ON THE CORRECT SCHEDULING
OF TRANSACTION SYSTEMS
FOR HIGHLY PARALLEL DATA BASE MACHINES

Ravindran Krishnamurthy
Umeshwar Dayal

Department of Computer Sciences,
The University of Texas at Austin.

TR~170 Feb., 1981

ABSTRACT

This paper proposes a two-step technique for producing correct
and highly parallel schedules for MIMD database machines. A
parallel program schema model for transaction systems is presented.
The concept of correct (i.e., serializable) executions existing in
concurrency control theory for the sequential model is extended to
this pafallel model. The model is used to derive minimally
constrained schemas for optimal scheduling. This constitutes the
first step of the two-step technique. In the second step, the

transactions are partially interpreted to enhance parallelism.

Table of Contents

1. INTRODUCTION

2. MODEL OF A TRANSACTION SYSTEM

2.1 Computation sequences and their properties
2.2 Semantic equivalence

2.3 Syntactic equivalence

2.4 Relationship between syntactic and semantic equivalence
3. MODEL OF EXECUTION

3.1 Execution and correctness criterion

3.2 Schema for a transaction system.

4. TRANSACTION MODIFICATION

4.1 Environment

4,2 Transformation of an operation pair in series
4.3 Generalized transformation

4.4 Algorithm for transformation

4.5 Implementation considerations

5. CONCLUSION

I. Appendix: PROOFS

1. INTRODUCTION

Parallel (i.e. multiple instruction-stream, multiple data—streah) data
base machines such as DIRECT, have been proposed with the objective of
enhancing proéessor utilization and achieving high transaction throughput
[DeW78]. Improving processor utilization requires the efficient scheduling of
transactions (for parallel execution) on available processors. But a parallel
execution of transactions requiring access to shared data, can lead to race
conditions and inconsistent states of the data base, unless some
synchronization (concurrency control) mechanism is used[EGLT76]. This
underscores the importance of both scheduling and synchronization to achieve
correct (i.e. serializable) and maximally parallel executions.

The DIRECT machine uses locking in the front-end as its synéhronization
mechanism. However, this seems unduly restrictive and may even be prohibitive
for very high throughput machines. No other synchronization mechanisms for
parallel data base machines have been proposed in the literature. On the other
hand, there is a wealth of concurrency control theory that has been developed
for centralized aﬁd distributed data base systems, assuming a sequential model
of execution [BSW79, Papa79,BSR80]. In this paper, we extend this theory to a
parallel model of execution and use it to derive the minimal precedence
constraints for scheduling. Although this paper dévelops a theoretical model
of concurrency control for parallel processing environments in general, we
believe that it can be directly applied to any MIMD machine such as DIRECT.

Assume that any data base system can be modélled as shown ig figure 1-1.
Users submit transactions (each consisting of several steps) to the system. A

set of these transactions, called a transaction system, 1is input to the

scheduler, which examines the transactions for potential conflicts and imposes

| | | |
transactions|] T | | result

-====>| scheduler|-—===—=== >1DB machine |==--=>
from users | | | |

! | | !

Fig. 1-1: Model of a data base management system.

a partial ordering on the transaction steps. The scheduler outputs a
precedence graph (called a schema) corresponding to this partial ordering, for
execution on the data base machine. The transaction system ié then executed
by the .machiné using some low-level processor allocation policy. We are
concerged here with the problem of representing a transaction system using
minimal precedence <constraints so that any execution satisfying these
constraints is correct. An execution is correct if and only if it is

serializable, i.e. equivalent to some serial execution. In the existing

concurrency control theory for the sequential model of execution, both in
centralized and distributed systems, a transaction is modelled as a sequence
of operations. The execution of a transaction system in the centralized case
is also modelled as a sequence of operations, perhaps with steps of different
transactions interleaved in it. This sequence is called a history. A given
history is serializable if and only if it is computationally equivalent to a
serial history, which defines a ﬁotal ordering on the transactions in the
system [BSW79, Papa79]. In the distributed case, an execution is modelled as
a set of histories, one for each site. Since there is no global clo;k in the
system, no ordering can be imposed on the operations executing at different
sites. Consequently, distributed systems use protocols to cnsure
serializability ([BSRB0]. A distributed execution is serializable if and only
j

if the history at each site is serializable and the ’equivalent serial

histories at all sites impose the same total ordering of transactions.
1

A sequential ordering of transaction steps does not exploit the full power
of a parallel machine. Gouda [Gou80] has extended this sequential model of a
transaction and a transaction system to a directed acyclic graph (DAG). The

edges of the DAG impose precedence constraints on conflicting pairs of
Q

transaction steps. In the first part of this paper, we formalise this model
using parallel program schemata theory [Kell73] and extend the notion of
serializablity to this model. We then derive a minimal set of precedence

constraints for a transaction system to satisfy this correctness criterion.

Most proposed concurrency control mechanisms use uninterpreted
transactions, i.e. they use only syntactic information such as the read and
write sets of the operations in the transaction steps. It has been shown in
[KP79] that greater concurrency éan be achieved if semantic information is
utilized in addition to purely syntactic information. In the second part of
this paper we show how to exploit semantic information to modify transaction
steps and thus increase parallelism even further.

Thus, this paper proposes a two-step technique for producing correct and
highly parallel schedules: first, construct a schema with minimal precedence
constraints; then, modify it using semantic information to increase
parallelism.

Section 2 presents a parallel program schema model of a transaction and
defines the notion of syntactic and semantic equivalence of schemata. A model
of execution and a correctness criterion are presented in section 3, together
with a method for syntactically constructing a correct execution schedule with
minimum precedence constraints. Section 4 extendsAthe theory to incorporate

semantics.

2. MODEL OF A TRANSACTION SYSTEM

In this section we adopt the general model of parallel program schemata
developed in [Kell73] to data base transaction systems. The database is
viewed éS a shared memory M, and a local memory M; for each user i. Each
memory is viewed to be a countably infinite set of cells, and M is defined to
be the union of all the memories. Transactions and transaction systems are
modelled as schemata, defined over a set of operations. Each transaction step
is an operation (henceforth, we use these two terms synonymously). Associated
with each operation s4 are: |

l. a unique symbol ter; called thé terminator of s;; and

2. t;o finite sets Dsi ¢ M, the domain of s; and R(Sy) ¢ M, the range
(o} Sio

Intuitively, each operation reads thé elements of its domain, performs some
computation on them, and writes into the elements of its range. The terminator
is an atomic event (i.e., indivisible and mutually exclusive) and represents
the atomic commitment of the operation. We distinguish between read-only and
other read-write operations. A read-only operation, Sy{=ry, reads from the main
memory into the corresponding cells of the local memory, whereas a réad-Qrite
operation, S; = wy, writes into the shared memory. A computation operction,
sj=f;, calculates a new value from a set of valqes in the local memory.
Informally, we shall use R(ceri) and D(ter;) are defined to mean R(s;) and

D(sj) respecively. In addition for any C ¢ S define,

Q(C) = {ter; | s; € C}, and informally Q = Q(S),
Q = {x | x is"a permutation of Q}.

