A MODELING SYSTEM FOR
MATHEMATICAL PROGRAMMING

Wilhelm ¥. Burger

May, 1981 TR 177

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

Mathematical programming has become an important tool for planning and
decision making. Current technologies make the process of model
construction and model solution slow and tedious. This thesis does not
concern itself with optimization algorithms, though the models considered
are restricted to LP models. Rather it focuses on the model formulation
process and the data management aspects of the model data in order to
improve the situation and to bridge the gap between end-user and machine.
Mathematical programming software has evolved in a pragmatic, informal
way, quite independent of related development in programming language
design and data base design. Drawing on these areas a modeling language
and data base facility is described which combined with man-machine
interaction forms the basis of a modeling system.

In order to develop and solve models of significant size and complexity
it is necessary to approach the problem in a modular fashion. A modeling
task is broken down into sub-tasks that can be handled separately. In
particular model formulation and model data management should be treated
independently. The modeling language supports this concept by providing
formulation modules and data modules as its basic building blocks.

The model equations are formulated in algebraic notation. This is
considered to be a more natural representation of mathematical
programming problems than for example the notation currently required for
the matrix generators of commercial LP systems. Models are formulated as
generalized models consisting of a set of equations which may cover
serveral aspects of a problem. A particular model is obtained by
selecting the relevant equations in a problem definition. This mechanism
adds flexibility to the model formulation process.

Model formulations and model data are kept in a data base. The data
handling facilities of the modeling system are based on the relational
data model. A relation constructor is provided for expressing data access
in a non-procedural way. This notation is uniformly applicable; it
appears in index constructs of equations, and it is used for simple data
base queries. Data are organized in modules. Model solutions are
obtained by executing a problem formulation with a data module.

An interactive environment is needed to support the design process of a
model, and to allow the user to experiment with alternative problem
solutions. A command language is defined with which different modes of
man-machine interaction can be initiated. Of importance is the browsing
mode in which data definition and data manipulation facilities are
available interactively. The browsing mode can be used to change or
create data for different solutions, or it may be simply used to learn

more about the data at hand. These facilities provide the necessary
support to handle 'what-if' questions in a decision making process.

The modeling language is the result of an integration of concepts
developed in programming language design, data base design, and man
machine interaction, applied to the area of Operations Research. The
feasibility of a modeling system is demonstrated by discussing several
implementation issues concerning the data base, the translator, and the
interpreter of a modeling system.

Acknowledgements

I would like to express my gratitude to the many people who provided me
over the years with inspiration, assistance, support, and understanding.
In particular, I want to thank my advisor, Prof. Mani Chandy, for his
guidance and encouragement. He will always be an example to me. I
express my appreciation to Profs. J.C. Browne, A.G. Dale, U. Dayal, and D.
Good for serving on my dissertation committee. My thanks are extended to
Dr. R. Yeh for his support.

I am indebted and grateful to my wife, Pramilla: her confidence, love,
and patience made this thesis possible. Special thanks are due to members
of the faculty and my fellow students for their discussions and help, in
particular: A. Araya, J. Bitmer, R. Cohen, C. Dawson, H. Kunii, and M.
Tyson. I would also like to thank Mrs. E. Arnakis for her hospitality
during my stay in Austin.

Finally, I would 1like to thank A. Meeraus at the World Bank who
introduced me to the problem area, and Prof. S. Seegmuller, Technical
University, Munich, and Dr. D. von Lindern, Max-Planck Institute, Munich,
who made it possible for me to continue with my work while I stayed in
Germany.

Last, but not least, I thank my parents for their constant love,
support, and encouragement.

This work was, in part, supported by the Air Force, Office of Scientific
Research (AFOSR 77-3409) and by the National Science Foundation
(MCS 79-25383).

Chapter

T
00~ ON U1 B W b

Chapter

[NCRN ST O (G SR S
[e XNV I SRRV ST ol

Chapter
3.1
1
.1

.2
.2

W W Wk Www

W W wwwwwwLw
WL R W W WL W

Chapter
4.1
.1
.1
.1

.3
.3
.3

=
S SN SO FU NI A S

1 Introduction
Goals of the Thesis .
Organization of the Thesis
Linear Programming
General Purpose Language
Specialized Languages
Model Formulation Languages
Modeling System Requirements
Related Research

2 The System
Systems Overview
Modules
Data Base
Type System
Data Manipulation
Model Formulation

3 Data Declarations and Data Manipulations
Syntax and Representation
.1 Notation for Syntax
.2 Representation
Data Declarations
.1 Types
.2 Variables
Data Manipulation
Expressions
Primaries
Operations
Constants ..
Relation Constructor
Function Calls
atements e
Simple Statements
Structured Statements

[=

S
.2,
2.

PO et U P LD

4 Model Declaration and Formulation Modules
Model Module e e e
.1 Model Declaration Part
.2 Equation Part
.3 Problem Section
Declaration Module
Routine Module .o
.1 Routine Declarations
.2 Global Variables
.3 USE Declaration

CONTENTS

~J Ut U B 0 o B e

[EPET -
Ut W P \D D

16

45
45
45
46
48
50
51
51
52
52

4 4 Example 53
4.4 Execution Module 53
4.4.1 Execution Statement 54
4.4.2 Input/Output Statements 54
4.5 Data Declaration Module 57
4.6 Translation Unit 57
Chapter 5 Command Language and Browsing 59
5.1 Command Language 59
5.1.1 Simple Commands 60
5.1.2 'Create' Command 61
5.1.3 'Run' Command 2
5.1.4 'Edit' Command 63
5.1.5 'Do' Command 64
5.2 Browsing Mode 64
5.2.1 Simple Commands . . 65
5.2.2 Expressions and Statements 65
5.2.3 Declarations 66
5.2.4 Data Input 67
Chapter 6 Implementation Issues e e e e e e e e e e 6
6.1 Data Base Management System o
6.1.1 Page Manager e e e e e e e e e e e e e e e s T
6.1.2 Objects A
6.1.3 Data Objects .. Y
6.1.4 Relational Operatlons Y
6.1.5 Data Values Y 2
6.1.6 Array Attributes . e e e o o ... T5
6.1.7 Text Objects and Compllatlon ObJects £
6.1.8 System Objects &)
6.1.9 Further Problems Y
6.2 The Translator . R
6.2.1 Implementation Nethod R -
6.2.2 Symbol Table YA
6.2.3 Storage Administration e A
6.2.4 Equations Y -
6.2.5 Other Features B -
6.3 The Interpreter .o e -
6.3.1 Run-Time Storage Organlzaulon - 148
6.3.2 LP System Input Generation -
6.4 Implementation Stage - 1)
Chapter 7 Conclusion . Y
7.1 Highlights of the Th981s T Y,
7.2 Future Research Y - 1
Appendix A Syntax Summary and Index . 1
Appendix B Transportation Model Example Y

References e e e e e e e e e e e s s s, 105

CHAPTER 1

Introduction

1.1 Goals of the Thesis

Mathematical modeling plays an increasing role in handling real-world
problems. Mathematical modeling has become a tool for planning and
decision making. This places new demands on how modeling is being carried
out. Computers have, however, not yet played the important role in
decision making as forecast by [Zannetos] due to the high resource
requirements and the inability of decision makers to access the tools
without skilled specialists.

This research is concerned with the design and implementation of a
modeling system which bridges the gap between end-user and machine. The
models to be considered are restricted to Linear Programming (LP) models.
They constitute a very important section of mathematical modeling. The
extensions to other mathematical programming models is straightforward.
Moreover the solution algorithms for LP's have been so highly developed
that we don't have to be concerned with them. Instead we shall
concentrate on the model formulation process and the data management
aspects of the model data.

In order to develop and solve models of significant size and complexity
the following design goals emerged. The system should

support a model notation which is easy to use and which can be
easily communicated to other model builders.

- provide for incremental change to support the evolutionary design
process.

- allow the user to browse through the data to identify relevant data
and discover new relationships.

- support the ability to obtain alternate solutions and ask
'what-if' questions.

- provide a convenient, user-friendly interface. This includes
guidance in the formulation process and information about the
state of the system.

The system must be necessarily interactive to support the incremental and
browsing facilities. Initial ideas on a modeling system were presented in
[Burgerl].

LP software so far has evolved in a pragmatic, informal way, quite
independent of related development in programming languages and data base
design. This study draws on the areas of programming languages and data
base design for developing languages for model formulation, data
definition, and for providing data base capabilities to support a modeling
system. For example the module concept in programming languages 1is
applied to structure models intc managable parts, and the type concept is
used to better classify and structure data. An attempt was made to
integrate in a clean manner several languages which address the various
aspects of modeling: a language to formulate models, a language to define
and manipulate data, a language to present the results, and a command
language to interact with the user and to tie the different parts of the
system together.

The project was undertaken to identify and solve problems in the data
structures and data management areas which specifically relate to
modeling environment, language definition and man-machine interaction.
Parts of a prototype modeling system have been implemented to demonstrate
and test the ideas. A goal for the future is to develop the system into a
production tool to handle complex models which can support timely decision
making. Finally it is hoped that the modeling system can be used as an
educational tool for teaching modeling based wupon mathematical
programming.

1.2 Organization of the Thesis

The remainder of Chapter 1 reviews the LP modeling problem. It looks
at the currently available LP software, and the need for a new approach to
support the modern demands on modeling. Chapter 2 gives an overview of
the modeling system. The type concept, modules, and the relational data
model are introduced. Language aspects for data manipulation and equation
formulation are developed. Chapter 3 defines the language constructs for
data declaration and data manipulation. Chapter 4 presents the language
for model formulations. Formulation module definitions are introduced.
Chapter 5 defines the command language. User interaction facilities,
browsing facilities and data modules are described. Chapter 6 addresses
implementation issues of the modeling system. The design and
implementation of the data base, the translator, the interpreter, and the
user . interface are described. Chapter 7 concludes the thesis with a
summary of the work presented and some suggestions for future research.

1.3 Linear Programming

Linear programming (LP) systems obtain optimal solutions to models
composed of linear inequalities by finding the smallest (or largest) value
for a linear function (the objective function) of the model's variables,
such that the linear inequalities are all satisfied. The two main aspects
of LP modeling we are concerned with are

- the model formulation process, design, and evolutionary
development

- the data management problems: how the data underlying the model are
assembled, transformed, and fed to the optimizer (LP solution
algorithm) and how the results (optimal solution values) are
retrieved, analyzed, summarized, and reported.

Model formulation and data management are handled together in
traditional LP systems as the model formulation can be directly expressed
in the way the data are supplied to the LP solution algorithm. The process
of providing data for an LP system is generally referred to as "matrix
generationﬁ. Matrix generation is only part of the overall LP data
management which includes the management of solutions and variations of a
model. LP data management has considerable practical importance. [Welch]
reports that in current practice LP models easily reach a size of 2000
rows by 8000 columns. Assuming that the matrix is about 0.2% dense about
32000 data elements must be managed. This number increases drastically
when variations of a model need to be considered and various solutions
must be kept.

Given a particular LP optimizer two different approaches are taken to
LP solution data management. The data are supplied to the LP algorithm
either by employing a general purpose language, or by using a special
purpose language specifically designed to support LP modeling. These two
methods are treated in the next sections. We consider these methods as
two different levels of sophistication in the development of modeling
systems.

1.4 General Purpose Language

A general purpose language (e.g. FORTRAN) is used to transform data for
a particular model into the desired form used by an LP optimizer. Another
transformation step written in a general purpose language is usually
applied to report the solution data. [Welch] points out that this
approach is taken in organizations where 'programming' can be delegated to
some data processing department.

