GDL: A High Leavel,
Access—-Path Oriented Language
Hideko 5. Kunii
J. €. Browne

Umeshwar Daval

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

March 10, 1981 TR-175

This research was partially supported by a grant from NASA Langley

Research Center, Number NSG1446.

CDL: A High Level, Access—Path Oriented Language

H. S. Kunii, J. C. Browne and Umeshwar Dayal

Department of Computer Sciences

The University of Texas at Austin

I~

Austin, Texas 7871

ABSTRACT

We present & high level data language called the Graphical Data

=]

Language (GDL) for network structures. The manipulation gstatements
in the GDL are formulated as algebraic operations on labelled
directed graphs iancluding link (arc) operatolS- Logical access
paths are visible to the user and may be defined dynamically in
terms of links {arcs). Thus the user has flexible countrol over
execution efficiency while retaining full dats independence. The
expressive capability of’GDL includes traansitive closure, grouping

and dynamic type creation for records as well as links. Its query

representatiou is structured and conclise.

Page 2

1.0 INTRODUCTION

Tt has become clear that no single one of the popular exiscing

dara wmodels [TSC76a, CDDJ0,72, DBT/L, TYLT6 | is a suitable or

adequate basis for all types of applications. The ANSLI-3PARC
[ANSTS5] multi~schema approach is partially motivated by this
problem. The severe ditficulties in desigaing aad implementing

effective schema mappings [DYL79] make it worthwhile to cont inue the

search for more effective integrated data mode ls.

An ideal data amodel of the 4foLLowlng

b
o
-
o
(oW
el
o]
:
o
T
n
n
5%
e

properties.

L. Representational power combined with a usable interface

2. A formal algebraic foundation tor data relationships and

the operations on data and data relationships

[
s

Practical data ilndependence. The strucdture and efficiency
of data base operations should be independent of mappings

between physical representations.

4. Specificatioas of processing patterns at a legical and
abstract level consistent with practical data independence.
This is necessary to obtain efficiency with modest

resources .

This paper introduces a directed graph based data model and a

set of formal operations on data and data relatiocnships which

posseéses’all of these properties to at least a practical degree.

Records are represented as nodes characterized by attributes and

w

holding values. Data relationships and access paths are represented

by directed arcs The set of operations and their

combination rules form a DML and the data model together with the
DML forms a graphical data language (GDhL). The operations include
both record and link manipulatioans. Fach operation is algebraically
defined. The composition rules yield a high level DML without loss
of functionality. The operatiouns of the DML include definition anad
deletioan of types as well as value occurrences. Definitions of
existing record types and link types can be dynamically changed.

The GDL can express transitive closure and groupiog.

The definition of GDL is at a preliminary stage. Facilitlies
for integrity management and for aggregate operatioas {such as
summatioans or averages) are not yet defined. This paper presents an
ogverview of data definitioan and manipulation statements and the
algebraic graph operatiouns into which a manipulation statement is
decomposed. A graph based data model allows specifications of

expected access paths through definition of arcs in the graph. This

introduces transparency into the data model at an abstract level.

Transparency in a data language is a c¢rucial factor tn avoid
disastrous performance of queries as 1in general purpose programming
languages [WRT74]. L1t avoids the imposition upon the DMBS of
complex tasks such as the design of access paths and query
optimization to obtain reasonable performance. [t 1is also not
desirable to require a user to know about physical details of access
paths agd storage structures. Qur approach is to have the user

handle access paths at an abstract level in rerms ot graph

Page 4

manipulation. This means the user specify an information Dbase on
processing patteruns which can be used to gengrate efficient

processing structures.

Data independence ia GDL 1is based upon two factors. The first
and previously mentioaned factor is that relationships and access
paths are specified only in abstract representations. The secound
factor is that GDL allows dynamic type creation and type alteration
so that execution environments can he tailored to processing

requirements.

The representational power of GDL (full directed graphs) can be
shown to be greater than that of auay of the currently popular data
models. The visual and intuitive representation of relationships
and access paths by graphs aids schema definition and construction.
The high level nature of CDL DML statements simplifies programming

and unifies embedded and free-standing use of the data base.

2.0 RELATED WORK

GDL can be used to implement other data models such as the
relational model and the network model. (It might be a powerful
candidate for a counceptual schema data model in the 3 level schema

system). The entity-relationship wmodel [CHN76] may be anaturally

g

mapped onto GDL.

The Link and Selector Language [TSC76] has a similar approach
in the sense that LSL also intends to solve the performance problems

by making access paths visible to users. GDL is a much higher level

language than LSL. GDL is expressed in terms of graphs and the
power of record and link selection is much more powerful than in
LsL. LSL was intended as a target language for DML compilers while

CDL is a complete language systeam.

An extended owoner-coupled set data model proposed by J.

Bradley [BRD78] developed a non-procedural language oo a
CODASYL-1ike graph data structure. However, it is a very
restrictive data wmodel Dbecause linkages between record types are

allowed only if corresponding connection fields exist in those

record types.

NQUEL [DYL79] is a non-procedural language for a generalized
network model. We adopt NQUEL-like notation for link operators in
GDL . However, GDL differs from NQUEL in that it makes access paths
explicitly visible to users, while NQUEL treats links merely as
logical relationships. Also, GDL is algebraic (iP.e., queries are
constructed by composing elementary operations), while NQUEL 1is

non-procedural and predicate calculus-based.