The domain and range of an operation provide purely syntactic information.

To express the semantics of the operation (i.e. the actual computation

performed by it), an interpretation is required. An interpretation for an
[+]

operation set defines a universe and an initial assignment of values to the
memory cells, and for each operation Sij» a set of functions which map D(si)
into R(sy).

As wé are interested intitially in developing a model based purely on
syntactic information, a schema is defined independent of any specific

interpretation. In section 4 we extend this concept to incorporate partially

interpreted operations.

Definition 2-1: Let S be a set of operations. A parallel program schema , (or
simply schema) over S is a directed acyclic graph G=(S,E), where the edges in
E represent precedence constraints on the operations in S.

The schema specifies those operations which may be executed concurrently.
An operation can be enabled for execution only after all its predecessors in G
have terminated. Tﬁe statement ‘G is a schema over S ‘ will be abbreviated G
€ SCH(S).
2.1 Computation sequences and their properties

Based on the control information specified by a schema G € SCH(S), we
identify two important properties of G, viz. equivalence and determinacy. To
do this, we must characterise the set of allowable coﬁputation Sequepces,of a
given schema G.

A computation sequences (or comp) for G, is a string z € Q such that z is a

topological sort sequence of the ‘partial order defined by the schema
G. Intuitively, a comp for a schema G is a sequence of terminations
representing a permissible order of committing the effects of the operations.
The set of computation sequences for G is denoted- COMP(G).

In general, we can characterise the properties of a schema G € SCH(S) basecd

on the properties of the set of comps allowed by G. Given an equivalence

relation E on Q, G € SCH(S) is called E-determinate if

Yx,y € COMP(G) [x =y (E)]

that is, if COMP(G) is contained in a single E-equivalence class.
Intuitively, if we define an equivalence relation E = ‘produces the same
result under a given interpretation’, then E-determinacy ensure; that all
comps produce the same result under a given interpretation of the operations

in the schema.

Given an equivalence relation E on Q and two schemata GI’GZ € SCH(S), Gl

and G, are said to be E-equivalent, (written Gy = Gy), iff,

v 3 =y @) s
el R18 coleBeSS o) 50y, 6 COMP(G,)}

where E(x) denotes the equivalence class of x. It is to be noted here that if

the schemata G, and G, are determinate, then each has only one equivalence

class. Therefore, equivalence of the two schemata implies that their COMPs
represent the same equivalence classes. Intuitively, both the schemata
represent sets of computations that are equivalent under E.

These properties of a schema have been defined for any arbitrary
equivalence relation. Two particular equivalence relations are of interest.

These two relations, Eg and Ey, which represent syntactic and semantic

equivalence, are defined below.

2.2 Semantic equivalence

Intuitively, we expect two schemata Gy and Gy to be equivalent if for any
interpretation, they behave identicaily; i.e., given any comp x, of one schema
there is a comp y, of the other schema such that for every cell m in M, x and
y assign the same value to m. Since this must be true for all interpretations,
we can use the notion of an Herbrand interpretation [Mann74]. This is defined

formally as follows.

/

Definition 2-2: Given G € SCH(S), and a string x .€ COEP(G) define the

t
Herbrand interpretation, (denoted Hm (x)), for them cell where m € M, as
follows:
1) H (A) =2 (wvhere X is the null string)
m
2) ¥, 6 COMP(0), ¥oex, and vteriGQ,

Hm(y) if m ¢ R(si) <G (y teri)>

- ey h h 1,6 D(s.) and
H"K%tgﬁ)._ ,Fim(Hll (v), le), HlIR(si)l(Y)) where eac i 54

j>k == 1 ,>1

3 x if mGR(si) <G(y teri)>

Undefined otherwise
Where (G(a)) is true iff there exists a b € COMP(G) such that a is a prefix of b.

Intuitively, H (x) 1s an encoding of the final value of the m*® cell after
the termination of the comp x under the Herbrand interpretaion. Given G €

SCH(S), two comps x,y 8 COMP(G) are related by the equivalence relation Ey 1ff

Yoeu [Hp(x) = Hp(y)) iff x = y (Ey)
- So, two comps are related by EH iff they assign the same value to every
cell for all interpretations. Ey formalizes our intuitive underétanding of the
semantic equivalence'of two comps. It 18 to be noted here that an occurrence
of an ‘undefined’ 1s by definition not equal to another occurrence of an
‘undefined’. Thus, two schemata Gl and Gz are equivalent {ff Glfpz (EH) The
relation Ey correctly captures our intuitive notion of semantic equivalence,

but is very difficult to detect from the definition.

2.3 Syntactic equivalence

In this subsection, we define a syntactic - equivalence relation for
schemata. Since this equivalence is defined in terms of the graph properties
of schemata, it can be algorithmically checked. Syntactic equivalence is based
on a ‘reads-from’ relation and a property of - liveness that we define for
computation sequences. These concepts were defined for histories in the models

)

of [BSW79,Papa79]. We adapt them to our model below. Given x = X Xgeeosoon, €

COMP(G), we define an augmented comp as Xa=XQX]eeeoXXny), where D(xn+1)o=

R(xg) = Mg, R(xp4p) = D(xg) = P. Let Q = Q U {x0sxp41)} be the augmented

terminators. For m6M, define the relation reads E_from (denoted RFQ), as:

RFX = {0g%001), (x05%g) | %; € Q)
(O) 1 [@6DGx) NRGxy)) A\ (145) /\ ¥; e [€R G113

- m
Define REX = UpevRFyx-

Intuitively,(xi,xj) € RFY} means xj reads the value in cell m written by x

i.
Given an augmented comp of x € COMP(G), Xa=XQX]XeeoeXnXpy], Xi€x, is said
to be live in x iff it satisfies the following

1. Xh+] 1s live in x; and

2. if for some live operation Xy, (xj’xi)eRFx then X is also live in
Xe

Intuitively, an operation is live in a computation if its effect is evident
after the computation is completed. An operation Xy € x is said to be dead in

x iff it is not live in x.

Using the above properties, we define a syntactic equivalence relation Eg
as follows. Given G € SCH(S) and X,y € Q, x :'y(Eg) iff x and y have the same

live operations and the same reads-from relations for the live operations.

2.4 Relationship between syntactic and semantic equivalence

Euivalence of two comps under Eg requires that every live operagion fead
the same set of values for all cells in-its domain in both the computation
sequences. From the definition of liveness, we know that the effect of only
the live operations are evident in the shared memory after the computation.

This observation 1leads to the following relationship between the two

equivalence relations Eg and Ey.

Lemma 2-1: Given x,y € Q x=y (Eg) iff x =y (EH).
This has been shown by Papadimitriou et al. [PBR77] for histories. Since
comps may be thought of as possible execution histories, this result carries

over to our model, and leads to the following corollaries. °

Corr 2-1.1: G € SCH(S) G is Eg-determinate iff G is Ey-determinate.

Corr 2-1.2: Given two schemata, G;,Gy € SCH(S)
Gl :.Gz (Eg) iff Gl :.Gz (EH).