The effects of this approach are as follows:

- The time span between model conception and solution is very large.
Several people are involved in 'programming’ the model. The final
program representation of the model may differ from the intended
model due to failures in communication between the people, and due
to the time lag between conception and realization of the model.

- Changes to the model are difficult to incorporate as this may
require major revisions to the program. Alternate formulations or
further investigations are not carried out due to the high cost
involved in making modificatioms.

- The final form of the model is the program itself. The model
cannot be communicated to another model builder without
substantial effort. Also the development process of the model is
lost as no history can be kept.

A model consists of a series of steps which, if not integrated into a
system leave ample room for human error. Computing time may be saved if a
model is rumn on a routine basis. However, when models become older, they
are also more likely to need revision. Thus when inherent limits of the

program are reached, e.g. array dimensions, then major reprogramming is
necessary.

The cost of building models this way is quite high, and the
productivity of the model builder is very low. [Fromm] reports that the
cost of building a mathematical model, averaged over 650 models (linear
and other) surveyed, cost a staggering $154,000. TFurther it took an
average of 17 month to make a model operational.

1.5 Specialized Languages

In an attempt to overcome the drawbacks of the previous method the
various steps of the modeling process are integrated into a system and
specialized languages are provided to handle the input and output of model
data. Commercial LP systems such as OMNI [Haverly], GAMMA [Burroughs],
and DATAFORM [Ketron] fall into this category. The following features are
more or less common to these systems.

Data is provided in tabular form. Tables are one of the preferred forms
of representing data. The tables, columns, and rows are named. These
names and their manipulations are the basis for the LP matrix generation.
The column and row names of the LP matrix are constructed from the column
and row names of the data tables. The matrix generation statements
describe how the elements from the data tables are to be placed into the
LP matrix. The names (original or constructed) are then later used in the
report generation phase.

The LP formulation is to a large extent data independent as the
generation statements rely only on the table, column and row names.
Characteristic of these languages is the ability to manipulate names and
set of names, e.g. create subsets, form unions, etc. The model generation
can be 'debugged' by first using small data tables. Later the presumably
much larger actual data tables are used for the solution.

Having provided a systematic way to interface with the LP solution
algorithm these systems feature also some capabilities to manage the data
and the matrix and report generation statements. The data can be kept and
modified in their original form. This is in general supported by a
simple data file system. Similarly a model may be assembled from groups
of matrix and report generation statements which are kept on a file.
These features add to the flexibility of an LP system. Most importantly

it is now possible to understand and make modifications to the model and
data by users other than the original model builder.

[Welch] points out that specialized languages are popular with LP
analysts who have the implementation as well as the design
responsibilities for their LP studies. As these languages are oriented to
the problem of matrix generation requiring no 'programming' more
attention can be paid to the model itself. Still, however, the LP analyst
must translate the model into the form required by the LP system in use.
Why not formulate the problem directly in a notation with which the model
builder is familiar? The next section introduces some systems which
employ 'model formulation' languages.

1.6 Model Formulation Languages

An early attempt was made by [Aigner] to formulate models to the
computer in a notation similar to the one the model builder is familiar
with: The equations which represent the model are used in a simplified
form as input routine to the LP system.

Another approach was taken by the AMBUSH system [White]. Here the
model formulation is customized to a particular problem area, namely
process flow and transportation. The model is described in the jargon of
this problem area.

A modern approach is taken by the GAMS system [Meerausl] which is
currently under development. Algebraic notation is employed for the model
equations so that a large variety of optimization problems can be

formulated. Algebraic notation is considered to be the 'natural’
representation of mathematical programming problems. Algebraic notation
is also used in LPMODEL [Katz]. Very simple equations can be expressed

with the notation provided by this system.

The concept of a model formulation language brings with it the
separation of model formulation and model data. It opens up the
possibility to develop each aspect separately. Moreover the model
formulation becomes independent of a particular solution system. This is
the direction which leads to the development of a modeling system.

1.7 Modeling System Requirements

General aspects of computer based planning and modeling are discussed
in [Wolters]. Problems are <classified from well-structured to
ill-structured. Well structured problems can be handled by formalized
methods and it is possible to fully automate the decision making process.
Less structured problems require the active participation of the user in a
man-machine dialogue. Different alternatives based on the intuiton and
experience of the user are compared with the help of the computer. An
effective modeling system must be able to cover a wide range of problems.

Three closely inter-related aspects of a modeling system need to be
addressed: model formulation, data management, and man-machine
interaction. Man-machine interaction is an essential part of model
formulation as well as data management.

The model formulation must be in a notation which can be easily
mastered by a non-programmer sc that the computer can become an efficient
tool for the model builder. The model formulation is directly accepted by
the computer. Changes to the model can be carried out easily. This is
important during model development as the problem at hand may not be well
understood, and the model formulation itself may serve as a learning
device to improve the conceptual understanding of the problem. The model
formulation must be embedded into a system which allows the incremental
development of a model.

Changes to a model are also required when it is used to test different
scenarios in order to answer 'what-if' questions. Here the modeling
system must support a dialogue with the user so that answers can be
obtained in a timely manner in a decision making process. Modifiability
of a model is also necessary during the life time of the model.

The computer processable representation of a model brings several
advantages with it. Without a computer a human has to carry out the
transformation of the model equations into structures accepted by some
solution system. As now the computer does all the work this source of
errors is eliminated. Moreover the machine can be used to check the
underlying semantics of the formulation and thus errors canm be caught
early in the model formulation.

The data management aspects of modeling must be given new attention.
First the volume of data to be handled has risen drastically. Second it
must be possible to select and group data under various aspects, for
example for answering 'what-if' questions, or simply to learn more about
data. This can be achieved by giving the user some means of 'browsing'
through data. A facility to transform available data into the form
needed by a model is especially important. Third the data management must
be concerned with managing 'internal' data, e.g. the input/output data of

a solution algorithm, or a sequence of solution data to produce a final
report.

The data management requirements are met by a data base system which
provides a high level of data and processing abstraction. The data base
is the central part of a modeling system (besides the solution
algorithms). Not only will it contain model data, but also the
formulations so that incremental model development can be supported. A
modular structure of model formulations and data will add to the
flexibility of the modeling system.

The man-machine interaction facilities of the modeling system must be
very user-friendly if the system is to be alsc employed successfully by a
casual user. This can be achieved by providing 'help' features. Help may

be actively requested by the user, or the system may generate suggestions
to guide the user.

Current technology in the LP modeling area as described in previous
sections falls short of the desired goals. In order to fulfil the modern
demands on modeling it is necessary to provide an integrated system. The
next section looks at some systems which attempted to combine specialized
applications with data base functions in a user-friendly environment.

1.8 Related Research

The systems described here address one or more of these areas: model
formulation, data management and man-machine interaction. All these
systems recognized the need to develop a very high level description
language. Some systems combine a data base system with a specialized
application package.

GAMS was developed at the World Bank to provide a tool for modeling in
a strategic planning environment [Meeraus2]. 1In its current state of
implementation it is used to formulate models. Algebraic notation is used
to define model equations. Special emphasis is placed on the notion of
sets. Sets are values which are represented by symbolic names. Sets are
used e.g. as indexes. The system was designed, however, for a batch
environment, and thus lacks incremental facilities. Data management by a
data base system was not considered.

LABSTAT [Labstat] is an example of a data-oriented system. The system
handles data for time-series problems. Data are stored in the commercial
data base management system TOTAL. Several languages are provided to
access data: a language to make simple queries, a language to prepare
data for an external system, and a language to format data for reports.
The languages are problem-oriented and non-procedural.

FINSIM [Klein] is an interactive decision support system for financial
planning and engineering. It is used here as example for man-machine
interaction. Its overall design is very attractive. A data base is kept
for models and data. (There are four financial planning models which can
be parameterized. Extensions to a model require modifications to the
standard model). Great emphasis is placed on the help features of the
system. The help features serve as learning aid and provide assistance in
using the system.

LPMODEL [Katz] is a recent APL based system for constructing simple LP
models. It employs algebraic notation for expressing equations. The
underlying APL system supports interactive facilities and the storing of
model formulations. A data base subsystem is provided to associate values
with the constants in equations of a model when the LP matrix is
generated.

There are many more systems which touch, in one way or another, on the
problems of a modeling system. [Alter] surveyed a variety of

data-oriented and model-oriented decision systems. An attempt to
integrate DBMS functions and specialized applications into omne
user-friendly environment is also made by the ELLIPSE system [Suvorov].
ELLIPSE is developed at the Central Economics Mathematical Institute,
USSR, to provide a support system for economic-oriented research.

CHAPTER 2

The System

In this chapter we give an overview of the system and look into some of
the components making up the system. We are only concerned here with the
overall architecture and logical aspects of the system. Details of the
languages and implementation considerations are handled in later
chapters.

2.1 Systems Overview

Figure 2-1 illustrates the high level design of the system. This is
also the user view of the overall system. The main parts of the system are
the user interface, task components, the data base and the solution
systems.

The modeling system is an integrated system combining model
formulation and model solution into one system. The user interface
provides a command language with which a particular mode of interaction
with the modeling system can be initjiated. The following tasks can be
carried out:

- definition of models and data structures
- modifications of formulations

- execution of formulations

- browsing through data

- input and output of data

- interrogation of the system

Each mode is described briefly. In the definition mode the user makes
various formulations known to the system. Formulations are for example,
model equations, data structures for model data, or formulations for
executing a model. The various formulations are packaged into modules.
They can be defined independently. Formulations may be obtained from a
file or entered from a terminal.

In modification mode formulations can be altered. The system keeps
track of modules which are affected by a modification. If necessary the
user is prompted to make changes to these modules. In execution mode the
user solves a model. Here data from the data base are formatted according
to the model equations and sent to the solution system. The results are
stored in the data base. Optionally solution reports may be prepared.

10

USER INTERFACE

DATA
FORMULAT ION

MODEL
FORMULATION

MODIFICATION
SERVICES

BROWS ING

PROBLEM
EXECUTION

INPUT/OUTPUT,
sotuTion
PRESENTATION

~

/

_

DATA BASE

/

SOLUTION SYSTEM
INTERFACE

T~

Figure 2-1

SOLUTION SYSTEM

High Level Structure of Modeling System

11

In browsing mode the user can interactively create, change, or
investigate data. Input/output mode is concerned with getting data into
or out of the data base. This may involve external files or the
generation of reports. Input/output is in general under the control of
one of the other tasks. Finally, at any time the user may interrogate the
system to obtain pertinent information. For example the user can list
directories of modules and data, or ask for help explaining a command.

The structuring of formulations into modules is a basic concept of the
modeling system. The ability to combine modules gives the user great
flexibility in handling complex problem. Modules are also the basic unit
of interaction with the system. Depending on the kind of module the
interaction may be simply modifications to a module, or as in the case of
browsing, it may involve data manipulations.

The data base part of the modeling system combines the data management
for several components of the system. The data base consists of three
parts: a data base for external data, a data base for modules, and a data
base for internal data. Model data is considered to be external data.
The structure of the data is also stored in the data base. Model
formulations, model solutions, and report formulations are stored as
modules in the data base. Internal data is generated by a solution

execution, either as input to the solution system or as output from the
solution system.

The solution system consists of a standard optimization algorithm and
an interface for adapting the data to and from the modeling system. The
solution system must not necessarily be part of the modeling system or
even be on the same machine. In an environment where several machines are
combined in a network it is feasible to delegate the optimization to a
very fast machine (e.g. a CDC Cyber) while the rest can be done on a
smaller machine (e.g. a DEC-10).

