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ABSTRACT

We propose a new model, called sending sequences, to specify the
communication interactions between two or more processes in a protocol
layer. In this model, a communication protocol is specified by the set
of all sequences of sending operations executed by any process in the
layer. Unlike specifications based on. communicating finite state
machines, sending sequence specifications do not exhibit
inconsistencies such as dea&locks or unspecified receptions. .We use
the ﬁodel to specify a window protocol and an alternating-bit
pfotocol. We also use the model to design a run-time checking system
which observes the communication between given processes to verify
that it proceeds according to a given protocql gspecification. Such a
system can be used in protocol teéting or to increase the system

reliability in face of failures.

Keywords: Communication protocols, protocol run-time checking,
protocol specifications, Vprotocol testing.



I. INTRODUCTION

The most widely used model to speclfy communication interactions
in protocol layers is communicating finite state machines [4] and [8].
Nevertheless, specifications based on that model exhibit
inconsistencies such as deadlocks and unspecified receptions [1], [2]

and [9]. This problem has guided research in two directions:

(1) Analysis: Find techniques to uncover these inconsistencies
in any given complete specification {1}, [3], and ([9].
Unfortunately, the problem is shown to be undecidable in
the most general case [3}.

(1i) Synthesis: Find techniques to complete an 1ncomplete
specification such that these inconsistencies do not occur
5] and [9].

In this paper, we propose a new solution to the problem, namely a
new model to specify communication interactions. where these
inconsistencies never occur. The paper 1s organized as follows. In
Section II, the model is formally defined; and a specification
language based on the model 1s detailed in Section III. Two
specification examples, namely, a window protocol and an alternating-
bit protocol are discussed 1n Section IV. In Section V a run-time
checking system based on the model is outlined. Concluding remarks
are in Section VI. For breﬁity, we limit the discussion to protocol
layers with two communicating processes; it 1s straightforward to

extend the discussion beyond that; see Section VI.



Example: Consider a communication protocol where a process p sends two
data messages to a process q which answers back by sending two
acknowledgement messages. This protocol C can be formally defined in
our model as C = ({p,q}, {data,ack}, S). The set S is defined as
follows. Let “dl" and "d2" be two messages of type data and let "a" be
a meésage of type ack. Define the sequence 81 of C, as follows
s = send(p,d, ).send(p,d,).send(q,a).send(q,a);

then, S={s1} U{r | r is a prefix of sl}. This definition of S implies
that p sends the two data messages before ¢ sends any ack message. To
modify the protoéol_such that process q can send the first ack message
after p sends its first data message, set S should be modified as
follows: § = {sl,sz} U {r f r is a prefix of él or 52}’ where
Sy = send(p,dl).send(q,a).send(p,dz)isend(q,a). In this example, a

sequence which has sénd(q,a)'as a prefix is an erroneous sequence. ]

‘Notice that since recéiving operations are not explicitly defined

in the.sending sequences, protocol specifications in this model can
never suffer from deadlocks or unspecified receptions as characterized

in [1] and [9].

Let s be a sequence of a communication protocol C=(P,T,S5), i.e.,

either s = empty

or s send(ul,ml). von .send(un,mn) for n>l

where uy,...,u, are in P and my,...,m, are messages whose types are in

n n

T. For n2l, s can be rewritten in the following form

s = send(u,,m,, 00 send(uz,mz,send(ul,ml,empty))...)



In this form, "send” can be viewed as a fqnction whose domain and
range are as follows:
| send: P x M x SUEq —-=> SUEg

where M is the set of all messages whose types are in T, and'EC_is the
set of all erroneous sequences of C. In other words, "send” maps a
process u, a message m and a sequence r of C into a "bigger"” sequence
s of C such that s=send(u,m,r) or equivalently s=r.send(u,m). Function
"send” is called a constructor since it can be used to construct a

bigger seguence from a smaller cne.

Lemma: Let s=send(u,m,r). If r is an erroneous sequence then s is an

erronegus sequence.