From now on when we talk of equivalence of comps or schemata, we mean both
Eg and Ey equivalence (since each implies the other).
3. MODEL OF EXECUTION

In the last section we characterized the properties of a schema. We now
define some properties of an execution; in particular, we extend the concept
of a correct (i.e. serializable) execution from the sequential model to our
model of parallel execution. We present a sytactic procedure for deriving a
schema with the property that every possible execution allowed by it is

correct.

3.1 Execution and correctness criterion

Definition 3-1: An execution graph X = (Vx,Ex) of a transaction system T is a
directed acyclic graph, defined by:

Vx = {tij l i=1,2¢oo,n, j=1,2,ooo,ki}

Ex = {(ti5,t9) | FIN(tj 5) < SRT(ty;) }

where FIN(T, .)

] finishing time of tij»
SRT(tkl)

starting time of ty1e

Intuitively, the execution graph depicts the order in which the transaction
steps of T were executed. (Note that since some transaction steps were
executed in parallel, this is a partial order.) To characterize the properties
of X, we first define the set of computation sequences of the execution graph
as follows. Given an execution graph X, its set of computation scquences,
denoted COMPUT(X), is defined to be the set of Eopological sort gequences of
X. Intuitively, COMPUT(X) is the set of sequential executions which are
computationally equivalentb to the parallel execution X. Informally, we can

refer to x as aschema and view its edges as precedence constraintsg

1

x

10 S

Consequently, we can extend the properties of schema to executions. Note that

any execution X permitted Ez_g_séhema G satisfies the precedence constraints

in G. So, G must be a subgraph of X. Therefore, all properties attributable to

a schema X, also hold for any schema that permits the execution X.

Definition 3-2: Given a transaction system T, and a permutation p of

{1,2,..en}, (wlere p is viewed as a function), a serial execution

corresponding to p, (denoted SX,), is an execution in which all transiction

steps of T are executed before any transaction step of T k) is executced
(]k) p(k)

iff p(j) <'p

Thus, a serial execution imposes a total ordering on the transactions, and

its graph is a chain.

Proposition 3-1: COMPUT(SXP) has exactly one element.

Informally, we shall denote this computation sequence also by SX With

p.
the above definition of serial execution, we are ready to define the

correctness criterion of serializability.

Definition 3-3: Given a computation sequence x 6 COMPUT(X), we say that x is
serializable iff there exists a permutation p such that x SX . An execution
is serializable iff every element of COMPUT(X) is seriallzable?

Proposition 3-2: X is serializable iff X = SXp for some permutation p.

Thus, a parallel execﬁtion is correct iff all of its computation sequences
are equivalent to some serial execution. Note that in this parallel. model of
execution, serializability ensures that if there are m transaction steps
executing in parallel, then every one of the m! possible sequences of

committment of these transaction steps is serializable.

3.2 Schema for a transaction system.
We give below a syntactic procedure to obtain a schema with the property
that every resulting execution is serializable. The following definitions are

adapted from [BSW79,Papa79] to our model.

Definition 3-4: Given an augmented comp for an x € COMP(G), define the
interferes relation (denoted I,) as:

U {?x

"1 GeyxJORE /\ Bugul (D) VRGG)D) /A Figq [m6R 0)11) o
) 1 AxgS 6 re " 3,0, (D0) ROk) T ENQECTERIY

11

Intuitively, I, guarantees that if x4 reads a value in cell m from X4 and

X, writes into cell m then X, should either precede x; or follow Xge Using the

interferes and reads-from relations, the serialization graph of a comp is

defined as follows.

Definition 3-5: Given G(V,E) € SCH(S), and x € COMP(G), we define a
serialization graph of x (abbreviated SR-graph of x), Gx=(VX’Ex) from a comp
x6COMP(G) as follows

Vi =V, Ex = RF, |j L,.

The edges of the SR-graph of x represent all the reads-from relations and

the interferes relations for x. So if we use Gx as the schema then any comp

yECOMP(G,) must reflect this ordering. This is stated in the following lemmas

(the proofs of which are given in the Appendix).

Lemma 3-1: Given x € COMP(G), y € COMP(G,), if x has no dead operations,
then y has no dead operations.

.

y
Lemma 3-3: Given G € SCH(S), x 6 COMP(G), such that there is no dead

operation in x then x =y (Eg) for all yECOMP (G,).

Lemma 3-2: Given x 6 COMP(G), y € COMP(G,), it follows that RF, = RF

This follows directly from Lemmas 3-1 and 3-2.

So Lemma 3-3 shows that if we can choose a computation sequence x based on
some correctness criterion and derive Gx’ then every comp yGCOMP(GX) is also

equivalent to x. The following corollary is an obvious extension.

Corr 3-3.1: Gx is Eg—determinate.

Given a serial execution SXp, we derive a SR-graph after deleting all the

dead transaction steps in SX_ . For convenience, we denote this G

P (instead

p’

of Ggy , the notation used earlier). We would like to use Gp as the schema.
P

For this, we show that any execution permitted by it is serializable.

Theorem 3-1: Given a SR-schema G, of a serial execution SXp, every execution
permited by Gp is serializable.

Proof: From lemma 3-3 it follows directly that every computation sequence in
COMP(G_) is serializable.

We know that every edge (i.e. precedence constraint) in G_ is also an edge in
any execution X resulting from Gp. Therefore every topological sort sequence

[~

12

’

of X must also be a topological sort sequence of Gp. So, COMPUT(X) E.COMP(CP)

Therefore we can conclude that every topological sort sequence of COMPUT(X) is
serializable to SXp. [QED]

Thus we have proved that Gp is a schema which represents the transaction

system T, and provides sufficient information to result in a correct

execution. From now on we refer to Gp as the SR-schema. To show that this
schema - imposes a minimal set of precedence constraints on the transaction

steps in T, we prove the following theorem.

Theorem 3-2: Given a SR-schema G , let G min Pe the schema with fewest edges
such that (G)F = (Gpmin)+' (where G¥ is the irreflexive transitive closure of
G). Then min ha@s the necessary and sufficient precedence constraints
required for any schema to be equivalent to schema sxp.

Proof: Sufficiency follows directly from Theorem 3-1.

Necessity is proved as follows. First, observe that G min 1S unique for a
given G,, as G, is a directed acyclic graph. Now suppose we remove an edge
e=(xi,x) from % min®

Case 1: If e is a reads-from edge, then G min 18 not equivalent to G_ (=SX_)

under the equivalence relation Eg; thus it 'is not equivalent under rel::tion Ey
too.

Case 2: If e is an interferes edge, then (without loss of generality) l=t x5

read a value in cell m from X, and x; write into cell m. If e is removed,
then there is a computation sequence y "in which x. follows XK, and precedes
Xj« So in y, xj reads cell m from x; instead S6f from Xge Thus y is not
equivalent to SX_, which implies that Gp is not serializable.