The Unified Database Language (UDL) developed by C. J. Date
[DAT8O] is claimed Lo accommoedate both record-at—a—time and

set—-at—a—time manipulatioans on network data structures which are
simpler than CODASYL data structure. (Relational aad nierarchical
data models arve treated as subsets of the network model.)
Record—-at—a-time manipulations are ‘made clear in UDL by the use of a
"eursor" concept. The Set-at-a-time manipulatioans of UDL are not
sufficient - to express arbitrary queries on the network structure:

GDL is a more dymnamic language Dbecause of the operatlons for

Page &

creating record r es and Link types as a art of DML progranm
I g

executblion.

3.0 DATA DEFINITIONS

The data structures of GDL are directed graphs. The nodes

gl

represent records and the arcs represent tinks. Each node {(arc) 1is

labelled with the type of the record (link) that it represents.

A schema S, which 1s =a logical description of a database, s
described by R a set of record types, and L a set of link types,
where
R = {Rili=l,l}

and E={Lj§j:i,m}.

L can be an empty setl. Ann artribute set Ai is associated with each

record type Ri:

_ (A¥ -
A= Ay Ik Lo}

. . . K . . .
Associated with each attribute Ai iy A domailn ot rhe
, . k ,] e
occurences {values), denoted as domain (Ai)' Further, 1f X =
{Ai ik = 1, p} and X « Ai’ then we define domain (X) as the

; - . k .
Cartesian product of domain (Ai)’ I = k = p. Aun occurrence ob a

. : K . -
given record type is a type of values Vi € domain (Ai). Then, let

r{X] denote the value of r on domain X, where r £ Ri and X <« Ai.

An initial node record type Ri and a terminal node record type

Ri are defined for each link type Lj:

Page 7

We allow self—-loop link types in which the ianitial node record

type is the same as the terminal node record types. L} = (Ri’R')‘
. L
This kind of link type 1is called a recursive Link type. There can

be more trhan one link type between a given pair of an iunitial node

record type and a terminal anode record type- Lj = (Ri;Ri’), L.’
]
= (Ri,Ri’). Link types describe the binary relationships among

record types which can be visualized by Bachman diagrams [BCHBEY .

Actual occurreunces of records and links determine 5, a database

state for a given scheua S (an exteusion of schema 8) . Let us

denote ﬁi as a state of record type Ri and Ej as a state of Link

t e L1 .:

yp 3
R, = {r. | r.€R.}
—1i i i i
L. = 1. 1.€ L.,
1 {] 1 3 J}

where Ly and lj denote an occurcrence of record type R.L and and
occurrence of Llink type Lj respectively. Note that for a given link
occurrence, its initial and terminal node record occurrences must

exlist. Then, we can write 5 as follows:

5 = (R, L) :

where R = {Ei j i=1,1}

and L = {L. | j=1,m}

Orderin among recoerds of a iven record type can be ex ressed by a
ZrEE 3 s b J

recursive i1ink type. The GDL may undertake [0 automatically update

Page 8

such link occurrences whenever the states of associated record Lypes
change. Unlike the CODASYL DBTGC network model {DBT7L}, the
functionality of a link is not imposed in GDL data structure. (1t

may be defined as oane of the constraints on the data structure.)

An example of a schema defianition in GDL is given in Fig. L.

4.0 GDL ELEMENTARY OPERATIONS

The manipulation statements of GhL described in the next
section are rranslated into owne or @more DL elementary operations.
These operations are classified into comventi;nal gset operations,
and database operations on record types aand link types. The first
type of operation includes Union (v), intersection (n), and
difference (—). In this section, we describe typical operations of
the second type (not all of them) to give an overall picture of the
DML or GDL language. There are three creation operations {(record,

link, and unique record identification (URL)-tuple) amoag CDL s

elementary operatious.

Record Concatenation

This operation creates new record occurrences by concatenatiog
a pair of record occurrences from LwWo cecord types connected by a

given link type L:

{(rlr\rz) tory € Ry A r,€ Ry A 31 € L (L=(rl » To) y oY,

where Rl and RZ are the initial and the terminal aode record

N . .
of L, (r1 rz) denotes the concatenatbtion of record occcurrences

@]

typ

Page

define schema ACADEMIC - RECORD
record COURSE
attribute CHNO integerv
attribute CNAME character 10
attribute CORE character 3

record ENROLLMENT

attribute CNO integer
attribute SNO integer
attribute GRADE character Z

link REPORT
initial node COURSE
terminal node ENROLLMENT
end

Fig. 1| An exaample of a schema defiunition

Ty and T, - The attribute s
of Al and AZ. If the
record types, then a link t
rypes must be created befor
Link Creation
This operation create

initial node record type Rl

.

{(rl, r2) rlf RlA

where {rl, r,) denotes
L.

creates evety possible link

URI-tuple Creation

Each record occurrence

identifier URIL. The URL

the record occurrence rsel

are not used in processlng
followed without the use ot
URI’s may be used in the fo

in place of actual record o

coavenient basis for expres

A UR[-tuple is a tuple

(It may also be visualized

atcributes are record type

a single record type R or

as in the record concatenat

Page 10
et of the result record type is the union
user wants O concatenatbte WO unconnected

ype which coanects the above two record

e record concatenation can take place.

