"GIRL and GLISP:
An Efficient Representation Language

Gordon S. Novak Jr.

TR-172

Computer Science Department
University of Texas at Austin
Austin, Texas 78712

March, 1981

(Submitted to the Seventh 1International Joint Conference on
Artificial Intelligence, August, 1981l.)

This research was supported by NSF Award No. SED-7912843 in
the Joint National 1Institute of Education - National Science
Foundation Program of Research on Cognitive Processes and the
Structure of Knowledge in Science and Mathematics.

Page 2
1.8 INTRODUCTION

This paper describes GIRL, a hierarchical, "frame-like"
represeg%ation language, and GLISP, a LISP-based language for
accessing data represented in GIRL (or another representation
language) or in ordinary LISP structures. The combination of
GIRL and a compiler which compiles GLISP programs (into LISP)
relative to a GIRL knowledge Dbase provides powérful language

features with high efficiency.

2.8 GIRL REPRESENTATION LANGUAGE

GIRL is a hierarchical, "frame-like" representation
language; of the existing représentation languages, it is
probably most like UNITS [1]. A‘ node in the hierarchy which
represents a class of units has associated with it a Prototype
unit which specifies the structure of units in the «class. The
designer of the knowledge base <can specify for each subtree
whether properties are to be <copied from a class inkto 1its
descendants, or whether inheritance of properties is to be done
at runtime; thus, the time required for run-time inheritance can
be traded off against space for explicit copies as desired for

each class of units.

A unit contains Slots, each of which 1is analogous to an
expanded property list entry. A slot contains Aspects, which may
include the slot's Value, If-Needed and If-aAdded functions, an
Inheritance Mode (used primarily to guide prompting of the user

when new units are being created), and a Structure Description,

Page 3

which describes the expected structure of the slot's value.
Normally, every slot will have a Structure Description; for
Instancg units, the Structure Description is typically inherited
from the prototype for the unit's class rather than being copied
in the instance. The use of Structure Descriptions by the GLISP

compiler gives the language much of its power.

3.¢ STRUCTURE DESCRIPTIONS

A Structure Description (SD) is analogous to a record
structure declaration 1in a language such as PASCAL. The lowest
level of a SD is a basic LISpP datatype (e.g., ATOM, INTEGER,
REAL, BOOLEAN, NIL, ANYTHING), a name which has been declared as
the name of a particular SD, or (A <class>), where <class> 1is a
class of units in the GIRL knowledge base. A part of a SD can be
named by enclosing it in a 1list with its name, (<name> SD) ;
thus, a substructure can have multiple names if desired.
Compound structures can be specified using grouping operators
such as (CONS SDl SD2), (LIST SDl...SDn) [a list of exactly the
elements SDl...SDnl, (LISTOF SD) [a list of =zero or more

elements, each of which is of the form SD], and others.

4.0 GLISP ACCESS LANGUAGE

GLISP is designed to allow creation of and access to
structures (either LISP structures or GIRL units) in a
transparent and somewhat informal fashion, and to allow
structures to be changed without changing the programs which

reference the structures. Two syntaxes are defined for accessing

Page 4

parts of Structures: an English-1like syntax, e.g.
(THE FIELD OF RECORD), and a syntax like that of CLISP [2], e.g.
RECORDFIELD. Such a path specification may of course be
extended through multiple records. Definite references to
structures or fields are allowed if they are defined relative to
the Context of the program at the point of reference, as in
(THE COLOR OF THE CAT) or Simply (THE COLOR) if a CAT is in

context.

Both the interpretive version of GLISP and the GLISP
compiler maintain a Context which records the structures which
have been referenced within a function. 1Initially, the context
is defined by the arguments of the function, its PROG variables,
and any declared GLOBAL variables. Conceptually, whenever a new
structure 1is accessed (whether by reference to part of a
structure, application of a known LISP function to a structure,
or calling a function whose result type is known), the resulting
value and its structure description are added to the Context.
The GLISP interpreter maintains the Context as an actual
structure at runtime, while the GLISP compiler computes it at
compile time wusing flow analysis [3]. The following example

illustrates the use of context within a function:

(CATCOUNT (GLAMBDA ((A GRANDMOTHER))
(PROG ((COUNT 8))
(FOR EACH CAT WITH COLOR = 'CALICO DO COUNT <+ 1)

(RETURN COUNT))))

The first time this function is interpreted by INTERLISP [2], the

Page 5

nonstandard GLAMBDA will cause the GLISP compiler to be called
with the GLAMBDA expression as its argument; the compiler will
compilegthe function and return a normal LISP EXPR, which will be
used thereafter (and which could be compiled further by the LISP
compiler) . In this example, only the type of the function's
argument is declared; since the argument will be in context, it
is ohly necessary to give it a variable name if it must be
referred to explicitlyA(aﬁ when, for example, there are two
objects of the same type in context). The PROG Variable COUNT 1is
initialized to zero, and as a side effect receives the type
INTEGER. Since a GRANDMOTHER 1is in context, the compiler can
determine how to get her set of CATs and how to generate a loop
to search through them. Within the‘loop, the current CAT will be
in context, and its COLOR can be retrieved. The SD of the COLOR
of a CAT is also retrieved, and if necessary, the constant value
YCALICO is coerced by the compiler to the appropriate value. For
example, 1f the ©SD of COLOR were (A CAT-COLOR) and CALICO were
specified as an alias of the 1instance CALICO-CAT-COLOR, the
compiled <code would test against the constant CALICO-CAT-COLOR.
This feature allows informal specification of ambiguous terms
whose meaning 1is determined relative to context. Operators can
be "overloaded" or automatically coerced as well; the operator
“—+ , whose meaning 1is Append when applied to 1lists, 1is

interpreted as addition when applied to numbers.

We have eschewed the currently fashionable notion of strong
typing in favor of the notion that the compiler should infer

types whenever possible. This makes possible significant changes

Page 6

in data structures with no changes in the programs which access
them. A GRANDMOTHER, for example, could be a LISP structure
which ;ncludes a 1list of CATs, or an atom with CATs on its
property list, or a GIRL unit which has CATs as a substructure of

the contents of the PETS slot.

Initial versions of GIRL and the GLISP compiler and

interpreter are currently running.

5.0 REFERENCES

1. stefik, M., "An Examination of a Frame-Structured
Representation System", Proc. 6th IJCAI, Tokyo, 1979,

PpP. 845-852.

2. Teitelman, W., "INTERLISP Reference Manual", Xerox Palo

Alto Research Center, 1978.

3. Novak, G., "Compilation of Definite References Using
Flow Analysis of Context and Structure Description",

forthcoming.