This proves that G o represents the necessary and sufficient .set of
precedence constraints ¥%r any schema to be equivalent to SX_, [QED]

But it is clear that this minimality is for a particular choice of serial
execution SXp, i.e. for a particular permutation p. But the;; aré n!
SR-schemata to choose from as there are that many serial permutations p. If we
want to choose an optimal schema from the n! possible schemata, then
minimising the number of edges may not necessarily be a good measure. In
[KD81] we present five metrics for optimization, which have been culled from
the literature. We show that one of these jnetrics is useless for this

problem, and, for the remaining four, the optimization problems are

intractable (i.e. NP-hard). Hence, it seems likely that finding an optimal

13

schema, using only syntactic information, is intractable. But Kung and
Papadimitriou [KP79] have shown that semantic information can be used to

achieve greater parallelism. We explore this idea in the next section.

4. TRANSACTION MODIFICATION

It was observed that the scheduling problem using syntactic information
alone ‘(i.e readsets and writesets) is intractable for all interesting
performance measures. There are two ways to cope with this intractablity. One
way is to find an approximation algorithm that finds a suboptimal solution.
The other way is to redefine the problem, by changing the domain of
optimization or by relaxing the optimality measure, so as to simplify the
problem. This section shows how semantic information can be used to redefine
the problem to make it simpler. One approach is to construct a schema that is
serializable and then to optimize it using semantic information. Semantic
information is incorporated by partially interpreting the operations. Thus,
each transaction step is assumed to be a statement (retrieval or update
request) in a high-level query language. We develop a set of rules for
transaction modification. Each modification transforms a schema (for a given
transaction system) into an equivalent schema which is better acgordiﬁg to
some performance measure. Initially this measure is assumed to be the diameter
of the schema. (We point out in [KD81] the practical significance of this

measure and its superiority over the others.) Later, this is extended to a

measure based on data base cost.

14

4.1 Environment

The data base is assumed to consist of a single relation R. In a data base
with more than one relation, R can be thought of as the product of all the
relatioﬁs. Each tuple of R has a unique identifier (TID) and corresponds to a
cell of the shared memory M. Transaction steps are assumed to be statements
written in some high-level relational calculus-based language, such as QUELO
[HSW75]. As the exact syntax is not of concern here, we represent each type of
statement in the following manner:

1. MODIFY: MOD(targ R)

m* 9

2. INSERT: INS(targi,qi,R)

3. DELETE: DEL(qg,R)

4. RETRIEVE: RET(targr,qr,R)

In each statement the qualification q is a predicate that selects a subset
of the relation R to be the operand of fhe operation; the target list targ
defines the computations to be performed on the operand. In QUELO, the
qualification is a boolean combination of clauses of the forn
{term>{op><term>, where <term> is an attribute, a constant, or an arithmetic
function (e.g +.*) of other terms; and <op> 1is an arithmetic comparison
operator (e.g. =,<). The target list is a list of (attribute,term) pairs.
Initially, we assume that terms in a target list are constants, but we show
section 4-5 that this assumption can be relaxed. Note that we do not permit
aggregation functions (e.g. average,sum) in our statements. Without loss of
generality, we assume that a target list specifies every attribute in R. This
assumption and our earlier assumption that the data base contains only one

relation do not restrict the applicability of the theory; they are made merely

to simplify the formalism.

15

Let Q, be the set of tuples selected by qualification Ay and,TARGx be a
function corresponding to target list targ , such that, TARG, (Q,) is the set
of tuples generated by evaluating targ, on the selected tuples Qg For a
single tuple t, iARGX(t) is defined in the obvious manner. Figure 4-~1
tabulates the effect of each operation.

We.shall consider a general class of query processing strategies in which
each operation is performed in two steps (as shown in figure 4-2): a
qualification step q that selects the tuple ids (TIDs) of the R-tuples
satisfying the qualification q; then, an effect step e that performs the
operation specified by the target list on the tuples whose TIDs were selected
by q. For this class of query processing strategies, the time taken to
evaluate the qualification (step q) is likely to be much greater than the time
taken for step e. Also, step q does not update the database. These two
observations make it a prime candidate for execution in parallel with other
qualification steps (appropriately modified, as described in the sequel).

Consider an ordered ‘pair of operations with the precedence constraints
shown in figure 4-3. Suppose this pair can be modified to an equivalent
schema (shown in figure 4-4) such that Tel, TeZ’qus and Tq, can be
syntactically determined. Then, the modified operation pair has smaller
diameter and so is better according to our measure of parallelism.

In developing the modifications, we use a canonical representation of the
update operations (see figure 4-5), called J4graph. In this representation, qd
and qi are the qualifications that select the tuples to be deleted and
inserted respectively; eq and e; are the corresponding effects. It is obvious

that the modify, insert and delete operations can be modelled by choosing

appropriate q’s. To model retrieve operations we observe that all retrieve

©

In the following table R, R’, R" are the relations before
the execution, after the execution and the result of the
retrieve operation. Also let

Qe = {t | téR and t satisfies q_ }
and TXRGx is the function corresponding totarg,.

The following table lists the effect of each operation:

MOD(targm,qm,R)

R’ = (R-Qu)\/TARG,(Q) R =
INS(targ,,q ,R) R” = R \/ TARG;(Q;) R" =
DEL(qy,R) R =R - Q4 R" =
RET(targr,qr,R)’ R =R R" =

Rog = the resulting relation after an execution permitted
by 0S.

‘R‘rs

the resulting relation after an execution permitted
by TS.)

Figure 4-1: Effects of the operations.

O SSsSS

Fig. 4-2: Model of an
operation

Fig. 4-4: Modified schema for
an ordered pair of
operations

Fig. 4-3: Schema for an ordered
pair of operations

Fig. 4-5:

Canonical representations
of an operation

graph.

16 '

operations in a transaction are live, i.e., the retrieved values are uscd in a
subsequent update (modify,insert, or delete) operation. Hence, we can combine
the retrieve operation with the update operation and correspondingly change
the effect step e of the update operation. An example of such a modification
is shown in Figure 4-6. From a practical standpoint, we do not expect to sece
dead transaction steps. At the very least, a transaction step should record
the fact that it ran by writing on an output device which in our model is part
of the shared memory.

An assumption that we make here is that every insert (ei) create a new
tuple of relation R. Thus, every new tuple that is inserted into R is assigned
a new TID. This implies that a modify operation is modelled as the deletion of
old tuples and the insertion of new (modified) tuples with new TID’s. This
assumption in conjunction with an earlier assumption (that only constants are
permitted as terms in target lists) ensures the sjointness property. It is
this disjointness property that we need in our proofs fo this subsection. We
argue in section 4-5 that and implementation can, in fact relax these
assumptions, and still satisfy the disjointness property. A

With this canonical model of an operation, we define an elementary schema

called an operation pair as shown in figure 4-7. Note here that the I+graph

may have more than one statement associated with it. For this elementary
schema, we derive an equivalent schema with greater parallelism (i.e smaller
diameter). Then we define a generalized canonical form of elementary schema
and show how to extend the transformation to this generalized form. Further,
we show that the transformed schema is of the same generalized canonical form

so that it can be subsequently paired with some other operation. This closure

property is useful in repetitive applications of the transformation.