5 new link occurrences from a glven

to a gilven terminal node record Lype R,

r2€ Rz},

the link occurrence from

cccurrence from Rl to R,

may be represented by a anique record

for a record occurrence is equivalent to

f when values fron the record occurrence

{r is often the case that lianks wmay be

the actual values 0f record occurrences.

romulation and execubion of traversal

ccurreaces. Operatlions on uri’ are a

sing the semantics of link rraversal.

of the URIL s for record occurreaces

o

as a recursively linked record type whos

URTI‘s.) URI-tuple crearion can be done on

rwo record types connected by a Link Type

-t

ion. For the tirst case, i returns:

Page 11
{<URI(x) > = r € R}. For Lhe secound case, it refurns:
{URI T, URL (r. T, £ SN S
{ (i), \r2)> r € R A T,E R, A
e (L o= (o, ry)) 1}
The next Lwo operatioas {(projection aand intra—-record
restriction) are similar Lo those in the relational mode L.
JURI-tuple projection, URI~-tuple expansion and the refaereqce

operation on URL~tuples are rather ualque in data languages although

implementations must jmplicitly use these operatlons.

Projection

[t extracts the values of a given attribute set, for a given
record type and counstructs a new tuple coosisting of the above
values, i.e., it returns {r{X}|}, where rl X} is defined in the

previous seCction.

[ntra—-Record Restriction

This operation corresponds to the restriction in the velational

algebra [CDD/2]. It selects the record occcurrences of a single
record type which satisfy a given intra-record restriction. (e.g-

SALARY >1000).

URL-tuple projection

1

This operation extracts a set of UR[g of glven record type(s)
from a given set of UrRI-tuples, similar tO the projection above.
For example, we may extract

{<URL(rL}>} from {<UR£(rl), Urt (r2)>} by the UR[-tuple

projection.

Uy e A
URI-tuple expaasion

This operation adds one more URI type to a gilven URL~-tuple set.

For example, if we want ro add URIL’s for record type R3 ro

{<URI(rl), URI(r,>}, thea the URL tuple expanslon feturns
{<URL(r), URIKr,), URL(rq)>}.
Reference

[t retrieves actual values of record cccurreances ftor a givean
set S of URTI tuples. For example the refereace to {(URE(EL),

URi(r2)>} returns {<rl,r2>}.

Group

Some queries deal with properties of aggregrates of record/link
occurrences rather than properties of individual record/link

ind students {(SNO) who

~n

occurrences. For example, we may wanl LO
took all the core COUTSES {(The schema dliagran is shown in Fig.
2.) To answer this gquestion we need to group the record occurrences
of ENROLLMENT by SNG and test whether each group contains all the
core courses. We incorporate this grouping concept into Ltink

operators. We define a group which is an equivalence class on Ri:

gry (x,r) = {r" = P €RL A ' lx] = rlxl}

Thus, vecord occurrences of a record type for a given database
state can be partitioned into disjoint groups . We denocte this

collection of groups as GRi(X):

gRi (X) = {gRi (X,r) : r €Ri}

Page 13

Further we can also form the same cauivalence class {(grouy b
s P Y

specifying the value x of tlXl]:

Bri (Xx,x) = {r ¢ ERiAr[X]=x}

where x € domain (X))

Gop (X) = fgy, (X,x) @ = €RIXI}

Link operators, which we describe next, are performed o0 this

collection of groups - [f no grouping 1is specified, then tink
operators are performed on individual record occurrences. Quotient
relations 1n [FRT77] are also a collection of equivalence classes

callied blocks on a relation. These authors define an algebra of
quotient relations to add a set-processing capability to the
relational approach. On the other hand, we develop an algebra based

on graph data structures.

Link Operators

GCDL provides several link operators £O enhance the expressive
power of the language- Five types of Llink operator are described 1in
this paper. Fach link operator has four variations, each of which

returns occurrences of a differeat type as the result:

1. record occurrences of either the inicial or rhe terminal

node record type

2. concatenated record occurences of the initial and terminal

- node record types

Page 14

3. URI’s for record occurrences

4. truples of URI’s for the record occurrences

Which variant of a link operator should be employed is determined by

the context ia which the operator is used. For example, 1f a Llink
operator 1is used in the context of deciving record occurrences from
more than one record type then rhe second variant is chosen. {n the

following descriptiouns of link operators we deal with only the [irst

variant, since the remaining ones are easily inferred from it.

i) existeatial liuk operator

Ri-—->/L/(A2)-—-=>R2 or Ri-==>(Al)/L/-—->RZ

A2 specifies a subset of attributes of R2 by which a grouping
is wmade. The grouplag is optioaal. [f the result to be returned (s
rhe terminal node record type R2, then this operator returns:

{ r2 : r2€R2 A3rl €R1 Fr27€ ggp (A2, 12) d1 e L

(L = (L, r27)) 1}

That is, 1t returns the occurrences of R2 which are in the

groups having at least one link occurrence trom record type Ri.

Fig. 3 shows an example of this operator. [ts schema diagram 1s
shown in Fig- 2. [CNAME = "DB"] 1s aan intra-record restriction as

presented above.