Proof: Assume that r is an erroneous sequence, and that s is a sending
sequence. Thus, s is in § but its prefix r is not in S contradicting

the conditions of S. []

The inverse of this lemma is not necessarily true; {f.e., if r is

a sending sequence, then s may or may not be a sending sequence.

Let C=(P,T,S) be a communication protocel; and let M be the set

of all messages whose types are in T. A validation condition "cond”

for C is a predicate defined as follows:
condp: P x M x § -=> {true, false}
where conds(u,m,r) = true iff send(u,m,r) is in S. Notice that 1f r is

an erroneous sequence "condp(u,m,r)” is undefined.



Theorem: Let C=(P,T,S) be a communication protocol; and let c0ndc be a
validation condifion for C. For any sequence s of C, cond; can

determine whether or not 8 is 1in S.

Proof: Let s be a sequence of C; 1.e.,

either § = eumpty

or s = send(uy,m))e «.. .send(u,,m,) for n > 1,

If s=empty then it is in S by definition. Otherwise, let
rj=send(u1,m1). e .send(uj,mj) for 1<{j<n; rj is a .prefix of
s. Therefore, s is in S iff (for all j=1,...,n) (condc(rj)). Since
condc(u,m,r) is undefined for erroneous sequence then condC should be

applied to r, first, then it is applied to r iff cond.(r,)=true.
. i _ i+l cL\hi/TEENE

From the above theorem, the set of sending sequences for =2
protocol C is completely defined by a validation condition of C. In
the next section, we present a specification language to specify
communication protocols based on the above model; most of the language

features are dedicated to define validation conditions.

I1I. A SPECIFICATION LANGUAGE FOR PROTOCOLS

A general format for a protocol specification is as follows.
{Reserved words are underlined; and numbers are added to the left for

ease of reference.)



2.
3.

4.
5.

10.

11.

12.
13.

14.

Protocol <protocol name>

process p,q
msg typ tl,col,tk

init snd seq empty
constructor send : process X msg X seq ——> seq

state <declare state functions>

declare r, s: snd seq; u : process
my ¢ oty MSZ; ees; W 1ty DMSE;
constructor rules
s = send(u,m,r) iff <condj (u,m;,r}>;

s = send(u,mp.r) 1ff <condy(u,m,r)>;

state rules
{define state functions>

End <{protcccl name>;

The specification 1s divided into two sections, declarations

(lines 1 to 8) and rules (lines 9 to 14). In the declaration section,

the following are declared:

the protocol”s name (line 1);
the communicating processes in the protocol (line 2),
the types of exchanged messages (line 2),

the initial sending sequence denoted “empty” (line 4),

the constructor function denoted "send” (line 5),

some state functions (line 6), and

some symbols which are used in the rules section. For
example in the above declarations, symbols r and s are two
sending sequences; u 1s a process; i.e., it is either p or
q; and my,...,my are messages of types Ty,...,tp

respectively.



The rules section consists of constructor rules which define a

validation condition for the protocol and state rules which define the

state functicns mentioned earlier. A constructor rule is of the form:

s = send(u,my,r) Liff condi(u,mi;r)
where r and s are sending sequences, u is a process, and cond;(u,m;,r)
is a validation condition for a message my of type L, i=l,.4s,ks In
other words, a valldation condition cond, for the protocol can be
expressed in terﬁs of these cond;"s as follows:
conds(u,m,r) = case type(m) of

ty: cond)(u,m,r)

ty: condy(u,m,r)

end case

where type(m) returns the type of message m. The predicates condy,
i=1,...,k, are defined in terms of the state functions 1in the

specification.

The domain and range of a state function are defined in the
declaration section (line 6) as follows:
{function name> : <{domainy --> <{rang>;
Each state function is defined by one state rule in the rules section;
the definition is by recursion using the initial sending sequence
"empty". and the conétructor function "send”. Such a definition is
similar to a state function definition in the algebraic specifications

of abstract data types {6] and [7}.



