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Summary:

The estimation of the condition number of a matrix relative
to inversion is important for bounding the errors in computer
solutions of linear systems of equations. A commonly used method
of estimation is shown to underestimate the true condition number

of a particular class of matrices to an arbitrarily large degree.



1. Introduction

In Cline, Moler, Stewart, and Wilkinson [1], an algorithm was
proposed for estimating an 21 norm condition number of a matrix.
Although the algorithm was not proved to produce estimates with
small errors, matrices for which previous estimation algorithms
produced large underestimates were handled well by the new estimator.
Furthermore, in thousands of tests with random matrices of various
distributions and dimensions, rarely has the estimate been less
than 1/10 of true condition number. On the basis of this evidence,
the estimation algorithm was incorporated into LINPACK [21, a popular
package of software for solving systems of linear equations.

Tt will be shown here that for a certain 4 x 4 matrix whose
elements depend on a parameter k, the condition number estimate
can underestimate the true condition number by a factor arbitrarily
large. It will be further shown that the given matrix is not an
isolated example, but in fact concurrent purturbations in every
element still results in arbitrarily large factors of underestima-
tion.

Finally it will be noted that the matrix also yields a
counter-example to the first estimation strategy described in [1]
(the one actually employed in LINPACK is the second) but not to the
third. The third estimation strategy is further considered for
its computational characteristics, and some concluding remarks
are made on the larger guestion of selection of condition number

egtimators.



2. The LINPACK Estimator

The value of the condition number of a matrix with respect to
inversion is described in a large selection of numerical analysis

texts. The guantity, which may be defined as

|

c(nr) = ||al| « |la”

-|]) is employed in several inequalities

(for a fixed matrix norm |
relating the error in the solution to a linear system to perturba-

tions in the matrix or in the right hand side. Two such inequalities

are:
1. If Ax = b and A(x + Ax) = b + Ab
then
| [ox ]| | [ab] |
—_— < K (D) ————
=l ol
2. If Ax = b and (A + AA) (x + Ax) = Db,
then
Llax]| k() [leall/[[a]]
x|l — 1 -« - [{aal]/|a]]
1,

provided ||AA|] < 1/]]a 7]
The vector norm in these inegualities may be any vector norm
consistant with the matrix norm.

Given a matrix norm such as the El norm {(which equals the

maximum of the sums of absolute values of components in matrix

columns) or the f_ norm (which equals the maximum of the sums of



absolute values of components in matrix rows), then ||A|| may be

computed with a moderate number of arithmetic operations {(in either
2 _ .
case about n°~ additions and n2 absolute value evaluations for an

n x n matrix A) compared to a factorization of the matrix (about

n3/3 multiplications and n3/3 additions). Unfortunately, if E?A_lii
is to be obtained by first computing A" then taking its norm,
about n3 multiplications and n3 additions are required. Since the

solution to a linear system Ax = b can be obtained in about n2
multiplications and n2 additions after a factorization has been
determined, we see that perhaps three times as much computational
effort is required to determine }[A"l{i (and hence k (A)) as is
required to solve a linear system.

-111

The intention for simply estimating ||A | (and hence estima-

ting k (A)) was to decrease this computational effort, perhaps

reguiring O(n2) operations. Some approaches have used the fact
that
-1 BN
a7 =max 0
x#0 | x|

(where the matrix norm is now assumed to be subordinate to the
vector norm) and attempted to find vectors x in which the ratio
ZEA_lxﬁi/iixii was close to maximal.

The estimator of §}A—1§I in [1] is such an approach. The
algorithm for selecting the x can be stated as

step 0. Factorize A. (Either of the forms PA = LU or LPA = U

is adequate if P is a permutation matrix, L is unit,



lower triangular, and U is upper triangular)

step 1. Let bl = 1 and zl = 1
for 8 = 2,...,0
s-1
step s. Let p o= 1w . z. 5= s,...,n,
J - 1,3 i
i=1
+ __(s-1) U bt :
Zg ( Pg + l)/uss’ ‘s ( Pg l)/uss’
(s)+ _ _(s-1) + (s)- o L{s-1) -
Py Py T ¥g,3 fsr P P Us,3 “s
i = s+l,...,0.
n n
s-1 s)+ s—-1 s) -
e L N I e T AR I
j=s+l j=s+1
+ . _ -
let b =1 and z_ = z_, otherwise let b_ = -1 and z_ = 2 .
s s s S s S