If the initial node record type Rl is to be returned, then the
result is:

{ rl : rl€RIAI2ER2 Frl € g, (al,rl) 31 e L

(1 = (rl, r27°))1

COURSE

|CNO |CNAME [CORE]

rel
2z
o
<
r
[
X
o]
2,
3

[CNO |SNO | GRADE]

Fig. 2 An example of a schema

State:

COURSE

ENROLLMENT,

Intent: Retrieve atl
students who took DB course.
GDL link operator:

COURSE [NAME = "DB"] ~—=>/REPORT/(SNO)-—~> ENROLLMENT

refburns

{ (2, 20, B), (1, 20, A),

Fig. 3 An example of an existential link op

ENROLLMENT

the

occurrences

Page 15

of the

(2,10, A), (3,10, B)}

Page 16

ii) negative existential link operator

Ri-+->/L/{A2)-+->R2Z or Ri-+->{AL)/L/-+->RY
This is simply the negation of the existential Link operator.
It returus:
(A2,c2) 1€ L

(r2 : r2€R2A (3l €RL Fr27€ g,

(1 = (rl,r27))}

{(rl : rl€Rla "(3r2€Rr2 3ri’€ gy (Al,cl) e

(1 = (ct, £27))}

{ii) universal link operator

N/
=]
[

Rl===>(A1l)/L/(A2)===

Al and A2 are subsets of attributes of Rl and RZ. They specliy
how the groupings are to be made on Rl and RZ. The grouping
specifications are again optional. [f the terminal node record type

2 jg the result type, then this operator returns:

3

: r2€RIN Vg €

R1 GRK{AL) 3r1€ g

{r ir27 € ng{Az,r2)

R1
e (1=(rl,c2"))}

That is, this operator first partitions record occurrences of
Ri and RZ according Lo the grouping specificatioans. Then, it
returns the record occurrences in the group Bgy such that for every
gToup 8o there is at least one link from aqy record occurrences 1in
to any record occurence in Bpo- One example is shown in Fig.
4. The division operation of relational algebra can be easily

simulated by this operator.

Page 17

Intent: Retrieve all the ENROLLMENT occurrences of the
students who took all the core courses.
GDL link operator:

COURSE[CORE = "YES"] ===> JREPORT/(SNO) ===> ENROLLMENT

returns

{ (2,20,8), (1,20,A), (3,20,C), (1,30,A), (3,30,A)}

Fig. 4 An example of a universal liak operator

Page 18

If the initial node record type is to be returned, then the

result is:

{rl : rl1 € RiaYvg €GC,,(A2) 3r2 €g ,3rl € (Al,rl)

R

R2
3 e (L=(rl ,r2))}

iv) negative universal link operator

Rl===>(Al)/L/(A2)===>R2

This is a negation of the universal link operator, and returns

either of the following, depending ou the desired result type:

{r2 : r2€Rr2An "{(Yg, £ G

~
g
e

1) 3¢l o€ Fc27 € g, (r2,A2)

R1 L

e L(l=(rl,r2")))}
or
: E A (Y M ()i()z .17 £
{rl rl € R1 = (ngf GRZ(A“) rUEZgRZ ri’ € gRl(rl)kl)

3 e (1=(rl’, r2)))}

v) transitive closure link operator

Rl -—->n /L/ n---> RI
This is a speclalized link operator which applies only on
recursive link types. We call it an (irreflexive) traasitive

closure link operator. It returns tecord occurrences each of which

is connected from one of the given record occurrences of the 1initial
node record type by a sequence oL up to n link occurrtences {n is a
positive integer). If + is specified, then the result is all record
sccurrences that are coannected from the given record cccurrences of
the initial node record type by any sequence of the occurrences of
the recursive link type. For example, we can retrieve all the

superiors (i.e., managers at every level in the hievarchy) of

specified employees by using rhis link operator.

Page 19

Note that this link operator allows the retrieval of those
record occurreaces which are coanected te themselves, although the

implementation must take cave of infivnite loops.

Inter—-record Restriction

This operation 1is similar to the intra-record restriction

i

except that its operands are the attributes of two ditfferent record
types, e.g., RI.FL = R2Z.F2. These two operands are provided by some

link operators, since we do not allow this operation o0 Lwo
unconnected record types. This coastraiunt is ilmposed for the saxe
of efficiency in processing queries. It does not reduce the powar
of this language since GDL provides the capability of creating links

dynamically.

Note that the join operator in the relational model can be
trranslated into a sequence of GDL elementary operatioans: a link
traversal by some link operatocr, amn inter-record restriction, and a

record concatenation.

5.0 DATA MANIPULATION

There are six major data manipulation statewments for both
records and links: select, derive, add, delete, remove and update.
Certain link manipulations may not be needed by a DML user. They
are, however, essential when the GDL is used for developing higher

level language interfaces. Before introducing these statements, we

need to describe synounym statements, and path and record selection

expressions which are used in many data manipulation statements.

{

Synonym

o

Synonym statements may be used when the user wants to rerference

a single record type more than ouce ian a gsingle statement:
r &

SYNONYM of E is ELl, E2

Otherwise, vecord type names and link Lype names themselves are used

to denote qualified sets of records aund links of the types.

It is not easy for nou-mathematical users ro express comp lex
queries in terms of relational calculus [CDD7L]. {t is also oot
simple to write queries in a procedural language as the CODASYL DBTG
DML . GDL eases the difficulties of writing queries by providing

aon-procedural and structured language coastructs.