Tuples selected tuples by q’s in the original schema:

0Qi; = {t | t€R and t satisfies qi; }
0Qd] = {t | té€R and t satisfies qd] }
0Qi, = {t | t€(R-0Qd;)\/0Qi; and t satisfies qij }
0Qd; = {t | t€(R-0Qd;)\/0Qi; and t satisfies qd| }

Read/write sets for e’s in the original schema

OEil

0Qi OEi
OEd, 1 2

Ole OEd,

0Qi,
0Qd;,

fon

Tuples selected by Tq's in the transformed schema:

TQi, = {t | t€R and t satisfies qi } k=1,2
TQdk = {t | t€R and t satisfies qdy } k=1,2
TQiZ/I = {t | t€R and TARG(t) satisfies qiz }
TQdZ/l = {t | t€R and TARG(t) satisfies qd2 }

Read/write sets for Te’s in the transformed schema:

TEi TQi, - TQd TEd, = TQd
! 1 2/1 1 1
TEi, = TQi, - TQd) TEd, = TQd, - TQd,;

Target lists for the Tei’s in the transformed schema:
The target lists for TEi; and TEi, are the same as in

original schema. The target list for Teizll is the
composition of TARGil with TARG,.

Figure 4-9: OE’s, 0Q’s, TE’s and TQ's

17

4.2 Transformation of an operation pair in series

Given a schema 0S,(original schema,) for an operation pair in series, shown
in figure 4-7, we can find an equivalent schema TS,(transformed schema), as
shown in figufe 4-8. In this transformed schema Tedl, Ted,, Teiy, Tei,, and
Teiq are the transformed operations whose readsets and writesets and target
list functions are defined in figure &4-9,. This schema evaluates the
qualifications based on the original relation R, to get TQdy, TQig, TQdy /1,
TQiZ/l’ TQi;, and TQiz. Using these sets of TIDs, the readsets and writescts
of the operation can be determined. The validity of the transformation is
proved'formally below. Here, we attempt an intuitive justification. (The
reader will find it helpful in following this explanation if he/she refers to
the example in figure 4-10.) TEd; is the same’as TQd;, since both TQd; and
0Qd; select tuples from the original state of the relation R. TEi] is the set
of tuples in TQil and not 1in TQdZ/l’ because the tuples in TQdZ/l are
subsequently deleted in step ed; of 0S. Hence, those tuples which are inserted
and subsequently deleted in O0S are not inserted at all in TS. Consequently,
TEdy, the set of tuples to be deleted from R by ed;, are only those.which were
not alread; deleted in step edl' TEi, is the set of tuples in R from which the
step ei, creates new tuples. So, TEig consists of only those tuples which were
not deleted in step ed;. TEiy,; is the set of tuples inserted by step ei,
based on tuples inserted by ei;; the computation performed in this step is the
composition of computation specified by the target 1lists of the two
operations. Thus, the transformed schema pérforms the same‘ deletons and
insertions on R és the original schema. And, significantly, the transformed
schema allows greater parallelism amongst the qualification steps, which, by

our assumption, are more time consuming than the effect steps.

TID AGE SALARY

1 17 10K

2 16 10K

3 18 30K

4 19 30K Tuples in

the old

5 S 17 20K relation

6 17 30K

7 16 30K

8 16 15K

9 16 25K

10 17 25K |} Added

11 18 25k | Tuples

12 17 27k

13 17 27K

14 17 27K

0qd, = {1,2} 00d = {7, 8, 9
OEdl = {1, 2} OEdZ = {7: 8’ 9}
TQd; = {1, 2} TQd, = {2,7,8,9}
TQ1'2/1 = {7} TQdZ/l = {9}

TEd; = {1,2}
TEiz/l = {2}

Fig 4.10:

TEd; = {7, 8}

TQi;

TEi,

qd; =(salary = 10K)
qi; =(age>= 16 and salary = 08)
16)
in =(age 17)
TARG = (salary = 25K)
‘1 A

i
TARG = (salary = 27K)
iz

qd, =(age

It

R=1{1, 2, 3, 4, 5, 6, 7, 8}

R {3, 4, 5, 6, 10, 11, 12, 13, 14}
os

00iy = {3, 6, 7} 00i, = {5, 6, 10"

OEi, = {9,10,11} OBip = {12,13,14)
= {3,6,7} TQi; = {1, 5, 6}
= {3, 6} TEi» = {5, 6}

An example of the transformation of an operation pair

18

i
To show the validity of the transformation, we first show that the

transformed schema is determinate; i.e. all computations for this schema are
equivalent. For this we make this following observation, which are proved in

the Appendix.

Ted’s and Tei’s are said to be confict free if the writesets of Ted’s are
mutually disjoint and pairwise disjoint with the read/write sets of Tei’s; the
readsets of Tei’s are pairwise disjoint with the writesets of Tei’s; and the

writesets of Tei’s are mutually disjoint.
Lemma 4-1: TEdl,TEdz,TEil,TEiZ and TEij are conflict free.

Proposition 4-1: If TEdl, TEd,, TEij, TEi,, and TEijy are conflict frce then
the transformed schema is determinate. :

This proposition has been proved by Keller [Kell73] for his general
parallel program schemata. Intuitively, this follows from the ObserQation that
the disjointness property ensures that no tuple is updatéd .by two steps
executing in parallel.Lemma 4-1 and Keller’s proposition lead to the following

theorem.

Theorem 4-1: The transformed schema is determinate.

Having shown that TS is determinate, we now have to show the equivalence of

..

the two schemata to prove the correctness of the transformation. For this we
must prove that every tuple t € RURyg (see figure 4-1) that was deleted,
inserted, or remained unchanged in the original schema, was correspondingly

deleted, inserted, or remained unchanged in the transformed schema. This is

stated in the following sequence of lemmas (the proofs of which appear in the

Appendix).

4

Lemma 4-2: If a tuple t € R is deleted by 0S, then t is also deleted by the
transformed schema TS.

Lemma 4-3: If a tuple t € R g 1s inserted by the original schema 0S, then t is
also inserted by the transformed schema TS, and t 6 RTS'

Lemma 4-4: If a tuple t 6 R is not updated by 0S, then t is not updated by TS.
(]

19

it

Let Uy

RIITARGy) (OEiy)| I TARGy, (0K 5),
and Urs

RUITARG,) (TEdy)| ITARG] 5 (TEL) | ITARG, 3(TEi).

]

~

Thus, Uyg and Upg are the universes for the tuples in relations Rpg and Ropg

respectively.

Lemma 4-5: If a tuple t 6 UOS and t ¢ Ryg then t € UTS—RTS.
Lemma 4-6: Upg C Ugyg

Lemma 4-7: (UTS—RTS) € (Upg=Rpg) -

Theorem 4-2: Rig = Rpg

Proof: To prove this we discuss the following cases:

case l: t € R-Ryg --> t 6 R-Rpg (from lemma 4-2)

case 2: t € Ryg-R —=> t € Rpg-R (from lemma 4-3)

case 3: t € RRyg-->t 6 RNRyg (from lemma 4-4)

case 4: t € UOS_ROS ==> t € Upg-Rpg (from lemma 4-5)
i

case 5: t € UTS_RTS --> t € Upg—Rpg (from lemma 4~7)

From the above five cases it fol}ows that Ryg = Rpge [QED]

Thus we have shown that the transformed schema, TS, and the original

schema, 0S5, are equivalent.