Having obtained b, solve ATx = b for x (this actually only
requires the use of z with the matrixes P and L) and finally solve
Ay = x for y. The estimate of ||a7'|| is then |[y|]/||x|| and
k{A) is estimated by multiplying the estimated {iA~l§ by the
computed ||Al]. The vector norm used in these calculations 1is
the Qi norm and the matrix norm is that subordinate to the Ql

vector norm. (Henceforth, these are denoted by t

SR
As implemented in LINPACK, (using a scratch array of length

n), this estimation requires about 2% n2 multiplications, 4% n2

additions, and 2 n2 evaluations of absolute value. There may be



an additional % n? multiplications and % n2 additions rogquired
depending upon the bS = T 1 decisions. Furthermore, in order to
minimize the liklihood of computations overflowing, rescaling is
done involving perhaps 4 n2 additional multiplications. These
figures represent the work in excess of the approximately n3/3
multiplications and n3/3 additions necessary to obtain the factor-
ization. As demanded, this work 1is O(nz) but may be as large as
14 nz total multiplications, additions, and absolute value evalua-
tions and hence comparable to the factorization effort for small

matrices (i.e. n < 21).
3. A Counter-example

The construction of a counter-example began with the determina-
tion of an upper triangular matrix U so that U—l had large elements,
yet the b and z selected by the algorithm (which satisfy UTz = b)

would have z of moderate size. Using a U, so that

with large values of k would have this property if b2 = 1. (The
large values k and -k would not affect z since both bl and b2 = 1.)

The rest of the construction of a counter-example simply required



choosing a unit lower trangular matrix L so that little increase
would be made in the solution of Ay = x. For this purpose L was

chosen as

Since
1 -1 -2k 0]
0 1 k -k
U: '
0 0 1 1
0 0 0 k|
the resultant
T 1 -1 -2k 0 N
0 1 k -k
A = LU = B
0 1 k+1 ~(k+1)
_ 0 0 0 ko

and this is our matrix whose condition number is seriously under-

estimated.

Theorem:

For k > 2, the Zl condition number of A is 8 k2 + 6k + 1;

the estimated Rl condition number (using the algorithm of section 2)
3

is (28 k7 + 39 k2 + 32k + 4)/(5k2 + 2k) = 5.6k + 5.56 + 0(1/k). The



ratio of estimated condition number to true condition number is

(7 k2 4 8k + 4)/(10 kK> + 9 K2 + 2k) = .7/k + .17/k% + 0(k77)

Proof:
The computation of IlA{&l = 4 k + 1 and }KA_l}{l =2k + 1
for k > 2. The estimation algorithm proceeds as follows:

step 1. b, =1, z, = 1.

1) _ (Ly_ _ (1)~
step 2. p, = -1 P, = -2k P, =0

+ (1) i (2)_ (2)+ _ _
2, = 2 P, +1 = 2 p3 = 0 Py 2k
- NG I (2)-_ _ (2)-_
z, = 0 P, 1 0 P 2k Py 0
thus since 2+40+2k = 2k+2>2k = 0+2k+0, b, = 1 and z, = z; =
step 3 p§2)= 0 péz)~ -2k
+ _(2),, (3)+ _
Zy = 1 93 +1 = 1 Py 2k + 1
{3)~-
- _(2)-1 = -1 D = —2k+1
23 = 1 p3 4
thus since 142k+l = 2k+2>2k = 1+2k-1, by = 1 and z, = zg =
step 4. p;3)= -2k-1 4
2T o= 22kt p3a1 = 2k
4 4
- _(3)_4 =
Z, = 2 P, 1 2k
thus since 2k+2 >2k, b, = 1 and z, = zz - 2k 4+ 2k7L.



- -
. . =T 1
It is easy to confirm that x = A b =
1
2427t
6 + 4 kT
-1 1
and y = A X = -1 -2 . Thus
2k + 2k
-1 -2
2k T o+ 2k 7
the estimated norm of A—l is
Dyl /0l = 7+ st v axTH) s+ 2Th
2 2

(7™ + 8k + 4)/(5k™ + 2k)

i

and the estimated condition number multiplys this by }IA{}l = 4%k + 1
to obtain (28 k3 + 39 k% + 32 k + 4)/(5k” + 2kK), whereas the true
condition number is (2k+1) (4k+1) = 8k2 + 6k + 1.

Experiments with the LINPACK subroutine SGECO using values of

k= 2,4,8,...,1024 performed exactly as predicted by the theorem.
4, Perturbations of the Counter-example

An examination of the proof of the theorem shows that the
three choices (at steps 2, 3, and 4) which resulted in b2, b3, and

b4 all being set equal to +1, were forced because

n n
A+ 3 [pIE7T) = 2xezsak = p{STV 1)+ w0197

j=s+l j=s+1

-
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Thus, if the matrix U were subjected to perturbations from that

given, then by continuity, for small enough perturbations we would

n n
still have %pés l)+li + L 1p§s) I > ip(s*l)—l‘ + z pgs)-.
j=s+1 S J=g+1 J

This would imply bz, b3, and b4 being set to +1 as before.