Several languages are provided by the modeling system to formulate the
various parts of a modeling problem. Languages are available to formulate
data structures, models, reports, model solutions, and data base queries.
An attempt was made to design these languages in a uniform way. The
design of the languages for the modeling system is strongly influenced by
the concept of modules and by the need for interactivity.

The support for user interaction is an important aspect of the modeling
system. During model development the user can interactively modify or
create modules. In browsing mode or input/output mode the user can
interactively manipulate data. The system combines in a balanced way
batch requirements (model formulation/solution) with interactive
requirements (data manipulation/modifications).

Finally the system was designed to support a casual user as well. In
particular, the user can get help from the system explaining where he is
and what he can do in the state he is in.

12

2.2 Modules

One of the basic assumptions is that data and models can be defined
separately. The same data may be used with different models, or a model
may be solved with several data sets. Also parts of one model may be
useful in other models. To handle these situations we introduce modules.
Modules are a powerful tool for structuring complex problems.

Modules come in two varieties: modules for formulations, and modules
for data. The first kind is static in nature while the second kind has
dynamic aspects. Formulations, though they may be interactively
modified, have well defined data structures and statements when they are
ready for execution. Data modules on the other hand can be modified
resulting in new data structures. The interfacing of static and dynamic
modules brings with it additional problems to the problem of interfacing
modules and the separate translation of modules.

Formulation modules can be handled in a similar way as modules in
programming languages 1like ADA [ADA] and Modula-2 {Wirth2]. Modules
contain interface declarations which are used to create and share a common
environment. Separate translation of modules imposes a chronological
sequence of translation. For example environment information must be
translated first before a module using it can be translated. In the
modeling system we have the benefit of a data base which can store the
environment information and the modules.

Formulation modules are stored in the data base in two forms: an
external form and an internal form. The external form of a module is a
block of text. The internal form is obtained by translating the module.
The translation process establishes the syntactic and semantic
correctness of a module. The internal form of a module consists of a
symbol table in case of declarations, and a sequence of instructions in
case of statements. The external form of the module is used for
modifications, for example for incremental development. Changes to a
module affect all modules which depend on it. The system (under the
control of the user) re-translates these modules (which in turn may
require further modifications). The internal form of a module will be
consistent with its external form when the modification mode of the
modeling system is terminated.

Data modules can be created by declarations initially. This is done by
a data creation module which has the form of a formulation module. A data
module consists of two parts: data structures and data. Only the data
structure descriptions are established when a data module is created.
Data modules exist only in internal form. Data modules can be also
created interactively by the user supplying declarations, or they can be
modified by creating new data structures in browsing mode. An external
form of a data module is therefore not feasible. The data creation module
though an external form is merely used to get a data module with that
particular structure established.

w

13

The solution of a problem requires the coordination of several modules.
A typical case involves four kinds of modules: a data module, a model
module, and a report module. The operational aspects of a problem
solution are formulated in an execution module. While the formulation
modules (in this case the model module and the report module) can be
interfaced by sharing environment information, it 1is necessary to
interface the data module by a formal parameter mechanism. This way all
interfaces can be checked at translation time. When a data module is
bound to an execution module at run-time a check is made that the actual
data structures of the data module conform with the formal data structures
of the execution module. The concept of an execution module makes it
attractive to use the modeling system in an applied environment: Model and
execution modules can be prepared by an 'expert', while the data
preparation, model execution and the analysis of the results can be
delegated to an 'assistant'.

The following modules can be defined by the user:

- declaration modules

- model modules

- data creation modules
- execution modules

- routine modules

- data modules

All modules with the exception of data modules are formulation modules.
Routine modules are defined to handle data transformations and
input/output. A report for example is formulated by a routine module.
The modules are described in more detail after the relevant language
constructs have been introduced.

2.3 Data Base

The data base of the modeling system is used to store formulation
modules, data modules, and internal data. Directories are maintained for
the various kinds of modules. The data base is also used for temporary
data which for example may arise in browsing mode.

The storage of formulation modules poses no particular problems.
Relationships between the modules are recorded so that the effects of
modification to a module can be followed. The initial form always
corresponds to the external form of a module. If necessary a module is
translated to obtain the corresponding internal form. The internal form
of declaration modules is used when modules are translated separately.

More sophistication is needed to store data modules. Data are a
projection of the real world and their description should reflect the
objects and relations between objects in a natural and understandable way.
We must choose therefore a basic data model which is most suited for our
purpose.

14

Basic data models are the hierarchical model [Date], network model
[DBTG], and relational model [Coddl]. The hierarchical model may be
considered a special case of the network model. The relational model
represents data as a collection of tables while the network model stores
the data and relationships between the entities explicitly. The data
formulation in a network model has the advantage that relations between
entities can be dynamically created.

The relational model has an appealing conceptual simplicity. Tables
are the natural representation of data in the LP modeling area. Table
statements to provide data for an LP solution algorithm are present in all
commercial available LP systems. One of the basic activities of model
data management 1is the creation and manipulation of tables. Matrix
generation in the conventional sense can be seen as creating a new table
(the input to the LP solution algorithms) from a number of small tables
according to 'queries' represented by the model equations. The basic data

model we choose therefore for the management of data is the relational
model.

Table structures are defined by giving column names and the type of of
the values which may be contained in a column. In the relational model
columns of a table are also referred to as attributes, and the value set
from which the values are taken as domain. Rows of tables are also
referred to as tuples. In the modeling system this concept of table is
slightly extended. Several columns can be grouped together to form a
so-called array column which is referenced by one attribute name only. An
index mechanism is provided to select the individual columns. An
attribute of this kind will be referred to as array attribute. This
extension allows us to deal with tables of similar structure in a uniform

way; in particular it takes care of the problems of multiple right-hand
sides in an LP model.

It is important to note a fundamental difference between our data base
and a 'standard' relational system. The data structure information
('data dictionary') is not supplied to other modules when they are
translated, but it is provided at run-time as part of the parameter
mechanism. This is a consequence of the dynamic nature of the data base.
While in conventional systems a 'data base administrator' defines the data
structures ('schemas') which then are supplied as static structures
('sub-schemas') to user applications here the user has the ability to
dynamically create mnew structures. This ability is necessary for
transforming or extracting data while experimenting with a model.
'"Administrative' and applicative interaction with the data base are,
however, carried out in different modes of the modeling system. Another
difference is that the data base of the modeling system is not designed

for concurrent access. It is assumed that only one person at a time will
use the systen.

2.4 Type System

In order to better classify and structure data we use the type concept
from programming languages. A type is an abstraction of a class of
similar values. A type can be described by the properties shared by all
values of its corresponding class. Besides the conceptualization of data
values, data types are used to maintain certain properties when data are
manipulated. To a large extent this can be already done at translation
time through type checking. The success of the programming language
Pascal [Wirthl] is in part due to the added security in formulation and
better abstraction facility by a type system.

We apply the type system to model formulation and to data module
definition. One of the major problems with data bases is getting control
over the validity of data which enter the data base. The typing mechanism
can be used to define consistency constraints. Early relational languages
(ALPHA [Codd2], SEQUEL [Chamberlin]) did not have such a mechanism to
support the integrity of the data base. Type systems for data base
integrity have been suggested by [Prenner], [Schmidtl]}, [Brodie] and
[Turnherr]. BETA ([Brodie] is a relational language based on the type
system, and PASCAL/R [Schmidt2, Meyer] is an extension of Pascal with
relational facilities.

The type concept from programming languages can be directly carried
over to formulation modules. Types are introduced in variable
declarations or they are explicitly assigned a name in type declarations.
The use of a named type could simply be considered an abbreviated
notation, however, type checking may take the type name also into account.
In weak type checking two objects are type compatible if their underlying
types are the same. In strong type checking the type name must be the same
too. Types for strong type checking are called strict types by [Schmidt2]
and interpreted types by [Brodie]. We introduce strict types by domain
definitions. Strict types add to the integrity of formulation.

The type concept is also applied to data modules; however, we must pay
special attention to data independence and type checking. Data (and their
structures) exist independently from the way they were created. We
therefore have two universes of types: the types of data in data modules
and the types of data in applications (e.g. model modules). When data of
a data module are bound to an application then the relevant types of the
application are considered to be formal parameters for which the actual
types of the data module are substituted. This is supported by so-called
external defined types. External defined types are incomplete type
specifications for which details are provided when a particular data
module is interfaced with an application. Therefore, an application can
be written independently of the data. The types contain enough
information to do the type checking of static properties at translation
time. The dynamic aspects of data are only relevant when the data are
bound to the application. Run-time checks need only be provided for those
features which cannot be covered at translation time. External defined
types are particularly useful for dealing with array attributes of tables.

16

In this case they provide information on the size of the array at
run-time.

The use of typing information for models and data may seem to increase
the complexity of the languages contrary to our goal of simplicity and
ease of use of the modeling system. Types, however, contribute greatly to
the clarity and correctness of the formulations. Furthermore the type
‘system can be used as design aid in structuring and classifying data of
the real world.

2.5 Data Manipulation

The data manipulation facilities of the mcdeling system are based on
the relational model. The user can retrieve data from the data base by
queries. New data may be computed from retrieved data. Additional
facilities are provided to add, modify or delete data. Data manipulations
can be found in zroutine or execution modules, or they are done
interactively in browsing mode. The facilities handled here do not
include input/output.

It was our goal to provide a data manipulation language which is simple
and convenient to use. The most important features are the table
manipulation capabilities in a form which a model builder is familiar
with, like categorizing a table into sub-tables, or selecting rows and
columns of a table according to some condition. The complexity of
formulation increases with the complexity of the data manipulation
requirement; thus for most needs simple formulations are sufficient.

The basic construct of the data manipulation language is the relation
constructor. A new table (relation} is formed by extracting information
from other tables and possibly transforming the information into new data.
Relation constructors in relational languages are either descriptive
(non-procedural) or prescriptive (procedural). The descriptive form of
the relation constructor specifies the result and the tables
participating in it but not how the result is obtained. Descriptive
constructors are suited for simple queries [Huits]. Our apprecach for
handling more complex queries is by combining several simple queries in a
sequence. This approach is also taken in TAMALAN [Vandijk] and Regis
[Joycell. The modeling system also provides, however, language
constructs which permit the formulation of queries in a procedural form.

The notation chosen for a relation constructor in the modeling system
is based on the form of an operational set constructor in algebra:

{ <result table> | <input table> : <condition> }

(Quantifiers are not used in the formulation of conditions). The relation
constructor can be seen as a loop construct: for each tuple from the
input table the condition is checked, and if it holds the tuple is further
processed and the result is included in the result table. A higher level
loop construct is provided by the ability to partition a table according

17

to one or more attributes. This results in sub-tables (with the same
value in one or more columns of the sub-table). The conditions are then
applied to the sub-tables. The descriptive notation of a loop is also
applicable in a similar fashion to the formulation of model equations and
report formulations, thus contributing to the uniformity of the language.

In the following we describe the relation constructor in more detail.
Examples are given in Section 3.3.1.4. Queries come in three levels of
complexity: simple queries, gueries which involve more than one table, and-
queries which compute new values. We assume that most queries are simple,
that is they are projections or selections. Queries involving two tables
can be expressed by a join operation. The descriptive relation
constructor is restricted to these kinds of queries. More complex queries
either must be decomposed by the user into a sequence of simple queries,
or the procedural query facilities of the language must be used.

Queries which require the computations of new values from a selected
tuple could be handled by extending the relation constructor with a
compute clause:

{ <result table> | <input table> : <condition> <computation> }

Though this extension fits naturally into the frame work of our relation
constructor it was not included in the language. Computations fit the
procedural nature of query processing better; furthermore the results can
be already achieved by the tuple-at-a-time facilities of the language.

