packets from out-
side the network on a FCFS basis. 1In reality, a packet'’s entry
to the network may be delavyed because the free permits may be in
other parts of the network. The last assumption therefore
results in optimistic estimates of network performance.

Recall that the state of the network model is given by S =
(nysny,...,ny) where n; = (n;q,N55,.-.,N5¢); N 1s the number
of chain k packets at channel 1. The K routing chains are par-
titioned into D groups, and a packet is said to belong to group

u {denoted by Fu) if its routing chain is in group u. For a
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state S of the network, let §S¥u be the number of group u packets
and |S| be the total number of packets in the network. A group

u packet arriving from outside the network is assumed to be lost
if 18] = L or !Siu = Lu. With this assumption, the set of

feasible states is given by:

? % % )

v= {8: n,, <L and n, =L, allu (5.10)
. &, ik = ik u

i=1 k=1 i=1 kGTu

and the equilibrium state probability is:

L X X pi;Ek
p(8) = & I nii i o 1 (5.11)
i=1 k=1 "4k’
where
M K piknik
G= ) I ot T = (5.12)
SEV i=1 k=1 ik’

To obtain expressions for network throughput of each group,

it is convenient to define a less detailed state description

S' = (11,12,...,_Y_M)

where

s
f=te

(MyyrMigreeesMyp)

where L is the number of group u packets at channel 1i.
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The set of feasible states is now:

3
0.
£ 1R

5 M D
94 ] 1. v T <
v L i

<.1
i

o]
o
e

T
b &

St i
? L iu

i=1 u=1 i=1 ** ¢ )

By adding all state probabilities P(S) such that Z n, =m for

iu
. _ k€T
i=1,2,....Mand u = 1,2,...,D, we get [407]: u
, M D cbiumiu
P(s’ =G I mt! I — (5.14)
N i PR
_ i=1 u=1 iu
) ]
where m, = m ¢ G, = o.. » and
Tops 1o U e i
i
M D ¢iumiu
¢'= } T m! T f (5.15)
m :

STev! i=1 T y=1 iu

To obtain results for network throughput of each group, we
follow the developments which lead to eqg.{5.7) in section 5.2.

The blocking probability of group u packets is:

PB_ = ] B(sYH) (5.16)
¥ ¢
STEV!
where
o fe b o en]
vi= 8"t ) m, =1L or m, =L (5.17)
¢ i=1 u=1 Y 4=1 1u U§
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The throughput of group u is then given by:

Y, = ) Y, (1~PB ) (5.18)

One problem with the analytic results in permit-oriented
*
congestion control is that the amount of computation to get Ya

grows with MDLlL Ly. When D is large, numerical results are

2.0.
very difficult to obtain. One alternative is to use Reiser's
heuristics [30] to obtain approximate results (see Section 4.4).
The applicability of Reiser's technique is limited to the special

case of the complete partitioning scheme only [41]. End-to-end

congestion control is an example of such a scheme.

5.4 Finite~-Buffer Network Model

The peak throughput of a network is attained when all its
communication channels are transmitting packets (assuming that
the mean packet length and the mean path lengths of packets are
constant). The network throughput over a period of time may be
less than the peak value because of (i) the lack of input traf-
fic, or (ii) the constraints that force communication channels
to be "nonproductive" part of the time. In sections 5.2 and 5.3
above, we addressed the throughput degradation behavior arising
from interference between different streams of traffic. 1In this
section, we consider the throughput degradaion in network
throughput due to insufficient buffers at switching nodes.

The objective of the queueing networks to be introduced is
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to determine nodal buffer requirements to maintain a high level

of network throughput. The performance of the "input buffer

lTimit" strategy is also studied:.

To get around the difficulty of modeling blocking in a
queueing network, the following approximate solution technique
was proposed in [9]. The overall problem (network of switching
nodes) is first decomposed into a set of analytically tractable
problems, i.e., a queueing network model for each switching node.
The single-node results are then "interfaced" by requiring that
the various packet flows within the network are conserved.

The queueing network model of a switching node shown in
fig. 6 was proposed by Lam and Schweitzer [9,35]1. It was also
employed later by Lam and Reliser [36]. FCFS servers are used to
model the nodal processor, the communication channels and the
sink for packets destined for this node. IS servers are used to
model acknowledgement delays and time-out delays.

Two types of packets are distinguished*: transit packets
forwarded by adjacent nodes and new input packets generated

locally. They are represented by two routing chains with exter-

nal arrival rates Yy and Yo respectively. Suppose the node has
NT buffers. Transit packets are rejected only when all buffers

are occupied. However, when there are NI input packets in the

ncde, any newly arrived input packet is rejected. We have NI <

NT' The ratio NI/NT is said to be the input buffer limit.

* Only two types of packets are considered to reduce the com-
putational requirements of the model.



65

For each routing chain, routing transition probabilities

from the nodal processor to one of the communication channels or

the sink are determined by the routing assignment of the network.
The routing transition probability from a communication channel
to either the ACK or time-out IS server depends upon the rejec-
tion probability PBj for transit packets of the adjacent node
(say node j). It a packet is accepted by the adjacent node, it
joins the ACK server and subsequently leaves the current node.

If a packet is rejected by the adjacent node, no ACK will be
returned; conceptually, the packet joins the time-out server and
subsequently rejoins the channel gqueue. Note that such retrans-
missions need to be accounted for in determining the arrival rate
Yo of transit packets offered to each switching node.

Suppose the set of nodal blocking probabilities {PBj} for
transit packets is known for each communication channel in fig. 6
(for simplicity, we shall assume no random transmission errors
without loss of generality). Then the node can be modeled by a
product form queueing network with two routing chains and the

population size constraints

0 <N, + N N

1 2 < Np

and

0 <Ny <Ny

Let Ph(N;,N,) be the equilibrium probability of having N, input

packets and N2 transit packets in node m. The equilibrium
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blocking probability for transit packets at this node is

d
X
|
§ gt
)
P
2
2
i
Z
-4
J1
e
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~

Since the set {Pm(Nl,N2)} also depends on {PBj}, we have a set
of non-linear equations which can be solved numerically for
{PBj}.

A numerical solution technique based on the Newton-Raphson
method was developed [9] for the special case of NI = NT at each
node (i.e., no input buffer limit contreol). It was found that
the model is accurate when switching nodes have adequate buffers
(for given external input rates) so that {PBj} takes on small
values. The model is thus useful for predicting buffer require-
ments to achieve small nodal blocking probabilities.

The above model was also employed in [36]1 to study the
design of input buffer limits that can effectively prevent
throughput degradation due to insufficient buffers when the
network is under a heavy external load. Both the analytic
results in [36] and a subsequent simulation study [42] showed
that input buffer limits can be designed to provide a very effec-
tive congestion control mechanism for temporary network over-
loads. For a detalled treatment of input buffer limits as a
congestion control mechanism, see [36,42]. A slightly different
input buffer limit strategy was later considered by Saad and

Schwartz [43] and independently by Kamoun, et.al. [44].
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6. Concluding Remarks

In this paper, we have discussed in detail the application
of product-form queueing networks to the performance analysis of
store~and-forward packet-switching networks. The topics con-
sidered include optimal capacity assignment, optimal routing,
distribution of end-to-end delay, fairness among routing chains,
virtual channel with window f£low control, buffer management in
a switching node, and permit-oriented congestion control. Other
survey papers on related subjects are alsoc available in the
literature., Examples of such papers are the modeling of computer
communication networks [46]1, topological design of store-and-

forward networks [47], and a comparative survey of flow control

[487.
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