In any meaningful query for selecting occurrences from a record

rype (let us call this record tvpe a source record type), the record

rypes referenced 1n the query must have soume relationships to the

source record £ e. (Here we use term "'t e loosely. To be more
P

it

®
S’

accurate, we mean by "type’ a set of some occurrences of the rype
Then, those record types are in some way counnected fto the source
record type in the GDL graph when all the relationships Dbetwaen
record types are expressed by links. Some link types and record
types can be temporarily created. Wherher record or link types are

temporary or not does not make a difference at the represeatatioan

level of queries.

Page 21

[

structure of recortd

To express the connected types, et us
define the concept of "path'™ which fis extended from the definitions
in [HRW76] to our model. A path is a flnite alternating sequence of
record types and Llink types beginniag aud ending with record types,
such that for each link type, the preceding record type is the
initial node record type of the link type and the following record
rype is the terminal node record type of the Link type. Let us QoW
expaud the notion of a path by including operations oa record types
and link types on a path, which we call a path expr: - A path
expression is 2 definitioan of a sequeance of record selections and
link rraversals (in terms of 1link operatnrs).

{path expression> ::= {path expression> ~~=> <link operator>
—~—=> <(record selection expression>|
{record selection expression> --—><link gperator> ——72
{record selection expression”

Examples of paths are showa ino ©ig-. 5. Rectangles dencte
record types and arrows denote link types. There are tive possible
paths in the graph. Link type names ave enclosed withian [/ / to
distinguish them from record type names . Any path expression 1s
translated into a seduence ot elementary operations along the
direction of the path. For example the path expression in Fig-. 5
is executed in the following sequence when Rl is the source record

type:

2 [R3 -—-->/L2/ ———D>R2Z]

[RESULTIL ——=>/L1/ ——=D>R1]

Schema:

Path expression:
path R3 —-=-=> /

Fig. 5 Aun exaumple of

R3S

L2

i ORI

i

L2/

a pa

= PR2 === > L/ === R 1

th expression

Page 22

Page 23

<3
Every path must follow rhe direction of its Link Lypes. if
bi-directional rraversals are aeeded, different link types whose

directions are opposite should be defined hetween record type pairs.

This inhibition of lnverse traversals lmproves the readabilitvy of
selection specification aad simplifies the language, withoat
decreasing the capability of selection.
Record Selection Expression
A record selection expression (RSE specifies the record
sccurrences of a given souree record type which Dhe user wants Lo
manipulate. The expraession is traaslated into a seauence of
elementary operations described in the ecarlier sectfion. We
illustrate only major features of record selection in this paper.
{record selection expression>» 1% {(source record type> {
{record selection clause> |
{record selection clause> ::= <intra record restriction> |
<{network specification>
An intra-record restriction way be specified by itrself or be

embedded in an inter-record selection specification which we call a
"pnetwork SP8§}§}C%££9Q“‘ The network specification describes the

relarionships between a given record type and other record types. A

network specification is oue or more complex path expressions which

may be connected by set operators (v, n). fach complex path
expressioq is composed of a list ot inter-record restyictioan
expressions and a path expression described before. Any record type

.

specification appearing in the path speciflcation can ave a

o]

[N
IS

Page

qualification which is either simply an intra-record restriction or

another network specification. An inter—-recocd restriction is
performed oun the record types of the RSE as the types are
encountered along the path. Examples of GDL statemeals are given
later in this section. Note that negation has to be represented by

negative link opervrators.

Select Record

There are two manipulation statements which may be used for

record retrieval: "

select record" and "derive record”. The select
record statement retrieves record occurreaces from a single record
tyvpe, while the derive record statement selecls record occurrences
from more than one record type aund coamposes occurrences into a new
record type {analogously to the join operatlion in relational
algebra). (This procedure can also be used for iansertion.) The

reason for two record retrieval statement types 1s Lo distinguish

simple record retrieval (select record) from a compound operation of
record retrieval and record composition (devive record). The latter
is discussed later. The syntax for the select record statement Ls:

select record <target Tecord type> := <Lrecord selection
expression> {projectioa> with Caccompanied link List>

The target record type specifies the record type into which
retrieved record occurrences are Lo be brought. (We assume that all
the record types and the link types are defined before belng
refarenceﬁ.) ; The {record gselection expression> specifies

qualification of the source record type. The <projection>

Page 25

]

contalning a list of attribute names indicates that a projection
operation should be performed on the retrieved record occurrences.

is absent, the whole record is copied to the target

ot

Lt this par

record type.

A list of associated link types, which is optilionally specified
in the with <accompanied liok Llist> part, allows the user to select

bccurrences of the associated Llink types at the same time .

The initial node record types or terminal node record types

)y

must be the source record iun the select record statement.

<accompanied linked Llist>:i:= {{target Link type > ;= {gource

link type>}

The target and the source have similar meaning as in records.