Simple queries are selections and projections of a table. The
conditions are expressed by logical expressions. Logical expressions
consist of boolean combinations (with operators 'and', 'or', 'not'),
comparison terms (with operators =, <=, >=, <, >, <>) and set comparison
terms (with operators 'in', 'contains', 'partof').

The next level of queries realizes the join operator of relational
algebra. Two tables are combined to form the join of the two tables
according to the join condition. Only those rows are retained for further
processing for which the condition holds. As the result table may
contain two columns with the same name a facility for renaming column
names of the result table is provided.

The relation constructor is tied in with the type system. When
possible, the attribute names and types of the result table are derived
from the input table. The type of the result of a relation constructor
must be compatible e.g. with the type of the variable it is assigned to.
In browsing mode a new variable may be created by the user with a relation
constructor. The type of the new variable is inherited from the relation
constructor.

There are two more ways to create new tables. The first uses the
set-theoretic operations 'union', 'intersection', and 'difference'. The
two tables involved must be type compatible. The other way is by building
up a table a tuple at a time by insert operations. The descriptive loop

18

construct of the relation constructor is also provided as statement and
may be used for this purpose.

The descriptive relation constructor (and the construction by
set-theoretic operations) always produces a new table which is temporary
unless it is assigned to a variable which is connected to the data base.
Special statements are provided which work directly on a table (temporary
or in the data base). These statements let the user insert, delete, or
update tuples in a table. The descriptive loop construct can be used for
the selection of tuples by conditions; the selected tuples can then be
modified or deleted. The update and insert operations maintain the

uniqueness property of tuples in a table if the table is defined with that
property.

The data manipulation facilities of the modeling system provide the
user with powerful analytical capabilities. The ability to select items
from one table based on conditions of another table, and the grouping of
items in a table combined with computations are considered to be among the
most important. The data manipulation language is complete in the sense

of [Coddl] as every operation of the relational algebra can be expressed
in this language.

2.6 Model Formulation

Before introducing the model formulations in the modeling system we
give a brief review of the formulations found in LP modeling. We use a
small transportation problem. Plants with certain capacities ship goods
to markets with certain requirements. The objective is to select
shipments in such a way as to minimize the transportation costs from
plants to markets. Figure 2-2 defines the objects we are talking about.

i plant i in the set of plants I

N market j in the set of markets J
ki capacity of plant i

rj requirements of market j

xij amount of goods shipped from i to j

Cij cost of a unit shipped from i to j

Figure 2-2 Objects of Transportation Model

Note that names fall into two categories: names for indexes and names for
data objects. This distinction will be important later when we talk about
the 'execution' of model equations.

19

The transportation model is described by the equations in Figure 2-3.
Equation (1) states that the goods shipped to the markets from one plant
cannot exceed the capacity of that plant. Equation (2) states that the
goods received at a market must at least fulfill the requirements of that
market. Equation (3) defines bounds on the amount of goods shipped.
Finally equation (&) states the objective of the model: to minimize the
cost of transportation. Implicit in these equations is that the amount of
goods shipped (xij) is a variable (in the modeling sense) while

capacity requirements and unit costs are constants (parameters in the
modeling sense). Characteristic of LP programming is that the equations
are linear forms in their variables.

(1) I x.. < k, iel
ij i
jed
(2 I x.. 2 r, jeJ
) ij ;]
iel
> . .
(33 xij 2 0 iel, jed
(4) Minimize
z I c.,. x,,
1] 1]
iel jeJ

Figure 2-3 Equations of Transportation Model

The above equations are in their simplest form. They can be made more
complex by adding so-called row ranges, and by introducing bounded
variables. We revise the transportation model with some additional
conditions to demonstrate the more general case. First we impose a
minimum shipment for each plant. This results in a row range (equation
(1')). Then we put a limit on the amount of goods which can be shipped
from a plant to a market, e.g. due to a limitation in transportation
facilities. This results in a bounded variable (equation (3')). In its
most general form bounded variables specify a lower and an upper limit.
The modified equations are shown in Figure 2-4.

A further restriction can be placed on model variables. While they are
usually continuous, they may be restricted to discrete values. With this
restriction we enter the realm of mixed integer programming. Commercial
LP systems may also provide solution algorithms for this problem category.

The formulations of models in the modeling system follow closely the
mathematical notation of LP problems. A model is realized by a model
module. The model module consists of three parts: a declaration part, an
equation part, and a problem section. In the following we describe these
parts further; details of the language constructs, and a formulation of

20

m, minimum shipment from plant i
1ij limit in shipment from i to j
(1" m, £ ¥ x,. £ k iel
i ij i
jed
- 1 < < . .
(3) 0 < xij < 1ij iel, jeJ

Figure 2-4 Revised Transportation Problem

the transportation problem in the language of the modeling system are
found in Section 4.1.

The declaration part corresponds teo the definition of names which
usually precede the model equations. Additional wvariables and routines
for computations can be declared. Some of the variables are given the
role of formal parameters of the model module when they appear in the
interface specification of a problem in the problem section. The
interface specification is used to connect the data structures of the
model module to the data structures of the environment when the model
module is executed.

The equation part defines the equations of the model. Equations are
defined by declarations similar to routine declarations: they consist of
a name, possibly formal parameters, and an expression. Equation
declarations have the advantage that different aspects of the phenomena to
be modelled can be all formulated in one place.

Equations are not executable in the sense of data manipulations; they
are a higher level parameterization of the data transformation process of
model data to model solution and vice-versa. The instantiation of the
equations is controlled by indexes. The distinction between indexes and
data is dimportant: Indexes are the active part of an equation; they
define which data elements are accessed. Data are the passive part: the
equations only give the rules on how data elements are being selected and
formatted for the solution algorithm. Index sets can be used to tailor a
model to specific needs, e.g. data dependence of equations can be
expressed by the values supplied for the index sets with which the
equations are formulated. The formal parameters of an equation
declaration are intended for this purpose.

Equations have the same form as their mathematical counter part. The
left side of an equation is a linear form, usually an expression. The
summation sign is represented by 'sigma' followed by the controlling
indexes. The equation operator is one of the following: 'leq', 'geq',
'eq', and 'range'. The right side of an equation is a simple expression
which must evaluate to a constant. In case of a range equation first the
minimum and then the maximum of the range are given. Bounded variables

21

are treated in the same way as equations. If no bounds are declared for
model variables then bounds are derived from the ranges of their basic
type. A model variable is usually of type real. Discrete model
variables, like zero-one variables, are defined with type integer. The
objective function of a model is also formulated in the equation part
similar to an equation. The equation operator is 'objective', but there
is no right side. Several objective functions can be defined but only one
may be selected in a given problem.

Array attributes may be used in equations (without indexes). They are
useful for handling multiple righthand sides for LP modeling. In order to
employ them successfully the index types of those array attributes which
will create the righthand side must be all the same. This implies that
the model variables which will contain the results must also use array
attributes with the same index type.

The problem section of the model module consists of one or more problem
formulations. The first part of a problem formulation defines the actual
problem to be solved. The second part defines what to do with the model
solution. This part consists of data manipulations. The problem
formulation <contains an interface specification. The interface
specification defines the data input and data output of the problem. It
1ists the variables which are to be used as formal parameters of the
problem.

The actual model to be solved is obtained by calls to the relevant
equations defined in the equation section of the model module. Model
variables, constraints, bounds, and the objective of the optimization are
specified. The model description is embedded into the solve statement.
When a problem is executed the calls to the equations generate the matrix
which is then sent to the solution system. The solve statement defines in
addition implicit variables which contain information on the solution.
For an LP system implicit variables are provided for the status of the
solution (e.g. feasibility), cost of the objective, and additiomal
information on rows and columns like slack activity or input cost of the
model variables. The variables which contain this information are
declared implicitly because their structures are beyond the capability of
the type system, and because the information returned also depends on the
underlying solution system. However, in general the implicit variables
are treated like table structures with relaxed access requirements: e.g.
to get the slack activity of an equation the equation name {and index) can
be used to access it. (A typical example of a slack activity would be the
unused capacity of a production unit). If multiple righthand sides were
present then these structures can be further indexed by values of the
index type of the array attribute with which the righthand side was
created. The solve statement may be preceded by a computation part which
is intended for index computations.

The model formulations of the modeling system are derived from the
mathematical notation used for models. Its descriptive character makes
the formulation easy to use; it is also attractive for non-programmers.
We simplified the formulation of equations by separating the index

22

computations with which datra dependencies can be Thandled. The
introduction of equation declarations makes it possible to formulate
generalized models. While the formulations have been restricted to linear
forms to deal with the LP programming area it is obvious that based on the
mathematical notation these formulations can be easily expanded to cover
other areas of mathematical programming as well. In particular the
solution system interface formulations were made very flexible by
emploving implicit variables. This facility can be used to expand the
modeling system with other solution systems without having to provide
language elements to deal with particular features of those systems.

CHAPTER 3

Data Declarations and Data Manipulations

In this chapter we handle the language constructs for data declarations
and data manipulations. The constructs are defined by grammar rules. A
complete grammar is given in Appendix A.

3.1 Syntax and Representation

3.1.1 Notation for Syntax

The syntax is described in an extended Backus-Naur formalism which is
also used in the definition of Modula-2. Terminal symbols of the language
are either words written in capital letters or strings enclosed in quote
marks. Example:

MODEL "+"

The nonterminal symbols are words formed mostly by lower case characters.
The words are chosen so that some meaning can be conveyed. Example:

RelationConstructor
A syntactic rule has the form

S =E
where S is a nonterminal and E a syntax expression. E may be a sequence of
terminal or nonterminal symbols. Several alternatives are separated by
the | character. Example:

number = integer | real
Square brackets are used to denote 0 or 1 occurrences of the enclosed
syntactic expression, curly brackets denote O or more occurrences. Round

brackets may be used to group alternatives together. Example:

letters = letter {letter}
SignedNumber = ["+"|"-"] (integer | real)

24

3.1.2 Kepresentation

Certain terminal symbols of the language are formed by lexical rules.
We refer to them as lexemes. Lexemes in the modeling language are
identifiers, numbers, strings, and one form of table constant. They are
denoted in the grammar by the symbols ident, number, string, and
TableConst respectively. The usual notation for identifiers, numbers and
strings may be given by:

ident = letter {letter | digit}
integer = digit {digit}

real = digit {digit} "." {digit} [ScaleFactor]
ScaleFactor = "E" ["+"|"="] digit {digit}
number = integer | real

string = """ {character} """

A quote symbol which is part of a string must be written twice.

The representation of identifiers is extended in the modeling language
to allow also character sequences of the form integer, reserved word, and
string to be used as identifiers. This is accomplished by applying an @
sign operator to the character sequence. Example:

@1980 @type @"x-part"
The rules for table constants are handled in 3.3.1.3.

It is assumed that the ASCII character set is available for the
representation of formulations. A smaller character set, however, is
sufficient: upper case characters can be used instead of lower case

characters, and special symbols can be replaced by the symbols on the
right below:

H{H trptt
e 1ty 1t
}

11 1t tig. 11
‘ /a

Blanks, end-of-line, and comments are ignored except as they serve to
separate tokens of the language, e.g. to separate otherwise adjacent
identifiers. (Blanks and end-of-line are significant in table constants,
however). Comments start with the characters --. A comment is terminated
by the end of the line. Example:

-=- This is a comment

In the following for the convenience of the reader all grammar rules of
the language are marked by a § sign on the left margin.

25

~

3.2 Data Declarations

The data structures of formulation modules and data modules are defined
by type and variable declarations. In the context of a data base system
this part of the language is referred to as data definition language.
Some differences exist between declarations in formulation modules and in
data modules. They will be dealt with when modules are introduced.