IV. EXAMPLES

A. A Simple Window Protocol

Two processes p and ¢ communicate by exchanglng "data™ and “ack”

messages such that the following two conditions are always satisfied:

(1) The number of data messages sent by elther process should
not exceed by more than N the number of ack messages sent
by the other process, where N is a predefined positive
integer.

(1i) The number of ack messages sent by either process should

not exceed the number of data messages sent by the other
process.

A specification for this protocol has the following two state

functions:

cntd(u,s): gives the total number of data messages send by
process u in the sending sequence s, and

entk(u,s): gives the total number of ack messages sent by process

u in the sending sequence 8.

The protocol can be specified in terms of a positive integer parameter

N as follows.



Protocol window (N : integer)

process p,q
msg typ data,ack

init snd seq empty
constructor send: process X mSg X Seq ~—> seq

state entd: process x snd seq --> integer
cntk: process x snd seq ——> integer

" declare r,s: snd seq;
u,v: distinct process; w: process;
d: data msg; a: ack msg; m: msg;

constructor rules
s = send(u,d,r) iff cntd{u,r) - cntk(v,r) <{ N;

s = send(u,a,r) 1ff cntk(u,r) - cntd{v,r) < 0;

state rules
cntd(u,s)

f

if s = empty
then 0
elsif 8 = send(u,d,r)
then cntd(u,r) + 1
elsif 8 = send(w,m,r)
then cntd(u,r);

cntk(u,s) = if s = empty

elsif s = send(u,a,r)
then cntk(u,r) + 1

elgif s = send(w,m,r)
then cntk(u,r);

End window;

Notice that the two symbols u and v denote two distinct processes
from the set {p,q}; and w denotes a process in the same set. Thus, if
u,v, and w appear in a (constructor or state) rule, and if u denotes
process p then v denotes q and w denotes either p or ¢. Otherwise, u

denotes q, v denotes p and w denotes either p or q.

B. An Alternating Bit Protocol

Two processes p and q exchange three types of messages “dataQ",

"datal”, and "ack” such that the following three conditions are

satisfied:
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(1) If no message 1s lost, each process sends a dataQ message,
receives an ack, sends a datal message, receives an ack,
sends a data0 message, and so on.

(ii) If a data message d is lost after being sent by a process,
then the process will not receive an ack and it has to time
itself out to resend message d again.

(1i1i) If an ack message is lost after being sent by the process,
then the process will receive again the last data message.
However, the process can detect this redundancy by
recognizing that both messages are of the same type; i.e.,
they are both of type data0 or type datal.

A sending sequence specification for this protocol cannot
explicitly describe message loss and time-outs; rather, it specifies
sending sequences which result from message loss and time-outs. For
example, -the sending sequence |

+++ osend(p,d0).send(p,d0). ...
where d0 is a datal message means that p may send the same data0
message twice (implying that the first message has been lost and p
times itself out to seﬁt it again). Also, the sending sequence
oo .send(p,dO).send(q,a).send(p,dﬂ). “on .
where "a" 1is an ack message means that p may resend the last message
even after q sends an ack message (implying that the ack has been lost
after being sent). The sending sequence
| cee .send(p,dO).send(q,a).send(p;dl). sae
where dl is a datal message means a message transmission without loss,

An example of an erroneous sequence is as follows:

+o. osend(p,d0).send(p,dl). ...
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- A specification for this protocol has the following two state

functions:

lastd(u,s): gives the last data message sent by process u in the
sending sequence s, and

ack?{u,s): igs a boolean function which returns the value true iff

process u has sent an ack after the other process has
sent its last data message in the sending sequence s.