We must be careful about claiming that small perturbations
in A lead to small perturbations in the factor U, since this may
not be so. If row interchanges are being performed in a partial
pivoting strategy then a large positive perturbation in a3'2 could
lead to an interchange of rows 2 and 3 in the second step of the
factorization, and the resulting U would not be a perturbation of

the given U. However, if we let eij be the perturbation in a,

iJ
for i, 3 = 1,...,4 and assume that (821 - e3l)(l - elz) > (e32 - 922)
(1L + e,.) then the perturbed upper triangular factor will be a

11
small perturbation on the given U. As is explained in the previous

paragraph, for sufficiently small perturbations, the algorithm will
produce bl = b2 = b3 = b, = 1. Thus the vector X satisfying

X = (Z—‘;-FE}"T b and the vector ¥ satisfying y = (A+E)_—l x will be

small perturbations of the previous x and Yy, respectively. We may
ARVAREIN

differ only

conclude that since the estimated condition number | |A+E]

as well as the true condition number !{A+E}§-}I(A+E)_l§]

slightly from ||A]]- |a 7 ||, respectively;

lyl1/11x]] and []a]
severe underestimates of the condition number are afforded by such

matrices A+E as well as A.



i1

An analysis shows that if E is sufficiently small so that the
decisions on the components of b lead to bl = b2 = b3 = b4 = 1, then
| < e, the ratio of the estimated to true condition number

131 =
is less than about 7R 4 (15+5k)e. An example with € = 107> and

if e

k = 100 showed the ratio smaller than .00806 in 10,000 tests where
the perturbations were selected randomly but satisfying

(e21 - eBl)(l - el2) > (e32 - e22)(l + ell)' (The bound would
guarantee ratios smaller than .01215.) We may conclude that for

every k > 2, the matrix A sits within an open set of matrices whose

condition numbers are severely underestimated.

5. Alternative Estimation Algorithms

It is easy to verify that the matrix A of the previous section
will yield the same estimated condition number (and hence the same
underestimate) if the first algorithm of [1l] is employed. This is
also the algorithm described in Forsythe, Malcolm, and Moler [3]
(although the code implementing it has a typographical error both
in the book and in the distribution source). However, a third
algorithm is presented in [1], in which the criterion for selecting

bS = +1 (rather than -1) is replaced by

_o{s-1) (s)+ (s-1) (s)-

-p +1 n . -p -1 n ~

| ~Pg l . lpJ ! 5 | -Pq 1 . ij l‘
Iussl j=s+1 Iujjl IuSS] j=s+1 {ujj]
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For this algorithm, the matrix of the previous section has an
estimated condition number of 8k2 + 5 + 0(1/k) compared with a
true condition number of 8k2 + 6k + 1. The ratio is about
1 - 3/4 k + O(kﬁz) and thus the estimate is quite satisfactory.
The description of this algorithm in [1] is followed by the
statement "However, this modification increases the volume of
computation appreciably.” This statement is misleading. As
previously mentioned, the current LINPACK condition number esti-

mator requires between 2% n2 and 7 n2 multiplications, between

4% nz and 5 n2 additions, and 2 n2 evaluations of absolute
value. To implement the third algorithm of [1l] (even allowing
for rescaling) would require only an additional % n2 evaluations
of absolute value and % n2 divisions. Assuming all operations
require the same computational time, the third algorithm reguires
between 7% and 11% additional time.

The preceding is not, however, a convincing argument for
replacing the current LINPACK condition number estimator with
this alternative one. Despite the moderate additional computation
and the fact that no counter-example has been presented for the
alternative algorithm, a philosophical question should be answered
before it (or any other highly complex algorithm) is adopted: Given
that many condition number estimators perform well on random tests
and in practice, yet fail for particular matrices, is the design
of more and more complex algorithms yielding an improvement in

estimation or is it simply erecting a higher barrier which makes
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the determination of counter-examples more difficult but also
makes any theoretical analysis close to impossible? If more and
more complex algorithms are constructed simply to escape from
counter—-examples, the process may terminate only when counter-
examples are not to be found only because of the limitations of
human minds (not because of their non-existence).

Perhaps a complex estimator should be justified only if it
is provably accurate. Unfortunately, very little has been proven

about any of the estimators.
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