3.2.1 Types

A data type determines a set of values which variables of that type may
assume. A type also determines the operations which may be performed with
values of that type. The type declaration associates an identifier with
the type. We distinguish between simple types and structured types.

$ TypeDeclaration = SimpleTypedecl | StrictTypedecl |
$ StructTypedecl

$ SimpleTypedecl = TYPE ident "=" basicType

$ StrictTypedecl = DOMAIN ident "=" strictType

$ StructTypedecl = TYPE ident "=" structType

Simple Types

Simple types are the types 'integer', 'real', 'boolean', 'string', and
subrange type.

basicType = standardType ["[" range "1"]

standardType = INTEGER | REAL | BOOLEAN | STRING

range = rangeConst ".." rangeConst | POSITIVE | NEGATIVE
rangeConst = ["+"|"-"] (number | INF)

Ly A Uy A

Subranges of a type are defined by giving the smallest and the largest
value of the subrange. Example:

typéﬁAGE = integer[1..100]
type posint = integer|[positive]

The range 'positive' is defined as 0..+inf, the range 'negative' is
defined as -inf..0.

Strict Types

Strict types have the form of simple types. The type name is a
property of the type. It is also used for checking type compatibility.
Enumerated types are defined as strict types.

$ strictType = (basicType | enumeration | externaldefined)
S [constraint]
$ enumeration = (" ident {"," ident} "™)"

26

S externaldefined = ENUMERATED | SUBRANGE
$ constraint = ORDERED | UNORDERED | RESTRICTED

The enumerated type is of particular importance: it specifies a set of
values by introducing identifiers which stand for each value in the set.
Example:

type COLOR = (RED,GREEN,BLUE)

Enumerated types are usually not ordered. An ordering can be imposed on an
enumerated type by:

type color = (RED,GREEN,BLUE) ordered
The order is defined by the sequence in which the values are written down.
The same identifier may be used as value descriptor in different
enumerated types. The denoted values are different, however.

Constraints can be placed on strict types to control the applicability
of comparison operators or arithmetic operators on values of that type.
The comparison operators <, <=, >, >= can be applied to types whose
values are ordered. They cannot be applied to tvpes which are unordered.
Example:

domain employernumber = integer|[positive] unordered
The arithmetic operations can be taken away by the constraint

'restricted'. For example dates can be compared but not added to each
other.

domain date = integer[601010..991231] restricted
Constraints were introduced to give the user some means for avoiding

meaningless operations on the data.

Structured Types

Structured types are aggregations of simple types [Smith]. Structured
types are tuples and relations. We refer to relations also as tables.

$ structType = tupleType | tableType | setTvpe

Tuples

An entity in the 'real word' is described by a tuple definition. It
consists of an aggregation of attribute names together with their types.

$ tupledef = "[" attributeSequence "]"
S tupleType = TUPLE tupledef
$ attributeSequence = attribute {";" attribute}

27

$ attribute = ident [extension] |

$ ident {"," ident} [extension] ":" simpleType
$ simpleType = ident | basicType

$ extension = "<" ident '>"

A person for example may be described by three attributes: mname, age,
and weight. Assuming 'name' is declared as string type one can define the
following type:

type persontype = tuple [name : name;
age : integer[1..100];
weight : integer[1..300]]

The types of the attributes age and weight are anonymous types, type
equivalency is done without considering the type name. In order to take
advantage of the additional security offered by strict types omne can
define the following:

domain name = string;
domain age integer[1..100};
domain weight = integer[1..300];

i

type persontype = tuple [name : name;
age : age;
weight : weight];

In order not to burden the user too much with types, abbreviated notations
can be used if this is allowed by the context. This makes it possible to
approximate formulations in languages which do not use a type system.

type persontype = tuple [name; age; weight]

If two attributes take their values from the same domain then attribute
names must be defined, e.g.

type persontype = tuple [firstname : name;
lastname : name;
age;
weight]

It is possible to use one attribute name for a group of things of the
same type, e.g. we may want to record the weight of a person for several
years without having to invent several different attribute names. An
attribute in this case is referred to as an array attribute. The
attribute is extended by the name of a subrange type or enumerated type.
Values of this type are used to identify a particular element of the
group. Example:

type vear = (@1960,@1970,81980)
type persontype = tuple [firstname: name;
lastname : name;

28

age;
weight<year>]

Tables

Collections of entities of the same type are defined by a relation
type. The relation type is a powerset structure.

f

$ tableType = TABLE columndef [WITH (keydef | DUPLICATES)]
$ columndef = ident | tupledef
$ keydef = KEY ident {"," ident}

An instance of a relation type is dynamic: the number of instances of the
underlying type is not known. Instances are created and removed during
the life time of the relation. An additional mechanism must be provided
to identify the instances of a relation. This is accomplished by keys. A
key consists of one or more attribute names of the underlying tuple type.
Only one key per relation may be defined (even if other attribute
combinations qualify as key). Names of array attributes cannot be used in
the definition of a key. Example:

type persontablel = table [name; age; weight]
with key name,age
table persontype
with key firstname,lastname

type persontable2

A key definition assumes that all entities of a relation are uniquely
identifiable and that this property is maintained by data manipulations.
An entity thus consists of two parts: a key part which identifies the
entity and & value part. A relation may be defined without kev. It is
then assumed that all attributes (except any array attributes)
participate in the definition of a key. No duplicate entries may be
contained in the relation.

If duplicates are allowed in a relation then obviously no key property
can be defined. A declaration looks then as follows:

type persontable = table persontype with duplicates

Sets

One-column tables defined with a simple attribute can be considered to
be set structures. For ease of notation we also introduce set structure
declarations.

$ setType = SET simpleType

Example:

29

type colortype = set color

External Defined Types
The value set of an enumerated type does not have to be explicitly
defined but may be bound to a set of values in the data base when e.g. a
data module is interfaced with a problem module for execution. (Problem
modules and data modules are introduced in the next chapters). The type
name then can be declared as follows:
domain color = enumerated
Comparison operators can be made available to this type by specifying
"ordered'. The type name is sufficient to do the necessary type checking

at translation time.

Similarly the fixing of bounds of integer subranges can be deferred
until data from the data base are actually made available. Example:

domain partno = subrange
This facility is used when tables with array attributes of unknown
dimension must be handled in formulation modules.
Implicit Types

Shorthand notations for tuple or relation definitions take advantage
of the possibility to define types implicitly. For example

type production = tuple [plant; product]

adds automatically the two definitions:

domain plant = enumerated
domain product = enumerated

This assumes, of course, that these identifiers were not declared
previously.

3.2.2 Variables

Variable declarations serve to introduce variables and associate them
with a unique identifier and a fixed data type and structure. Variables
are used in formulation modules and data modules. The data type
determines the values which the variable may assume and the operators
which are applicable. The type of a variable is given by a type name or a
type definition.

30

$ VariableDeclaration = VAR ident {"," ident} ":" typedef
$ typedef = ident | basicType | structType | derivedType

Example:
var person: persontype;
var persontable: table [name; age: weight]
with key name;
Implicit declarations of enumerated type names are possible.

For convenience of notation the declaration of a variable may be also
done by derived types. The type of the wvariable may be defined by
referring to a previously declared variable (or type) without repeating
type information.
$ derivedType = TYPE ident ["." ident] | TUPLE ident
Example:

var newpersons: type persontable

Variables may be defined having the same type as an attribute of a table
or tuple structure. Example:

var prsname: type persontable.name

If an array attribute is used then the variable is declared with the type
of the columns.

Variables which are to contain tuples of a table can be declared in a
similar way. Example:

var nperson: tuple persontable

The type or variable used must be a table structure.

3.3 Data Manipulation

Data manipulations are defined in routine modules and problem modules.
In the context of a data base this part of the language is referred to as
data manipulation language. The constructs can be also used in browsing
mode. Data manipulations are expressed by statements and expressions. Of
particular interest are the relation constructor and the insert, update
and delete operations.

31

3.3.1 Expressions

Expressions obtain or compute new values. Expressions consist of
operands and operators. Operands may be constants, variables,
designators, function calls, and relation constructors. The operations
can be categorized into arithmetic, logical, comparison, and set
operations. The applicability of an operator depends on the type of its
operands.

primary = designator | number | sconst | tconst |
StructConst | FunctionCall | RelationConstructor

factor = primary | "(" expression ")" | N-operator factor

term = factor {M-operator factor}

simpleExpr = ["+"|"-"] term {A-operator term}

expression = simpleExpr [R-operator simpleExpr]

N-operator = NOT | TAKE

M-operator = "*" | "/" | DIV | MOD | AND

A-operator = "+ | "-" | OR | UNION | INTERSECT | MINUS

R-operator = rn_n I Mmoo | 1 I non I . n I LN l IN l

-y A S Ay A Ay A Uy Ay Uy O

CONTAINS | PARTOF
The precedence of the operators is given in decreasing order by:

N-operator, M-operator, A-operator, R-operator

3.3.1.1 Primaries

Simple primaries are designators and simple constants. A designator is
an-identifier which refers to a variable. It may be followed by an access
list if the designated object is to be accessed by a key, and it may be
followed by a field selector to access part of a structure, e.g. the field
of a tuple, or the column of a table.

$ designator = ident [accessList] [fieldSelector] [property]
$ accessList = "[" expression {"," expression} "]"
$ fieldSelector = "." ident ["[" expression "]"]
- trn 3 Myett s 1L 1t
$ property = ident ["[" expression]]

Tuples of a table can be accessed by key if the table is defined with the
key property. A key uniquely identifies the tuple. Parts of a tuple can
be further selected. Given the declaration

var x: table [city; sz,pop:integer] with key city;
var y: tuple x;

a tuple of table 'x' is accessed by key as follows:

x[AUSTIN]

32

For obtaining the value of a composite key the expressions in the access
list are evaluated according to the attribute sequence of the key
definition. A field of the selected tuple is obtained by:

x[AUSTIN] .sz
The type of the primary is derived from the table or tuple structure.

In the context of a descriptive loop construct tuples are not accessed
by keys but in a system-defined manner. A designator (without access
list) refers here to a tuple of the table, or a sub-table depending on the
loop set-up. A selector refers to a field of a tuple or to a column of a
sub-table.

If it is necessary to access a particular element of an array attribute
then the field name can be further indexed by an expression which selects
the element. The expression must evaluate to a value of the appropriate
index type and within the bounds of the index range. With the declaration

var x: table [city; sz,pop<year>]
with key city;

we can obtain the population of Austin in the year 1980 by:
x[AUSTIN] .pop[@1980]

Some entities may have in addition to a 'value' other 'properties'.
Properties consist of an identifying name and a value. Only for certain
variables pre-defined property names exist; these also determine the type
of their wvalue (see Section 4.1.3). Properties are accessed by the

property operator " followed by the property name. Example:

status 'name

Other primariegs together with examples are handled in later sections.
3.3.1.2 Operations

Simple Operations

Under this heading fall all operations except set operations. The
definitions of arithmetic, logical, and comparison operators are the same
as in Pascal. Example:

(x.pop>1000) or (x.sz<500)

All operations require scalar operands except the equality operators.
Equality operators are also applicable to tuples and tables.

33

The 'take' operator is provided for tables which consist of one tuple.
The result of the operation is the tuple. In case of a one column table
(or set) the element of the table is returned as scalar.