The protocol can be specified as follows.
Protocol alternating-bit

process p,q
msg typ dataQ, datal, ack

init snd seq empty
constructor send: process X msg X seq ——> seq

state lastd: process x snd seq —--> msg
ack?: process x snd seq --> boolean

declare r,s: snd seq;
u,v: distinct process; w: process;
d0: data0 msg; dl: datal msg; a: ack msg; m: msg;

construction rules

s = send(u,d0,r) iff (lastd(u,r) = d0) or
(lastd{u,r) = dl and
ack?(v,r));

s = send(u,dl,r) iff (lastd(u,r} = dl) or
{lastd(u,r) = d0 and
ack?(v,r));

s = send(u,a,r) iff not ack?(u,r);

state rules
lastd(u,s) = 1if s = empty or s = send(u,dl,r)
" then d1
elsif s = send(u,d0,r)
then dO
elsif s = send(w,m;r)
then lastd{u,r);

ack?(u,s) = if s = empty or s = send(u,a,r)
then true
elsif s = send(v,d0,r) or s = send(v,dl,r)
then false
elsif 8 = send(w,m,r)
then ack?(u,r);

End alternating-bit;
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V. A RUN-TIME CHECKING SYSTEM

Let C be a communication protocol; and assume that two
communicating processes p and q are designed to exchange messages
according te C. It is required to design a run-time checking system
which observes the message exchanges between p and q to verify that
they indeed follow C. Such a system can be used in testing p and q to
detect their design errors; or it can be used to increase the system

reliability against hardware or software failures.

Figure 1 shows an outline for the run-time checking system. It
consists of two checking processes cp and cq placed.between p and
qQ. Processes cp and cq store the sending sequence constructed so far
between p and q; let rp and rq denote the sending sequences stored in
cp and cq respectively. When process p sends a message ml,'the message
first pgoes to c¢p to check  the p:otocol validity condition
cond.(p,my,rp). If it is false, process cp sends an “err” message to
cq; and both cp and ¢q reach an error state and stop. This should
alert an external operator to stop the system, reinitialize it, or
perform any other checking or correction action. On the other hand, if
condc(p,ml,rp)=££gg, then process cp sends a "null” message to process
p so that p can resume execution. Then, cp sends my to cq to ubdate
its current sending sequence rq and sends back a "null" message to
process cp to update rp. Finally, process cq sends m; to process g;
and process ép waits to receive the next message from p. Process cp

can be defined as follows.



Process p

Process g

ml, null, err

My s null, err Process cq

Figure 1.

A run~time checking system
for the communication protocol
between p and q.
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process ¢p;
var rp : snd seq init empty;

begin
loop

[receive err from cq: ERROR

[lreceive my from cq: send my to p;

send null to cq;
rp := rp.send(q,my)

[jreceive m; from p:

if [not condg(p,m;,rp): send err to cq; ERROR
[Jcond(p,my,rp) : send null to p;

send mj to cq;

if {receive err from cq : ERROR

[lreceive null from cq :

rp := rp.send(p,m))

{ jreceive my from cq:

rp := rp.send(p,m; ).send(q,my)

1£1
J£1

Jend loop
end cp;

Note 1: The'code for cq 1is similar to that for cp with minor
changes: rp becomes rq; m; becomes my and vice versa; and processes p
and cq become q and cp respectively. There is one exception to this
rule, namely the statement rp := rp.sénd(p,ml).send(q,mz)
in cp becomes rq := rq.send(p,ml).send(q,mz)
in c¢q. This ensures that both c¢p and cq update rp and 1q

(respectively) in exactly the same way. [}



14

Note 2: Two assumptions are made in designing processes cp and cqg.
First, processes p and q are assumed to communiéate. indefinitely;
thus, cp and cq never terminate. Second, all sent messages are assumed
to reach their destinations without loss or corruption. Both these
assumptions can be relaxed on the expense of making processes cp and

cq more complicated. _ [1

Note 3: Assume that at some instant, when rp=rger, process.cp recelves
m; from p and cq receives my from q. Assume also that condc(p,ml,r) =
condc(q,mz,r) = true. Thus, c¢p and cq send null messageé to p and q
respectively and proceed to update rp and rq to become as follows.

rp = rq = r,send(p,ml).send(q,mz)
This implies that condc(q,mz,send(p,ml,r)) should be true. In other

words, cond, should satisfy the following parallelism condition for

any my and m,, and any sending sequence r:

condc(p,ml,r)ﬁcondc(q,mz,r)==>condc(q,mw,send(p,ml,r))

where A and ==> denote the logical and” and “implication”
respectively. As an example, consider the window protocol discussed
earliers To verify that the validation condition for this protocol

satisfies the parallelism condition, four cases need to be considered.