4.3 Generalized transformation

We have shown how to transform a pair of operations into a schema having
greater parallelism. The transformed schema is not quite in the canonical
form of an operation (figure 4-6) because step ei has more than one target
list. Thus, if this operation pair is part of a bigger schema and we want it
to participate in further transformations with successor nodes, the above
transformation cannot be directly used. We now show how to gencralize the
transformation. First we generalize the concept of an operation pair. This

generalization is shown in figure 4~11. The first stage has k insert nodes
]

DO-OOO-C

& OE0)
QOO0
OO0 ©,
K — J

(@06 &

represents all the directed edges in the cross product.

Fig. 4 -11: Schema for generalized opefation pair

\\

n

THa = T0i, - Ty, a=1,2,.. .k
TEd, - T0d, a=1,2,,.1
] R
THg = 101, -U Tody a = k+l,k+2,...m
1
TEd, = Tod SURLN a = 1+1,142,.. . n
TET'a/b = TQi‘bn TQia/b g : ‘;T;:k‘@:k ,m

Fig. 4-12: Transformed schema for generalized operation pair
along with the read/write sets.

20

and 1 delete nodes. The second stage has m insert nodes.and n delete nodes.
The transformation and the associated read/write sets are given in figure
4-12. The proof of the previous section can be extended in a straightforward
manner for this generalized transformation and dges not provide any new
insight into the problem. (Further, the proof is messy because of the
proliferation of subscripts and is omitted here.) The intuitive justification
for the read/write sets is the same as before. TEd,, a=1,2...1, are the same
as TQda since both TQd, and 0Qd, select tuples from the original state of
R. TEi,, a=1,2,;..k, is the set of tuples in TQi, and not in TQdp/, for any b
€ {1+1,1+2,...n}, because the tuples in Tde/a afe to be subsequently deleted
in the second stage of 0S. Hence, those tuples which are inserted and
subsequently deleted in 0S are not inserted at all in ?S. Consequently, TEda,
a=1+1,1+2,....n, the sets of tuples to be deleted from R contain only those
tuples that were not already deleted by ;he first stage. TEi_, a=k+1,k+2,...nm,
are the tuples in R from which the steps ei,,, eipt2, «e..eiy created new
tuples. So TEi coﬁsists of only those tuples which were not deleted in the
first stage. As before, TEia/b, a=k+l,...,m; b=1+l,...,n, is the sét &f tuples
that were inserted in the second stage based on tuples that were inscrted in
the first stage. Thus the transformed schema performs the same insertions and
deletions as the original schema, but has greatér parallelism. Furthermore,
the transformed schema is in the generalized canonical form of figure 4-11,

and so can be used in subsequent transformations.

T

21

4.4 Algorithm for transformation

Suppose that the data base machine has k processors. Once the scheduler has
constructed a schema representing minimal precedence constraints, it now
remains to assign available processors to execute the nodes of the DAG. To
maximize processor utilization, it is important to ensure that at every point
in time, as many of the k processors as possible are busy. We shall show how
to transform the schema to meet this objective.

We have to select k nodes to execute on the k processors. Assuming that
each node takes unit time to execute, all k nodes will complete at the sane
time. (This assumption is relaxed in the section 4-5). At some point in this
process, if there are m<k nodes ready for execution, then we can use the
generalized transformation developed above to obtain k nodes in parallel. To
do this, let n be the number of nodes that can be enabled for execution after
the m nodes have been executed. From these n nodes choose n’=minimum(n,k-m)
nodes. Then we can view the DAG as shown in figure 4-13. We see that there
are no edges from level 1 to level 0, and from level 2 to either level 1 or 0.
To this graph, add edges between every.node at level O to every node at level
1 (this is not necessarily how the algorithm will be implemeaged). 'Lt is
obvious that the graph is still acyclic and the added edges do not contradict
aﬁy existing precedence constraints. Now the set of nodes at level 0 and level
1 conforms to the generalized canonical form of figure 4-11. So we can apply
the generalized transformation to get m+n’ nodes in parallel; the transformed
graph is shown in figure 4-14. If m+n’<k, thenrthis process of .transformation

can be repeated until k parallel nodes are available.

m nodes

1

n' nodes

rest of the schema

Fig. 4-13: Original DAG

m+n' nodes

rest of the schema

Fig. 4-14: Transformed DAG

22

4.5 Implementation considerations

Two main assumptions were made in developing the above theory. These were:

1. Only constants were allowed as terms in a target list;

2. all inserted tuples had new TID’s.

Both these assumptions were used to ensure that the ed’s and ei’s vere
conflict free, i.e. the write sets of ed’s were mutually disjoint and pairwise
disjoint with the read/write sets of ei’s; the readsets of the ci’s weore
pairwise disjoint with the writesets of ei’s; and the writesets of ei’s were
mutually disjoint. We show here that we can relax these assumptions by
adopting the following implementation. Associated with each tgple are two
flags: delete flag and an insert flag, whose use is described below. Step ed
sets the delete flags of all those tuples which are selected for deletion but
do not have their insert flags set. These tuples are then deleted during the
execution of the next transaction system. Step ei always creates new tuples
for insertation and sets their insert flags. If ei is part of a modify
operation, then it reuses the old TID; otherwise, it generates a new TID.

(This implies that at any point in time, there might be two versions of a

. L

tuple both having the same TID.) In reading an existing tuple x, in order to
compute a tuple y for insertation, ei uses that version of x which does not
have its insert flag set. Further, the insert flag is reset in these tuples at

the beginning of the next transaction system.

So any step ed writes only delete flags, and therefore the writesets of

ed’s are pairwise disjoint with the read/write sets of ei’s; we already know

*
H

from the transformation that the writesets of ed’s are mutually disjoint. The

insert flag ensures that the readsets of ei’s are pairwise disjoint with the

writesets of ei’s. Creating new tuples ensures that the writesets of ei’s are

[+

23

mutually disjoint. Therefore, the theory of sections 4-2 and 4-3 still holds.
Thus, these transformations can be used repetetively to reduce the diametep
of §he schema. But it-.is clear that reduction in the diameter may not be
without coét: the number of nodes increases and so does the complexity of
each node. It might be more appropriate to pick an optimality measure that
takes into account the processing costs of the nodes. Severél cost measures
for query processing have been proposed in the literature [HY79,Ya079]. These
are based on physical parameters such as file sizes, attribute selectivities,
storage and access methods. Given any cost measure that -imposes a total
ordering on the set of.schemata, we apply the schema transformations described
in this section only if it is beneficial to do 80, i.e. only if the estimated

cost of the transformation is less than that of the original schema.