The first exaample of a select record statement is shown in Fig.
6. The diagram illustrates (a part of) a schema definition in which
there 1s oae record type called EMPLOYEE (rectangle) and one
recursive link called MANAGED (arrow). Our query is to select the
names of those employees who directly manage employee KUNIL. We are
concerned with two types of EMPLOYEE here declaring El and E2 as the
synonyms of EMPLOYEL: FEl denotes the employee called KUNLT and £EZ
denotes the managers of El. We can express this query easily by a
single path. An intra- record restriction (i.e., NAME="KUNLL") is
specified for El. (NAME) in the second GDL statement speciflies a
projection on E2. MANAGERS is the target record type-. If the query
is modified to select all the superiors of EMPLOYER KUNTL, then the

path expression will have a transitive closure link operator instead

Schema:

MANAGED////—\EX
\\\1// | EMPLOYEE

intent:

Select, into MANAGERS, the names of those who directly manage

employee KUNILI

GDL statements

synonym of EMPLOYEE is El, EZ
celect record MANAGERS := EZ [path £l [NAME = "KUNTL™] ---2
JMANAGED/ ~--> E2 | (NAME)

record selection statement

Yage 27

of an existential link operator:

path EL[NAME=KUNLL|-—=>+ JMANAGED/+ —~=DE2

This example with transitive closure {(~—=>+ / IR cannot be
expressed in cthe relacional model. The select-record statement in

Fie. © is traaslated into the following:

1. intra-record resgtriction executed on El

El17 = EL[NAME = "KUNILL"]

2. existential liunk operator executed on MANACED, £1 and EZ

E2’ 1= El1’-=-—>/MANAGED/~--=>EZ

3. projection executed on £2°

{

.

MANAGERS := E27 (NAME

(The preceding sequence of elementary operations 1is simplified.
An actual implementaion may utilize the aforementioned facility of

URL-tuples to follow the liank.)

Our second example of a record selecrtion statement shown in

Fig. 7 contains a nested path expression. The schema definition is
the same as in Fig. 6. We wanl to retrieve those employees who are
managers at the lLowest level. The inner path expression speciflies
that the employees in El are not managers of any level. Their

managers are, thus, at the lowest level of an enterprise.

The next example, Fig. 8, {llustrates how to speclfy an

1 r

inter-record restriction accompanied with a link selection. [he

Pagve 28

[ntent:
into LOWEST-MANAGER, the employees who are managers of

Select,
r level.

the lowes

GDL statemenls:?:
onym of EMPLOYER s
record LOWEST-MANAGER
E2 —+-> /MANAGED/

gL, B2, &3
= €3
b=y BL] -

ect

4
m
]

Ellpath
GED/--=> E3 |

[path
/MANA(&

Fig. 7 An example of a nested path expression

Page 29

Intent:

managers (LOW-PAY-MANAGER) whose salaries are lower
one of their direct subordinates, and also the link
MANAGED (CHEAPLY-MANAGED) caonaected £o the above

select the
than at least
occcurreances of
mANadLers .

GDL statements:
synonym of EMPLOYEEL is i, EZ
select record LOW—PAY-MANAGER := E2 |
El.SALARY > E2.SALARY
path £E1-—>/MANAGED/~-DE2 i
with CHEAPLY-MANAGED := MANAGUHD

ig. 8 An example of an inter—-record restriction

£5]
.

Page 30

schema is agailn the same as Fig. 6. The restriction is done

between record type El and EZ2 connected by the Link called MANAGED.

Fig. 9 shows an example of two paths connected by a4 set
operatour. We are, in this example, retrieving those students who

are now taking "CS$386™ but who have ot actually taken 1ts

prerequisite courses. This query is decoamposed into two path

expressions counnecred with an inter section operator . This not

,._
&3]

the only way to express the above query in GDL. We can, for
example, decompose the GDL statement into two statement(s to avoid

redundant evaluation of the intra-record rvestriction on STUDENT.

The select link statement retrieves the Link occurrences of an
existing Link Cype which satisty the gqualiticatioa. {The
H

derive—link statement creates new Link occurrences according to the

qualificatcion specified.) The syontax for the select-link statement

select link <target link type> := <source lLlink type [<link

selection clause> |

The <link selection clause>» is a special case of the network
specification described dia the record selection expression. That

igs, the outermost path expressioan 1is specified as the path along the
source link type. For example, we can select link occurrences for a
link type called LOW-PAY-MANAGED from link type MANAGED similar Lo

1 e

the example in Fig. /.

Page 1

Schema:

STUDENT TAKEN COURSE
| i | CNO | CPRE-REQUISITE
........ N iy
BELNG-TAKEN \\
Intent:
select the students, Into SK1P-STUDENT, who are now taking

"03386" but who actually have not taken its prerequisite courses.

GDL statemenbls:?
select record SKIP-STUDENT := STUDENT
[(path COURSE [CNO = "es38et | -m -0 /BE{NG*TAK'N/
——=> STUDENT) n
(path COURSE [CNO = "es38eT) mmD /PRE—REQUISLT&/
——=> COURSE =%=> /TAKEN/ =§=> STUDENT) |

sl

Fig. 9 An example of two paths coanected by an intersection

operator

select 1link LOW-PAY-MANAGED := MANAGED

[ELl.SALARY > EZ. SALARY i

path g l-->/MANACGED/ -=>E2 |

{a general, we can qualitfy the initial node record type and the

terminal node record Lype. ;

gerxig Record

This statement composes new record occurrences for a given i
target record type. Its syntax is: |
%
derive record <target record typer ¥ ({derived attribute
1ist>) [<network specificatioa> |
{derived attribute listY::=<{target attributer:=
{source record typer.<{source attributey> {,<target attributer:=
{source record type>.<{source attribute>}
the <derived attribute Llist> specities the correspondence between
target attributes and source attributes. With this statement, we
can create a record type consisting of an employce name and his!hef]
manager name f[rom the schema in Fig. 6. {See Fig. 10) 1f the 3

target record type is not an empty record type, rhen created record

occurrences are added to rhe existing value sets ftor the record

Derive Link

This manipulation statement creates Oew link occurrences [or @

given link type. The syntax 1s:?