Case 1 my and m, are data messages dl and dz (respectively):

cond-(p,d;,r) A condg(q,d,, 1)
==> condg(q,dy,r)

= (catd(q,r) - entk(p,r) < N)
== (entd(q,send(p,d;,r)) ~ cntk(p,send(p,dl,r)) < N)

= condc(q,dz,send(p,dl,r))
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Case 2 m; is a data message d and m, is an ack a:

conds(p,d,r) A conds(q,a,r)
==> condp(q,a,r)

= {entk(q,r) - cntd(p,r) < 0)
==> (cntk{q,r) ~ cntd(p,r) -1 < 0}
= condc(q,a,send(p,d,r))

Case 3 m; is an ack message a and m, 18 a data message d:

It is identical to case 2 except replace p with q and vice versa.

Case 4 m; and m, are ack messages a; and a, {respectively):

condnr(p,a;,r) A condp(q,ay,r)
Condc(q ,8.2 ,r)

{entk{q,r) - cntd{p,r) < 0)
condn(q,as,send(p,ay,r))

i
U]
v

This completes the proof that conds for the window protocol
satisfies the required parallelism condition. Thus, a run-time
checking system with cp and cq as defined earlier can be constructed

for this protocol. ' ’ []

VI. CONCLUDING REMARKS:

The discussion in this paper can be extended to include the case
of n (n>2) communicating processes pj,ss.,p,. This requires to extend
the definitions of the constructor function "send” and the validity

condition "condc" to become as follows.

send : process X mSg X process X seq --» seq
condn: process x msg x process x snd seq --> boolean
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Thus, s = send(pi,m,pj,r) is the sequence generated from sequence r by
pProcess py sending a message m to process pj; 5 is a sending sequence

iff r is a sending sequence and condc(pi,m,pj,r) = true.

.In this case, the run-time checking system should be also
extended to include n checking processes cpi,...,cpn, where one cpy is
assigned to each communicating process py. Each cpy stores a copy Tpy
of the sending sequence constructed so far by the‘processés. When a
process py sends a message m Lo process Py the checking process cpy
broadcasts m to all the other cpk's (including cpj) so that they can
all update their rpk’s; then only cpj delivers m to its process Py
Since the checking processes always communicate in a broadcast
fashion, it is recommended to connect them to a broadcast medium,

e.g., a shared bus.

Although sending sequence specifications do not exhibit
inconsistencies such as deadlocks or unspecified réceptions, they may
exhibit non-executable sequences (also a problem for communicating
finite state machines [3] and [9]). For example, let r be a sending
sequence for the twoc processes p and q in a protocol C; and assume

that

(1) condp(p,my,r) = true,
C 1

(ii) condc(q,mz,r) = true, and

(11i) condp(p,m),send(q,mp,r)) = false.

From (1), it seems reasonable to assume that p can send m when the
sending sequence is r. But from {(ii) and (iii), p shouldn“t do so
because q might have sent m, prior to p sending m; (without p knowing
it because of the transmission delay) causing an erroneous sequence, A

similar situation occurs {f (iii{) is replaced by
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(iv) condc(q,mz,send(p,ml,r)) = false.

To verify that a sending sequence specification for some protocol
doesn”t exhibit non-executable sequences, one should prove that the
specification satisfies the following property for any m;, m,, and r:

condc(p,ml,r)/\condc(q,mz,r)
==) condc(p,ml,send(q,mz,r))/\ condg(q,mq,5end(p,m;,T))

This 1s stronger than the parallelism condition discussed in Section
V. Still, it can be proved in a similar way as 1llustrated on the

window protocol in Section V.
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