5. CONCLUSION

In this paper, we developed a parallel program schema model of trans:action
systems for parallel database machine.The concept of serializability, which is
generally accepted as the correctness in the ex;stiqg concurrency control
theory for the sequential model, was extended to our model. wé‘pfgﬁgéed a
two-step technique for producing correct and highly parallél schedules: first,
obtain a schema that imposes a minimal set of precedence constraints on
correct executions; then, transform the schema using semantic information to
increase parallelism. Although the model deveoped‘ in this paper is
theoretical, we believe it to ;be of practical utilicy =- the proposed

. t .
scheduling can be applied to any MIMD machine such as DIRECT [DeW78].

Several interesting performance related questions may be posed here. We
described the scheduler as a single, centralized process. Will this become a

bottleneck? Alternatively, given ample resources and the parallelism inheYent

24

in the system, will it be beneficial to partition the system and distribute
the scheduling activity over several processes. Our theory is independent of
whether the scheduler is centralised or distributed. Further, we have implied
a batéhed mdde of operation for the machine. Each transaction system can be
thought of as a batch. This has the advantage that while one transaction
system is being executed, the scheduler can be working in parallel on the nest
transaction system. Clearly, the selection of transactions to comprise a
transaction system is a crucial factor affecting performance. An alternative
to batching is to dynamically schedule transactions as they arrive. Will this
improve performance? Simulation studies or queueing analysis can provide the
answers to these questions.

The transformation presented in section 4 produces nodes that nust be
capable of evaluating arbitrarily complicated set expressiouns. The complexity
of some of these nodes may be reduced by refining the nodes (i.c. replacing
each by a more detailed subgraph) and then detecting common subexpressions
accross nodgs of the subgraphs. As we pointed out before, a cost bused on
physical database parameters, must be attached to each node. When . this 1is
done, it can be determined when it is beneficial to transform a given schema.

Lastly, in section 4 we ignored the problem of eliminating duplicate tuples
when an insert or modify operation is executed. We treat this as a special
case of integrity checking. Integrity checking could be implemented as part of
the effect step of an update operation. However, a more intriguing possibility
is to use query modification (as suggested In [ston75]), together witi the
schema transformation of section 4, to perform integrity checking in par:licl
with the execution of the update. (for example, tuples which are being

duplicated can be flagged for subsequent deletions.) Working out the details

of this modifcation is a topic of future research.

BSR80

BSW79

DeW78

EGLT76

GOugo

HSW75

HY79

KDb1

Kell73

KP79

Papa79

PBR77

Ston?5

Yao79

REFERENCES

P.A.Bernstein, D.W.Shipman,J.B.Kothnie, "Concurrency
control in a System of Distributed Databases (Sbb-1)"
ACit TODS, vol 5, no. 1, 1980.

P.A.Bernstein,D.W.Shipman,W.S.Wong, '"Formal Aspects
of Serilaizability in Database Concurrency control",
IEEE-TSE, vol. 5, no. 3, 1979, ppl77-187

D.J.DeWitt, "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems"
Proc. of the 5th Annual Symposium on Computer Arch.,
Apr. 78, ppl82-189

K.P.Eswaren, J.N,Gray, R.A.Lorie, 1.I.Traiger, "On the
Notions of Consistency and Predicate Locks in a Rela-—
tional Database System", CACM, vol 19, no. 11, 1976

M.Gouda, "Simultanity in Distributes Databses", Technical
Report, Dept. of Computer Sciences, Univ. of Texas,
Austin, TX, Oct 1930.

G.D.Held, M.R.Stonebraker,E.Wong, "INGRES - A Relational
Database System", Proc. AFIPS NCC, 1975, pp409-4lo

A.R.Hevner, S.B.Yao, "Query Processing in Distributed
Database System", IEEE-TSE, vol. 5, no. 3, 1979, ppl77-187

R.Krishnamurthy, U.Dayal, "Complexity of Scheduling
Transactions in a Highly Parallel Data Base Machine",
Technical Report, TR-169, Dept. of Computer Sciences,
Uniov. of Texas, TX, Mar. 81.

R.M.Keller, "Parallel Program Schemata and Maximal
Parallelism. Part 1: Fundamental results", JACM, 1973,
vol. 20, no. 4, pp696-710

H.T.Kung, C.H.Papadimitriou, "An Optimality Theory of
Concurrency Control for Databases", Proc. of 1979
SIGMOD conf., Boston, Hass., May 1979.

C.H.Papadimitriou, "Serializability of Database Updates",
JACH, vol. 26, no. 4, 1979, pp0631-653

C.H.Papadimitriou, P.A.Bernstein, and J.B.Rothnie,

"Some Computational Problems related to database
Concurrency Control", Proc. of Theoretical *Computer
Science, Waterloo, Aug77.

M.R.Stonebraker, "Implementation of Integrity Constraints
and Views by Query Modification", Proc. of ACM-SIGMOD
Intl. Conf. on Management of Data, San Jose, 1975, pp65-78

S.B.Yao, "Optimization of Query Evaluation Algorithms",
ACM-TODs, vol. 4, no. 2, 1979

26

I. Appendix: PROOFS
L]

Lemma 3-l:given x € COMP(G), y 6 COMP(G,), if x has no dead opeations then

y has no dead operaions.

Proof: Let x = X]Xpeeeax, and Y=Y1Yoeee¥p- Let Y3 € y be such that
yj+1%yj+2,yn are live, and yj is dead. Find j’ such that Xj’=y j» Obviously
there does not exist m such that (yj,ym) € RFy, but there'does exists k; such
that (xj:,xkr) € RF,. Find k such that Yx=xk‘+ But, k<j is not possible
berause (xj"xk') € RFx and therefore (xjf,xk') is a precedence constraint in
Gy. So (yj,yk) € Ex. From this it directly follows that j<k. « From the

definition of liveness we can conclude that

1 [(3<<k) /N (WO PNRGI-W(y =] or Wiy ;) (N wWlyy) # 4
Find 1° such that X17=y1. But, j’<1°<k’ is not possible because X reads fron

X3s. And if 3’>1° or k’<1’ then there will be an interferes edge in G, to

impose that same order in y. Thus,there can be no dead operation in y. [QED]

Lemma 3-2: Given x € COMP(G), y € COMP(GX) it follows that RF, = RFy

Proof: Let X=X1X9eeeXn, and y=yj}yge...y,. Find a Yj such that Y4 reads the

value in cell m written by Yk» and the coresponding X g (=yj) does not read

the value in cell m written by X’ (=yg). Let X3 read the value in cell n

written by x;-. Find 1 such that xj-=y;.