Set Operators

Tables of the same structure and attribute types can be operands of the
union, difference, and intersection operator. Tables may contain
duplicates. The operations are defined by:

x in (S1 union S2) iff (x in S1) or (x in S2)
x in (81 minus S2) iff (x in S1) and not (x in S2)
x in (81 intersect s2) 4iff (x in S1) and (x in S§2)

The operators 'contains' and 'partof' denote improper set inclusion.
The operands must be type compatible tables (or sets). The operations are
defined by:

S1 contains S2 iff for all x in S82: x in 81

S1 partof S2 iff for all x in S1: x in 82

sl = s2 iff for all x in S1: x in S2 and
for all x in S2: x in S1

Set membership is denoted by the operator 'in'. The type of the tuple (or
for sets the type of the scalar) must be compatible with the type of the
table.

3.3.1.3 Constants

Constant values exist for simple types and structured types. If
necessary a type operator must be applied to a constant to avoid
ambiguities or to provide additional structure information.

1", n

"a1
typeop = '§ typeref
typeref = ident | basicType | derivedType

$ sconst = string | TRUE | FALSE | UNKNOWN

$ slconst = ident | ["+"|"-"] number | sconst

S tconst = typeop slconst

) StructConst = [typeop] (SET setstruct | TUPLE tuplestruct |
$ TableConst | EMPTY)

$ setstruct = "[" setElement {"," setElement} "]" | "[" "]"
$ setElement = expression [".." expression]

$ tuplestruct = "[" tupleElement {"," tupleElement} "]"

$ tupleElement = [expression]

$

$

Constant values of simple types like numbers are represented by their
usual notation. Values of enumerated types may need a type operator for
uniquely identifying a value. Example:

34

Scolor: RED

Constant values for structured types usually require a type operator to
define the type of its attributes. Otherwise the type is derived from the
constants (or expressions) used in the structure. Example:

set[1..3,7,9]

For tables it is convenient to provide the data in table form. The
table form is defined by lexical rules and thus only the lexeme TableConst
appears in the grammar. A declaration describing e.g. the number of
telephone lines between two cities and the distance between the cities
could be given by:

type telph = table [FROM,TO:city;
distance:real; lines:integer]

In the table formulation the attribute names are used as column names.
The column names define the layout of the table. Column 1 within the
table form is reserved for special purposes. A line containing column
names is indicated by a plus symbol in the first column. Example:

Stelph:table

+ FROM TO DISTANCE LINES
A B 3.0 55
X Y 2.0 70
end

If necessary the table can be separated into parts if the column names do
not fit onto one line. Extra lines containing column names are marked by
a plus symbol in column 1. Example:

Stelph:table

+ FROM TO
A B
X Y
+ DISTANCE LINES
3.0 55
2.0 70
end

Table constants with array attributes can be also formulated. A column
name in this case consists of the attribute name followed by the index
value which is used to identify the column. For the example above one
might have three choices for the number of telephone lines. This could be
formulated by:

LINES.1 LINES.2 LINES.3
30 33 37

35

The language provides two typeless constants unknown' and 'empty' to
handle unknown values and empty structures. These constants are only
useful for assignments and comparisons. Key attributes in tables cannot
have the value unknown. In tuple constants and table constants values can
be omitted. These values are assigned the value unknown.

3.3.1.4 Relation Constructor

The relation constructor creates a new table from existing tables.
Based on the assumption that most data base operations are gquite simple
the relation constructor is restricted to provide the basic table
operations of selection, projection, join, or a combination thereof. DMore
complex operations can be realized either by decomposing the operation
into a sequence of simple operations creating intermediate tables along
the way, or by using the tuple-at-a-time facilities of the language
(Section 3.3.2).

The relation constructor consists of three major parts: the result
part, the input part, and the selection part. The descriptive nature of
the relation constructor derives from the looping mechanism by which the

tuples of the relation are accessed: no specific access sequence is
defined.

$ RelationConstructor = "{" resultPart rc-op inputPart

$ [selectionPart] "}"

$ rc-op - 11 I 1t l 1! ‘ ‘ 1t

The resulting table may contain duplicates if the "||" form of the table

constructor is used, otherwise duplicates are removed from the result
table. We introduce first the three parts of the relation constructor.
Then a variety of examples is given.

Definition

The result part of the relation constructor specifies the structure and
the column names of the result table. All column names of the result
table must be different; column names can be renamed if necessary.

3 resultPart = telement {"," telement} [WITH keydef]
$ telement = tident | ident "=" tident
) tident = ident ["." ident]

The names in the target list are usually attribute names. They can be
qualified by the table from which they are taken. A target list may
consist of a table name if all attributes of the table participate in the
result. For array attributes all columns are transfered to the result
table.

The input part defines one or two tables from which the tuples are
taken. The tuples are selected in a system-defined way. A table can be

36

associated with an auxiliary variable which serves as loop variable. The
type of this implicit declared variable is derived from the type of the
table. The scope of the variable is the relation constructor only.

If two tables are given then first a 'join' table is constructed
according to the join condition. The loop of the relation constructor
obtains tuples from this table for the selection and projection
operations. The loop wvariables associated with the input tables are
coupled to this loop; they refer to the part of the 'join' tuple which was
obtained from the respective table.

]

$ inputPart = itable [BY bySelector] |

$ itable "," itable "(" tident J-operator tident ")"
$ itable = [ident IN] ident

$ J‘Operator - "=" I H<>” l "<" l ">H] "<=H I H>="

$

bySelector = ident ["[" expression "]"]

A table may be categorized into sub-tables according to some attribute
with the 'by' comnstruct. For each distinct value of the respective
attribute a sub-table is formed. The loop in this case runs over the
sub-tables, and the loop variable refers to a sub-table instead of a
tuple. The attribute for the categorization of a table may not be an
array attribute. However, a specific column of an array attribute can be
used in the 'by' construct.

The selection part defines the conditions under which the tuple (or
sub-table) obtained in the loop is to be included into the result table.

$ selectionPart = ":"

expression

The expression used in the selection part may not contain further relation
constructors or other table building operations. This restriction limits
the complexity of the data base operations and is in line with our goal to
match the complexity of notation with the complexity of the operation.

The treatment of sub-tables requires some further explanation. The
conditions of the selection part are applied to a sub-table. Standard
functions are available to obtain values or properties of a sub-table (or
column thereof), e.g. sum, min, max, average, or size. If a sub-table
qualifies for further processing then the whole sub-table is used.
Usually only one tuple per sub-table will be added to the result table
because duplicates are removed if only some of the columns are projected

out for the result. In general, however, the whole sub-table is added to
the result.

Examples

The relation constructor is demonstrated by examples. We introduce the
familiar 'supplier' and 'part' relations. The relation constructors are
first formulated as queries. For the following we assume the existence
of these tables

37

var suppliers: table [name; suppno; city];
var part: table [suppno; partno; quantity];

with the appropriate attribute types. In some cases an auxiliary variable
called 'temp' of the appropriate type is necessary to hold intermediate
results. '

Simple queries involve only one table. Example of a simple projection:

Get the names of suppliers.
{ x.name | x in supplier }

In most cases the loop variable is not necessary. The above query can be
formulated shorter by:

{ name | supplier }
Example of a simple selection:

Get the suppliers located in Austin.
{ supplier | supplier: city=AUSTIN }

A table of supplier tuples is returned in this case.

The selection condition may depend on some properties of another table.
A query of this kind can be usually formulated by a join operation. In
many cases it is advantageous to break down the query into two parts:
first an auxiliary table is created which is then used in the simplified
query. This way the more expensive join operation can be avoided.
Example:

Get the names of suppliers who supply part 3.
temp:= { suppno | part: partno=3 };
{ name | supplier: suppno in temp }

The query formulated as join operation is given by:
{ name | supplier,part(suppno=suppno): partno=3 }

The join of the two input tables is built according to the join condition
on the identified columns. The columns must be type compatible. The
resulting table may contain columns with the same name: if these columns
are to be used in the result table then the renaming facility must be
used. Note that an input table identifier can be dropped if the attribute
names can be unambiguously identified within the context of the table
constructor.

A result table which contains attributes of both tables must be
formulated as join operation. Example:

Get the names of suppliers and the part numbers

38

they supply.
{ name;partno | supplier,part(suppno=suppno) }

Tables can be categorized into sub-tables with the 'by' construct.
Tuples of a table can be selected according to the properties of
sub-tables from another table. Example:

Get the names of suppliers who provide at least

10 different parts.

temp:= { suppno | part by suppno: size(part)>10 };
{ name | supplier: suppno in temp }

Finally a table constructor may have the same outcome in selecting a tuple
from a table as accessing the tuple by key. If we assume that 'suppliers'
was defined with the key 'suppno' then the following two constructs will
retrieve the same tuple:

Get supplier with suppno=7.
take { supplier | supplier: suppno=7 }
supplier|[7]

The limits of the relation constructor are reached by a query of the
kind:

Get part numbers together with their total
quantity at hand.

As the resulting table contains a column of computed values this query
must be formulated with a for-statement (Section 3.3.2.2). The input
table is categorized according to the part numbers. For each sub-table a
tuple is created which contains the part number together with the sum of
the quantities. This tuple then is inserted into the result relation.
The procedural formulation of the query is illustrated by:

ans:=empty;

for part by partno do
insert tuple[take partno, sum(quantity)]
into ans;

end;

3.3.1.5 TFunction Calls

An identifier followed by an expression list activates the respective
function and stands for the wvalue resulting from its execution. The
declaration of functions is handled in Section &4.3.1.

$ FunctionCall = ident "(" [ActualParameters] ")"

$ ActualParameters = expression {"," expression}

39

Several standard functions are predefined. Some of these functions allow
parameters from a class of types, or the type of the result may depend on
the type of the parameter. These functions are called generic functions
as for each context the proper function is available. The arguments of
functions may be scalars or structures. The following is a list of
functions provided:

Functions with Scalar Argument

ABS (x) absolute value;
result type is integer or real.

SIN(x),C0S(x),TAN(x),ARCTAN(X),
EXP(x).ILN(x) usual functions;
result type is real.

Functions with Structure Argument

SIZE(x) x is a table or a column of a table,
returns the number of elements in the
structure; result type is integer.

SUM(x) x is a column of a table, returns the
sum of the elements; result type is
real or integer depending on type of

column.

AVG(x) x is a column of a table, returns the
average sum{x)/size(x); result type
is real.

MIN(x) x is a column of a table, returns the

smallest element of the column; result
type is same as argument type.

MAX(x) %x is a column of a table, returns the
largest element of the column; result
type is same as argument type.

3.3.2 Statements

Statements exist for assigning values to variables or structures, for
specifying the order in which computations are done, for input/output, and
for solving a model. Statements are simple or structured. Structured
statements contain statements themselves.

$ statement = [assignment | insertion | deletion |
$ ProcedureCall | IfStatement |

40

$ LoopStatement | ExitStatement |

S ForStatement | WithStatement |

$ Modification | InputOutput |

S ExecuteStatement]

$ statementlist = statement {'";" statement}

The statements are described briefly. Of importance are the data

management statements and the for-statement. Input/output and the
execute-statement are deferred to Section 4.4. For the following examples
these declarations are assumed:

var persons: table [name; salary:integer]
with key name;

var person: tuple persons;
var rperson: type persons;
var k,x: integer;

3.3.2.1 Simple Statements

Assignment

Assignment is used to overwrite the current value of a variable by the
newly computed value.