Page 33
derive link <target link typer @7 (<initial node record
type>,<terminal node record type>») = [<link derivation
specification> 1
<link derivation specification> ::= <product specificacion>]
{network clause>
{produact specification>:::<inter record rescriction List> oo
{record selectionq expressiony * Srecord selection expressiony
There are two cases of this statement. The first case Ls that there
is @no path conpecting the Ewo record rypes between which link
occurrences are to be ¢ eated. The second is that there is 4 path

connecting the record types which counsists 0of more than one 1llink
type . Ia the former, we need to produce a Cartesian product of &
given pair of initial node record type Ri1 and terminal node record
type Ro: { (ri, rt) = ri € Riart € Rt . {n the latter case we
construct the URIL tuples of the initial and terminal node record
type by processing a (complex) path expression. The Lwo record
selection expression 1n the product specification also may have
qualification as in the network speclfication. Fig. il shows an
example of this statement. We want to coastruct link type MANAGE

from record type EMPLOYEE to record type PROJECT.

If the target Link type 1s not ewmply, the created Link
occurrences are inserted £o the type. Note that the derive link

statement permits the user tO create a new access path.

tdd Record

Page

{ntent:
get all employee name/direct manager name palrs

GDL statemenis:
derive record EMP-MNG s = (ENAME :

=p 1. NAME MNAME: =E72 . NAME)
{ path El-—>/MANACED/--D>E2 |

Fig. 10 An example of a derive record statemant

Schema:

EMPLOYEE { ENO | i

|
| MANAGE

PRUOJECT | NAME | | MANAGER |

Intent:

Construct a Link type called MANAGE which coannects EMPLOYEE
PROJECT if the employee 1is the manager of the project.

GDL statementl:
derive link MANAGE = (EMPLOYEE,PRQJECT}
[EMPLOYEE.ENOKPROJECT.MANAGER
on EMPLOYEE * PROJECT |

Fig. 11 An example of a derive Link statemsnt

34

to

Page 35

To copy the occurrences of a record type into aunother record
type, we have an add record statement. Its syntax 1is:
add record <source record type> to

{target recocrd Lype>

Record occurreaces of the source record type are copied to the
ctarget record type . The tormer caan be input by the user or

established from the current database by ws ing select/derive-recaord
J &

manipulation. The source record type and the target record type
should be compatible. (Compatible means having the sawe data

structure.)

Note that If the trarget record type in the derive-record
statement is one of the record types iLa some Schema, the derive
record statement does an insertion to the schema. Also note that

this statement does aob change the state of the source record type.

This statement allows the usetr Lo copy the soecurrencas of a

link type to another link type. The syatax is:

add link <source link type> to <{target link type>

As in the add-record statement, cthis operation can be used ta
input link occurrences. The derive link statement can also be used

for the insertion of liank occurrences. Let us now define compatible

link -types: 1t two link types have both compatible initial node
record types and compatible terminal node vecord types, then they
are called compatible 1link types. The source Link type should be

compatible with the target link Cype. The add-link statement is

successfully executed oaly for the occurrences of the source liak
type wnose initial aad terminal node record occurrences actually

exist. It does not change Che state of the source Llink type.

Delete Rgggfg‘gggﬁpg}ege L;nk

The syntax is:
delete record <source record type> from

(rarget record type>

delete link <source link type> from <{target tink type>

Both statements delete the record/link occurrences of the
spurce record/link type from the target record/link type, lL.2., 2

difference operation. The source type and the targel Lype should be

compatible. They do not have any effect on rthe scurce record or
link type. 1f the record occurrences arte initial or terminal 9node
record occurrences of some Link occurrences, chen those link

occurrences are also deleted.

Remove gecord and Remove Eiﬁ&

These statements provide another form of deletion for a record
type or a liank type-. They delete the record occurrences or the Link
pccurrences which sarisfy a gilven qualification. The qualification
is specified in the same Wway as in the select-record manipulation or
in the select-link manipulation. The syntax 1s:

remove record drargetl record type>

Page 37

[<record selection clause> |

remove link <target Llink Lype>

{ <link selection clause> |

the sAme as record seleciion

[44)

The record selectioun clause 1
expresslion except that it contains only the qualitication part,
i.e., it does oot specify the source record type because Lt is the

same as the tavrgelt record type. As in the delete-record statement,

the execution of the remove—-record statemenbt wmay invalidate the
exlistence of the link cccurrences whose inltial og terminal node

record occurrences are removed by the statement .

Update Record

This wmanipulation updates values of some attributes of a record

pe . Record occurrences to be updated are qualified by the {record

~r
s

lection clause> previously described. The syubax is:

8
T

undate record <target record type>

¥

(<update actribute list>)

{ <record selection clause> i

{update attribute listY>::=<attribute name>:=<value>

{,<attribute name>:=<{value>}

ggéate Lin&

This manipulation updates qualified link occurrences: The

2]

vyvnLtax 1

wn

Page 38

update link <target link type> <update node>

{ (link selection clause?]
<update anoder::= initial node := <record selection
expressioun> | terminal node := <{record selectlion

expression>

Thg {update node> specifies a change ro be made either on the
initial mnode record Cype or on rhe terminal node record type. LE
more than one occurrence of the record type to be updated gqualifies
and these are connected to the same occurrences, then the redundant
occurrences are delected. This statement LS like the reconnect

statement in CODASYL DML and NQUEL. Fig. 12 shows an example of an

update link statement. Its schema is the same as ia Fig. Ll

As we have seen, record types aud link bLypes can be dyoaamically
created and deleted- Thus, the constralint that record types
appearing in a query must be connected by some path does not reduce
the power of the language, since the user can create necessary link

types "on the fly".