As x;, reads from xy-, so 1737 weve(l)
As yj reads from Yk » SO k<j ««e.(2)

1f k>j°, then, by definition, (x57,%xx7) is an
interferes edge, and consequently, a precedence
constraint in Gy« Then, k<j as in (2) is not

possible. So, K3 3 e (3)
If 17<k’<3", then X will not read from i

x1’ as assumed. so k'<17<3" weea(4)
using (1) and precedence constraints in Gy 1723 eveea(d)
If k<1<j, then y; will not read

from yy as assumeg. SO I<k<j seea(6)

From (4) we note that there will be an interferes edge (xkr,xl') in Gy, and

27

this order is not retained in y, as given in (6), this contradicts the

precedence constraint in Gx‘

Hence, we can conclude that if Yj reads m from yp, then X5 reads m fron

Xy s, for all m in the domain of Yj» In other words RFR C RFY for all m € M

Now we show that if Xj reads m from xy, then Yje (=xj) reads m from y -

(=Xk) for all X3 and every m € R(xj). If this is not true, then there exists
an X that reads m from xj, and Yj does not read m from Y-+ Then yjr reads m

from some other operation, which contradicts the above claim that RFQ C RFQ.

So it must be that RFY C RFY. Hence we have shown that, RFY = RFY for all m €

M.

28

Lemma 2.1: Given a SR-schema Gp of a serial execution SXp, every execution
resulting from Gp is serializable.
Proof: From lemma 3-3 it follows directly that every computation sequence in
COMP(GP) is serializable.
We know that every edge (i.e. precedence constraint) in Gp is also an edge in
any execution X resulting from Gp. Therefore every topological sort sequence

of X must also be a topological sort sequence of G_. So,
COMPUT(X) E_COMP(GP)

Therefore we can conslude that every topological sort sequence of COMPUT(X) is

serializable to SXP'

Lemma 4-1: Tedy,Tedy,Tei,Teip and Teiqy are mutually disjoint.
Proof: First, observe that every inserted tuple is a ncw tuple. From this it
directly follows that (TEd)|JTEdp) () (TEiy|JTEipyTEi3) = @ and TEi;, TEi,,
and TEiy are mutually disjoint. From the definition of TEdy and TEd, it
follows that TEd|NTEd, = @. QED
Lemma 4-2:1f a tuple 't € R is deleted by 0S, then t is also deleted by the

transformed schema TS.

~

Proof: case 1 (t € 0Qd)): As TEd) = 0Qd}, t is also deleted by TS.

case 2 (t 6 0Qd,): This implies that t was not deleted Sy step ed}; i.e. t
£OEd, . From the definition of TQdp, we know that t €TQd;, and as
TEd1=Tle=OQd1=OEd1; so t €IEd) and is deleted by step Ted,.

From the above two cases we know that t will be deleted and from the
determinacy of TS we are assured of no other 9pdates on t.) QED
Lemma 4-3:1f a tuple t € Rgg is inserted by the original schema 05, then t is
also inserted by the transformed schema TS, and t € Rrg.

Proof: Let t);, tj be tuples such that t = TARG;;(t;) and t = TARG; 5 (t))

[+

29

depending on whether el} or ei, inserted the tuple t in OS.

case 1 (t, € 0Qi; and t; ¢ .O_Qi_?:)_: t; € 0Qi; implies t; € TQi) (ov
definition). If ty € TQdZ/l then the tuple t inserted in step el will

selected by qdy; i.e. t €0Qdy=0Ed). Then t cannot be a tuple in Ryg as sty
ed2 Qould héve deleted it. So ty € TQdZ/iI' It follows that Ly €liiye 5o i

lemma 4-1 we can conclude that in both the schemata t = TARﬁil(v]} L5

inserted.

case _Z _(__t_ € OQiz): If to € TQiz then to € TEiz because if tr € Tle = Qdy

then ty could not have been selected by qijz, since it would have been deloted
by edy; but this would contradict ty € 0Qiz. If ty € TQiy then we observe from
the precedence constraints of 0S that tr € TARG;1(0Ei|). This implies that
there exists a tuple t) € R, such that ty = TARCil(tl) and t; €0Qiy. Yrom the
definition of TQip/s), if t} € R and t = TARG; (t|) € 0Qi; then t| € TQi,, ;-
As we already know, t; € 0Qij implies t) € TQi}, so ty € TQil()TQiz/il. Thus,
0S5 and TS insert the same tuple TARGiZ(t2)=TARGi2,(TARCi1(t1))' Once again,
from Lemma 4-1 we can conclude that no other update was done on that tuplo.
QED Lemma 4-4:1f a tuple t € R is not updated by 0S, then t is not updated bv
TS.
Proof: If t € R and t € Ryg, then t is not a tuple that was inserted by 0S.
Further, since, t is not updated by 0S, t ¢ 0Qd} and t € 0Qd,. t € 0Qd |
implies t ¢ TQdy=TEd). If t € TQdyp, then t € 0Qdy because t € R and t € Tudy.
Sot ¢ TQdy. Therefore, t ¢ TEdp. That t is not updated in TS follows from
the mutual disjointness property. QED
Lemma 4-5:1f a tuple t € Uyg and t # Rpg then t ¢ Rpge
Proof: If t € R then b& Lemma 4-2 t § Rrg. If ¢ 6 TARG;9(OEig) then t € Rpss

so this lemma is vacuously true. If t € TARGiI(OEil) and t € R,g then it

30

follows that t € 0Qd,=EQdy; so there exists a t’ such that t = TARG; 1 (") and
t’ € TQdZ/il and from the definition of TEi; we see that TARG; (t’) was never
inserted. so t=TARGil(t') ¢ Rpg. QED
Lemma 4—6:UTS C Upg

Proof: TEi; C OEi; directly follows from definition. If there is a tuple t €
TEi, such that t € OEi, then it follows that t € R and t £ R-OLd | [1O
hence, t € OEd;. From the definition of TLij we can conclude that t £ Gid|,
which is a contradiction. Therefore, TEi) C OEip. Finally, for some tuple t €
R, let TARG;,(TARG;;(t)) € TARG;3(TEij).From the definition we sce that L €
TEi3; that is t € TQi;NTQip. t € TQi; implies that there exists a tuple t°
such that TARG;;(t)=t’ and t’ satisfies qig; i.e. t’ € TQ-(i2). As t & 0Qiy,
we can infer that TARGil(t) € (R-OEdl)L)TARGil(OEil). Therefore, TARG,;(t) &
0Qi, since TARGil(t)=t' satisfies qiz. This implies that ei; inscrts a tupi.
TARG;,(t") = TARG;,(TARG;;(t)); that is, TARG; (TARG; 1 (t)) € Rpg- Hence,
TARG; 3(TE13) C TARG; (OEi}) |J TARGy,(OEij).

The above inferences imply that TARGil(TEil)LJTARGiZ(TEiz)L)TARGi3(TEi3) C
TARG; | (OE1)) |JTARG{5(0Eiy); i.e. Upg C Ugge QED
Lemma 4-7: (Upg=Rtg) € (Ups—Rpg)- o

Proof: Assume that there exist a tuple t’ € Upg—Rpg such that t” € Ung \/ t° €
Rog. From lemma 4-6 we sce that t’ € Urg implies that t’ € Upg. So it follows
that t” € Ryg. From lemma 4-2 and lemma 4-3 we sece that t’ € Rgg implics that

’,

t’ € Rpg which contradicts the ussumption. Hence, it follows tha: t’ &

Uos-Ros+ QED