$ assignment = reference ":=" expression
$ reference = ident ["." ident ["[" expression "]"]]

If an assignment is made to a variable connected to the data base then the
old values in the data base are deleted and new values are created.
Example:
persons := {persons | persons: salary>500}

The syntax does not allow the assignment to a field of a tuple which is
obtained by key from a table. The modification statement must be used for
this purpose.
Insertion

Tuples are added to tables by the insert statement.
$ insertion = INSERT expression INTO ident
The expression must evaluate to a tuple which is type compatible with the
table into which it is to be inserted. If the table has a key property

then the tuple is only inserted if there are no key conflicts. Example:

insert person into persons;

41

insert tuple[SMITH,10000] into person;

Deletion

Tuples are deleted from a table by the delete statement.
S deletion = DELETE [ALL] expression [FROM ident]
The expression must evaluate to a tuple which is type compatible with the
table. (In case of duplicate entries only one tuple is deleted from the
table unless the ALL construct is used). The table from which the tuple
is to be deleted may be omitted if the tuple is produced by key access or

by a descriptive loop construct. Example:

delete persons|SMITH];
delete person from persons;

Procedure Call

An identifier followed by an expression list activates the respective
procedure. The declaration of procedures is handled in Section 4.3.1.

$ ProcedureCall = ident ["(" ActualParameters '")"]
Two standard procedures are predefined which select the current input file
or current output file: inputfile and outputfile. The argument of these

routines is a string. Example:

inputfile("'mod.data™)
3.3.2.2 Structured Statements
If-Statement

The if-statement is used to make decisions. The expression must
evaluate to a boolean value.

$ IfStatement = IF expression THEN statementlist
$ [ELSE statementlist] END
Example:

if k>3 then x:=5 end;
if k=0 then x:=3 else x:=x+5 end;

42

Loop-Statement

The loop-statement specifies the repeated execution of a statement
sequence. The loop is terminated by the execution of an exit-statement.

$ LoopStatement = LOOP statementlist END
$ ExitStatement = EXIT WHEN expression

]

An exit-statement may only be used within a loop-statement. When an

exit-statement is executed then only the immediately enclosing loop is
terminated. Example:

k:=5;
loop f(k); exit when k=0; k:=k-1 end;

Other looping constructs like the 'while' and 'repeat' constructs found in

Pascal can be expressed by placing the exit-statement respectively as the
first or last statement in the loop.

For-Statement

The for-statement specifies a descriptive loop construct. It has
essentially the same form as the selection part of a relation constructor.

The expression which represents the condition must evaluate to a boolean
value.

S ForStatement = FOR ForSelection DO statementlist END
S ForSelection = selection [":" expression]

$ selection = [ident IN] ident [BY bySelector] |

s

ident IN basicType

Elements are either selected from a table or implicitly from a range of
values given by a simple type. An auxiliary loop variable may be declared
for the loop. Its type is derived from the associated table or type. The
scope of the loop variable is the for-statement only. For tables {or
sets) the for-statement obtains in a system defined way a tuple of the
table (or element of the set), checks the conditions associated with .it,
and 4if the conditions hold, executes the statement 1list of the
for-statement. Tables may be categorized into sub-tables with the 'by'
clause. The loop variable then runs over the sub-tables. The same
restrictions for array attributes apply as for the selection part of a
relation constructor. Note that the syntax allows only a table identifier

in the selection part. This means that an expression, e.g. a set
constant, must be assigned to a table variable for wuse in the
for-statement. If no loop variable is specified then the table name

itself can be used if this does not cause any ambiguities.

The second form of the for-statement uses a simple type as value
generator. The simple type must be discrete and restricted by a range. A
simple type in the context of this construct is treated as a set of

43

values. The values are available either implicitly, e.g. integer{l..10]
or explicitly e.g. an enumerated type. A loop variable must be specified
if the type is not declared in a type declaration. Example:

for p in persons: p.salary<300 do ... end;
for name do ... end;

With-Statement
The with statement allows attribute identifiers to be used in its
statement sequence without qualifying them by the name of the table or

tuple variable.

$ WithStatement = WITH ident DO statementlist END

Example:
with person do
name:= SMITH;
salary:= 5000
end;
Modification

Tuples in a table are modified by the modification statement.

$ Modification = MODIFY ident [accessList] (WITH | DO)
$ statementlist END

Access of a tuple is either by key or in the context of a descriptive loop
construct. The 'with' form of the modification statement allows the use
of attribute names in the statement list without the need of qualifying
them with the tuple name. Modifications to values of key attributes are
not allowed. If key attributes must be changed then it is necessary to
create a new tuple. The old tuple is then deleted from the table, and the
new tuple is inserted. Example of modification statement:

modify persons[SMITH] with salary := salary+100 end;

Further Examples

The for-statement is useful for insertion, deletion, and modification
of data in the data base. The for-statement is also necessary in
formulating more complex queries which cannot be expressed by a table
constructor. The procedural form of a table constructor is demonstrated
by the following example:

44

-- Get persons with salary>5000

rperson:=empty;

for p in persons: salary>5000 do
insert p into rperson;

end;

Tuples of a table for which a certain condition holds can be deleted with
a for-statement. As the tuple to be deleted is readily identified through
the loop construct the short form of the delete-statement can be used.
Example:

-- Delete persons with salary>5000

for p in persons: salary>5000 do
delete p;

end;

Finally tuples of a table for which certain conditions hold can be
modified. Example:

-- Increase the salary of all persons with
-- salary<500 by 10
for p in persons: salary<500 do

modify p with salary:= salary+50 end;
end;

CHAPTER 4

Model Formulation and Formulation Modules

In this chapter the language constructs for model formulations are

introduced. Model modules, declaration modules, routine modules,
execution modules, and data declaration modules are described. The
language constructs are defined by grammar rules. (The notation for

grammar rules is defined in Chapter 3).

4.1 Model Module

A model module consists of three parts specific to this module: a
declaration part, an equation part, and a problem formulation part. Model
modules are named.

$ ModelModule = MM-header M-declarations M-equations
S problemsection END
$ MM-header = MODEL MODULE ident ;"

In the following the parts of the model module are described further. To
demonstrate the language structures we use the transportation problem as
introduced in Section 2.6. A complete formulation of a model module is
given in Appendix B.

4.1.1 Model Declaration Part

The model declaration part consists of type, variable, and routine
declarations.

$ M-declarations = {D-declaration} {R-declaration}

The declared variables fall into two categories: variables which are used
for model variables and model parameters of the equations, and variables
which are used for data manipulations, e.g. index computations. All
variables in the model declaration part are considered to be local
variables. However, theyv may be used in the interface specification part
of a problem in the problem section. In this case (and only in the
context of the particular problem) they are considered to be formal
parameters of the model module.

We use as example the declaration part of the transportation model.
Goods are produced at plants and shipped to markets. Data structures are
needed for the capacity of plants, the market requirements, the amount

46

shipped, and the shipping cost. The declaration part is formulated as
follows:

-- declarations

var I: set plant;

var J: set market;

var capacity: table [plant; k:real]
with key plant;

var requirement: table [market; r:real]
with key market;

var cost: table [plant; market; c:real]
with key plant, market;
var amount: table [plant; market; x:real[positive]]

with key plant, market;

Note that the sets I and J in this example will be used for index
computations.

4.1.2 Equation Part

The eguation part contains the equations of the model. This includes
bounds and objective function. An equation is defined with a name and
possibly parameters. The parameters are usually set structures. They can
be only used for indexes.

$ M-equations = EQUATIONS M-equation {M-equation}

$ M-equation = equationHeader IS equation ";"

$ equationHeader = ident ["(" Q-formal {";" Q-formal}")"]
$ Q-formal = ident {"," ident} ":" typeref

An equation may be simple, or it may represent a group of equations. A
group of equations is generated by a descriptive 'each' construct which is
similar to a descriptive loop. The 'each' construct consists of a
selection part and a condition part. An auxiliary loop variable may be
defined. The scope of this variable is the equation only. The values for
the loop may be taken from an index set, or a simple type may serve as
value generator.

S equation = [EACH eachpart] Q-leftpart Q-rightpart
$ eachpart = Q-selection {"," Q-selection} ":"

$ [expression] ":"

$

Q~ée1ection = [ident IN] ident | ident IN basicType

When an equation is executed it generates one or more rows of the LP
matrix. If it is necessary to refer to one of these rows then the equation
name together with the index which generated it can be used.

The 'each' construct is also used for the running index of a summation
sign. The summation is represented by the 'sigma' construct.

47

$ summation = SIGMA "(" eachpart Q-expression ")"

The condition part of the 'each' construct is treated in a similar way as
the condition part of a for-loop: only if the conditions hold is the rest
of the construct processed further. The summation

I I ox,,
1]
iel jeJd
it]

is expressed in the modeling system by

sigma (i in I,j in J: i<>j: x[i,j].x)

Equations consist of a left part and a right part. The left part has
the form of an (equation) expression. It must be linear in the model
variables. The right part for inequalities, equalities, and ranges must
evaluate to a constant, or to a lower and upper bound respectively. For
objective functions the right part consists only of the equation operator.

$ Q-primary = designator | number

S Q-factor = Q-primary | summation | "(" Q-expressiom ")"
$ Q-term = Q-factor {QM-op Q-factor}

S Q-expression = ["+"]"-"] Q-term {QA-op Q-term}
$ QM-op = "*" | "/™ | MOD | DIV

S QA"OP - f?+" | fl_”

$ sQ-primary = ["+"|"-"] Q-primary

) Q-leftpart = Q-expression

$ Q-rightpart = Q-op sQ-primary | OBJECTIVE |

$ RANGE sQ-primary "," sQ-primary
$ Q-op = EQ | LEQ | GEQ | = | <= | >=

The equations of the transportation problem with the declarations
given above can now be formulated:

equations
-- a plant cannot ship more than it produces
cpconstraint is
each i in I::
sigma (j in J:: amount([i,j].x) <= capacityl[i].k;

-- a market must at least receive what it requires
mkrequirement is
each j in J::

sigma (i in I:: amount[i,j].x) >= requirement[j].r;

-- shipments must be positive

nonnegbound is

each i in I, j in J::
amount|i,j}.x >= 0;

48

-- cost function

totcost is
sigma (i in I,j in J:: amount[i,j].x%cost{i,j].c)
objective;

4.1.3 Problem Section

The problem section consists of one or more problem definitions. A
problem describes the actual model to be solved. It consists of five
parts: a declaration part for local wvariables, an interface

specification, a computation part for indexes, the solve statement, and
another computation part for general data manipulation.

$ problemsection = problem {problem}

$ problem = problemHeader {TV-declaration} [interfaceSpec]

$ [statementlist] SolveStatement [statementlist]

$ END

$ problemHeader = PROBLEM ident ";"

$ interfaceSpec = INTERFACE ["*"] ident {"," ["*"] ident} ";"

The interface specification defines the formal parameters of a
problem. The variables mentioned in the interface specification list may
refer to variables declared in the problem declaration part as well as to
variables declared in the module declaration part. If an asterisk
precedes the formal parameter then the parameter is an input parameter.
The corresponding actual parameter is expected to supply a value with
which the local variable of the model module (or problem section) is
initialized when the problem is executed.

The solve statement consists of the model solution system interface and
the description of the actual model. The actual model is defined by calls
to the relevant equations of the model formulation. Model variables,
constraints, and bounds are identified in separate sections. It is also
indicated if the objective function is to be minimized or maximized.

SolveStatement = SOLVE SS-interface actualmodel END
actualmodel = variables objective constraints [bounds]
variables = VARIABLES ":" v-ident {"," v-ident } ";"
v-ident = ident ["." ident]

objective = OBJECTIVE ":" option equationcall

option = MINIMIZE | MAXIMIZE

constraints = CONSTRAINTS ":" equationcall {equationcall}
bounds = BOUNDS ":" equationcall {equationcall}
equationcall = ident ["(" expression {","

Ly Ly Ay LSy Ly Dy A A A

expression}')"] ";"

The equations called in the different sections must be of the appropriate
kind, e.g. an objective equation cannot be called from a constraint

49

section. If the bounds section is omitted then the bounds are derived
from the basic type with which the model variables are declared.