6.0 SUMMARY

We have introduced a Graphical Data Language (GDL) for datsa
structures tha are labelled directed graphs. The nodes of the
graphs represent records and the arcs represenl access paths. The

language - makes access paths and dats relationships explicitly

visible at an abstract level. These specifications are lumportant in

Page 239

{ntent:
1ink MANAGER such that REAGAN (ENO=1) manages PROJUSA

update
CARTER (ENO=2)

instead of

GDL scatement:
update link MANAGE (initial node :@= FMPLOYEE [ENO=1])
[ENO=Z | =->/MANAGE /[~~>PROJECT

[path EMFPLOYED S
{ NAME = "prOoJuUsa™ | |

12 An exauple of an update link statement

Fig.

securing efficient perforamance with modest rescurce

5.

)

[S3%

Manipulatcion

statements are described In terms of elementary algebaic operations
on graphs which 1s [ine enough to capture the user’'s inrention. We
have developed extensive operations on finks including existential,

universal and transitive closure lLiuk operators.

GDL is a high level language in which the gstructuve of a schema
i{s wvisually expressible. Therefore, GDL is not oaly easy to
implement, but also easy to formulate queries in. The expressive
power of this language is greater than that of the relational model
since it accommodates irreflexive transitive closure and grouping.

Refereaces

. [ANS75] ANSL/X3/3PaRC, “Study Group on Data
Systems: [ntecim Report, ANST - 2/8/75.

2. [AST76] Astrahan, M.M., et al., “"Systen
Approach to Database Management', ACM Tra
Systems, Vol. 1, No. 2, Jun., 19786, 97-13

3. [8CH69] Bachman, C.W., "Data Structure
Database, Vol. 1, No. 2, 1969, 4-10.

Base Management

R Relational
08 . G Databasg
7.

Diagrams", ACH

4.

6.

10.

L1

Page 41

[BRD78] Bradley, J., "Au Extended Owner—-Coupled Set Data

Model™, ACM Traus. Syscems, Vol. 3, No. 4

Dec. {978, 385-416.

[BRW80] Browne, J.C., Kunil, T.L., Kunii, H.5., Takabashi,

K., Katayama, 0. and Oyanagi, K., "An Evolutioaary Data
Rase Management System’”, FProc. [EEE COMPSAC 480, Oct.

1980, 320-326.

[CHN76] Chen, P.C., "The fntity-Relatioaship Model - Toward

4 Upnified View of Data™, ACM Trans. on Database Systems,

Yol. L, No. 1, Mar. 1976, 9-306.

-~

[¢DD70] Codd, E.F., "A Relational Model of Data for lLarge
Shared Data Banks'™, CACM Vol. 13, No. 6, Jun., 1970,

377-387.

[cDD72] Codd, E.F., "Relational Completeness of Data Base

Sublanguages™, Data Base Systeas, Courant Computer Scleance

Symposila Series Vol. b, Prentice-Hall, fnec., KEnglewood

Cliffs, N.J., 1972, 65-98.

(DBT71] Data Base Task Group of COBASYL Programming

Language Committee, Final Report, Apr., L1971.

[DAT80]| Date, C.J., "an {atroduction to the Unified

Database Language (UDL)™, Proc. Sixth [nt. Couf. on Very

Large Data Bases, 1980, 15-32.

[DYL79] Dayal, U., "Sehema-Mapplng Problems in Database

Systems', Dissertation, Harvard Univecsity, Cambridge, MA,

L2,

13.

14.

L8.

Page 42

Aug. 1979.

(FRT77] Furtado, A.L. and Kerschberg, L., "An Algebra of

Quotient Relatious™, ACM-SLGMOD, Proc. {nt. Counf. on
Managewent of Data, Toroanto, Aug- 1977, L-8B.

{HRW76 | Horowitz, K. and Sahni, S., Fuandamentals of Data
Structures, Computer Science Press, Inc., Fotomac,

Maryland, 1976.

[RST74] Rustin, R., ed., “"Hhara Models: Data-Sgcructure Set

Versus Relational", Proc. ACM-SIGFIDET Debate, Ann Arbor,

1974.
[(TSC76] Tsichritzis, D., "LSL: & Link and Selector
Language”, ACM-SIGMOD, Proc. ILat. Coni. oa Management of

Data, Washingtoa D. C. Jun., 1976, 123-133.

[TSC76a] Tsichecitzis, D. C. aad Lochovsky, F. H. s

“Hierarchical Data Base Managemeat' Computing Sarveys 8,

105-124 (1976).

[TYL76)] Tayior, R. W. and Frank, R. L. , "CODASYL Data

Base Management Systems' Computing Survey 8§ 67-10% (1976,

[WRT75] Witrth, N., "On the design of Programaing

Languages,'" Proc. LFILP, Aug. 1974, 386-393.