The model solution system interface is specific to the solution system
in use. It has the general form: name of solution system followed by
actual parameters. The actual parameters are identified by the name of
their formal parameter to establish the proper correspondence.
Parameters are used in two ways: they declare implicit variables which
contain information on the sclution, or they are used to pass information
along to the solution system.

$ SS-interface = "(" ident ":" SS-parameter
$ {"," sS-parameter} ")"
$ SS-parameter = ident ["=" expression]

The right side of a declaration parameter can be omitted; the parameter
name is then used by default for declaring a variable. The scope of
implicit declared variables is the computation part following the solve
statement of the current problem formulation.

It is assumed that the three parameters 'status', 'cost', and 'parm'
are always provided by the solution systems. The first two are used to
declare variables implicitly. 'Status' is a variable of type integer which

returns the status of the solution. 'Cost' is a variable of type real
which returns the value of the objective function. Parameters can be
passed along to the solution system with the parameter "parm’'. Its

argument is of type string.

Implicit declared variables of the model solution system interface
have additional properties which can be accessed by the property operator
"M For a given solution system the translator is aware of the possible
implicit variable declarations and their available properties. Thus
checks on their correct use can be made at translation time.

The 'status' variable has the property 'name' which contains a string
of the name of the status of the solution. This information could be used
like in this example:

if status'name = "optimal"

If an array attribute was involved for providing several righthand sides
for the model solution then solution information for a particular column
can be obtained by using the same index value with which the righthand
side of the LP model was generated. Example:

if status'name[@1980] =

For an LP solution system two additional interface parameters for
declaring implicit variables are defined: 'row' and 'column'. These
variables contain the relevant information usually available from an LP

system. Both are table structures. Access to a tuple is accomplished

50

either by giving the equation name or the name of the model variable.
Additional indexes are usually required. As the tables are declared
implicitly the value of a field is obtained by the property operator, e.g.
the input cost of a variable in the final LP solution could be obtained by

column|amount,i,j] 'inpcost
or the value of a slack variable for an equation (if it exists) by
row|[mkrequirement,i]'slack

Solution information for multiple righthand sides is obtained by indexing
further with the appropriate righthand side index value.

The problem formulation for the transportation problem looks now as
follows:

problem P;
-- problem interface
interface capacity, requirement, cost, amount;

-- index computations
I:= {plant | capacity};
J:= {market | requirement};

solve (PDQLP: status)
variables: amount .x;
objective: minimize totcost;
constraints: mkrequirement;
cpconstraint;
bounds: nonnegbound;
end;

if status 'name="optimal" then

end;
The problem is to be solved with the LP system PDQLP, and the only
implicit declared variable is 'status'. The bounds section could have

been omitted as these bounds are also derivable from the tvpe of the model
variable.

4.2 Declaration Module

Logically related variables and types can be collected in a declaration
module. A declaration module can be included in other modules instead of
declarations.

$ DeclarationModule = DM-header {D-declaration} END
$ DM-header = DECLARATION MODULE ident ";"

$ TV-declaration = TypeDeclaration ";" |

$ VariableDeclaration ";"

b

51

$ D-declaration = TV-declaration |
$ INCLUDE ident {"," ident} ";"

The data structures of the transportation model (Section 2.6) can be
formulated as follows:

declaration module TM;

var capacity: table [plant; k:real]
with kev plant;

var requirement: table [market; r:real]
with key market;

var cost: table [plant; market; c:reall
with key plant, market;
var amount: table [plant; market; x:real|positive]]

with key plant, market;
end;

In addition to the variable names also the type names 'plant' and 'market'
are declared in the above module.

A declaration module is included into another module by the 'include'
construct. Example:

include TM;

The inclusion of a declaration module is handled as if the text of the
module was inserted. A declaration module is not used for sharing
variables like the COMMON declaration in Fortran; the interface
specification is provided for this purpose. All names of a declaration
module are visible in the scope of the module where it is included. The
scope of a declaration module, however, is closed in the sense that all
names like default type names are defined.

4.3 Routine Module

The routine module consists of a collection of functions and
procedures. Variables which are global to these routines can be declared
in a declaration part.
$ RoutineModule = RM-header {D-declaration} {R-declaration}
$

END
$ RM-header = ROUTINE MODULE ident ";"

4.3.1 Routine Declarations

The declaration of functions and procedures follows the established
pattern of programming languages. The declaration specifies the name of

52

the routine, its formal parameters (if any), and in the case of a function

the type of the returned value. This is followed by the body of the
routine.

R-declaration = routineheader {TV-declaration}
BEGIN statementlist END ";" |
use-declaration ";"

PROCEDURE ident [formalPart] ";" |

3

FUNCTION ident [formalPart] ":" typeref ";"

3

routineheader

Ly Ay A DA

A routine may contain local variables; however, no nested routine
declarations are allowed.

Formal parameters of a routine may be declared in one of three modes:
by reference, by value, and as constant.

$ formalPart = "(" parameterDeclaration

$ {";" parameterDeclaration} ™"

$ parameterDeclaration = [mode] ident {"," ident} ":" typeref
S mode = VALUE | CONST

If the formal parameter is declared without an explicit mode then the
actual parameter is passed by reference. This means that any data
manipulations carried out on the formal parameter directly affect the
actual parameter. This kind of parameter corresponds to the VAR parameter
in Pascal. If the formal parameter is declared as VALUE parameter then a
copy of the actual parameter is passed to the routine. The formal
parameter is handled like a local variable initialized with the value of
the actual parameter. If the formal parameter is declared as CONST
parameter then the actual parameter can be accessed only but may not be
modified. Tables cannot be passed as value parameters.

4.3.2 Global Variables

Variables declared for a routine module have the role of 'static'
variables (e.g. like in the programming language C), that is they are
privat global variables of that module. The global declarations of a
routine module are useful if a large number of variables must be shared
among the routines; it provides an alternative to function and procedure
parameters for communicating data.

4.3.3 USE Declaration

A routine module is included into the current module by a
use-declaration. Usually all routine names declared in a routine module
are visible in the scope where the module is used. The visibility can be

limited by importing only specific names.

$ use-declaration = USE ident [IMPORT ident {"," ident}]

53

Use-declarations may appear where functions or procedures can be
declared. The types of the parameters (and function results) must be
defined in the module which uses the routine module. These definitions
must be compatible with the definitions in the routine module.

4.3.4 Example

The following example shows the skeleton of a routine module:

routine module RM;
include TM;

procedure reportl(const mm: type amount);
begin ... end;

procedure line;
begin ... end;
end;

The routine 'reportl' may be used in another module if the module RM is
included in it by a use-declaration. Example:

use RM import reportl;

The visibility of the routines of the routine module RM is restricted to

the routine 'reportl'; the routine 'line' for example is not accessible in
this module.

4.4 Execution Module

The execution module defines the operational aspects of a model. It
consists of input/output statements, data manipulation statements, and
problem execution calls. Input/output wusually is limited to the
definition of the interface between data base and execution module.

$ ExecutionModule = EM-header {D-declaration} [interfaceSpec]

S {R-declaration} statementlist END

$ EM-header = EXECUTION MODULE ident ";"

The execution module is used for data transformations. Data
transformations may be required to prepare data for a problem in the
appropriate form or for storing data obtained from a problem solution in
the data base. An execution module does not have to contain a call to a
problem execution: the execution module then can be used to enter data
into the data base or to present data from the data base.

54

’

4.4.1 Execution Statement

The execution of a problem of a model module is accomplished by the
execute-statement.

$ ExecuteStatement = EXECUTE ident OF ident sharedVariables
$ sharedVariables = "(" ident {"," ident} ")"

The execution of problem P of the transportation model might be formulated
by:

execute P of
transportation(capacity,requirement,cost,amount);

The actual parameters of the model module are usually variables which
define the interface between the execution module and the model module.
For those formal parameters which have been declared with an asterisk the
actual parameters are evaluated. Thus for these parameters also
expressions may be used.

The execute statement can be part of a statement sequence in the
execution module, e.g. it can be part of a loop. This may be useful when
trying to solve a problem in an iterative fashion.

4.4.2 Input/Output Statements

As the execution module is also concerned with input/output we handle
input/ocutput statements here. Input may be obtained from a file or from
the user. Output may be sent to a file or to the terminal. The current
input file is selected by the standard routine 'inputfile', the current
output file by the standard routine 'outputfile' (see Section 3.3.2.1).
Input for the command processor is always expected from the terminal (or a
command module). Thus the terminal is automatically selected as input
file when a command finishes, or when errors occur during the execution of
a command (and input was read from a file).

Two routines READF and WRITEF are provided for formatted input/output.

The corresponding routines for unformatted input/output are READ and
WRITE.

$ InputOutput = WRITE "(" expression {"," expression} ")"

$ WRITEF "(" expression {"," expression } "™)" |
$ READ "(" [sentinel ","] reference [sentinel]
$ {"," reference [sentinel]} ")" |

$ READF "(" expression [sentinel] "," reference
$ [sentinel] {reference [sentinel]} ")"

$ sentinel = ":" expression

The first parameter of the routine WRITEF is a string which contains
the control characters on how to convert the following expressions. The

55

format layout and conversion characters have been adapted from C
[Kernighan]. Conversion specifications are separated by commas. A
conversion specification starts usually with a digit sequence which gives
the field width of the item to be printed. This is followed by the
conversion character. The field width may be preceded by a minus sign
indicating that the item is to be displayed left-adjusted in the given
field instead of right-adjusted. Furthermore a second digit sequence
separated by a period may be included in some cases. The conversion
characters and their meaning are:

d The argument is displayed as integer.

e The argument is displayed as floating point number.
A second digit sequence is required; it gives the
number of digits in the mantissa.

£ The argument is displayed as fixed point number.
A second digit sequence is required; it gives the
number of digits following the decimal point.

s The argument is a string, an enumerated type, or a
boolean.
t Before the next argument is handled, tab to the

absolute position given by the digit sequence.
n Write an end-of-line.

Tables may be directly used as arguments of WRITEF. For each attribute a
format specification is required. For array attributes the format of the
attribute is applied to each column. The whole table is displayed
according to the format string; end-of-lines are inserted automatically
after each tuple of the table has been displayed. The table "amount' of
the transportation problem could be printed by

writef("10s,10s,10.2f",amount);

The routine READF is very similar to WRITEF. The first parameter is a
control string giving the format on how to read the data for the following
parameters. With the exception of the first parameter all parameters of
READF are variables. The conversion characters are very similar to the
ones of WRITEF, however, only one digit sequence to define the field width
for floating point numbers is necessary. The end-of-line character is
used to get the next input from a new line. Input is read according to the
type of the argument; the format specification must be compatible with the
type. String format is used to read values of enumerated types as well as
string types. Leading and trailing blanks are eliminated of the character
sequence obtained from the given field width. Real numbers may appear in
the defined field width as integers, fixed point numbers or floating point
numbers. Zeroes must be written except that a field consisting of spaces
is interpreted as the value zero.

56

A table may be directly used as parameter of READF. It is assumed that
each tuple of the table begins at a new line. A tuple may be spread over a
few lines. The format specifications are matched according to the
sequence of attributes of the table. A particular problem arises with
finding the end of a table. Two methods are provided for this purpose: a
predefined number of tuples can be read, or tuples are read until an
end-of-table marker is found. The table parameter is extended with an
integer argument in the first case, and with a string argument in the
second. The integer argument is used as counter of an internal lcop. The
string argument defines the pattern which must appear in the input
(starting at column 1) which indicates the end of the table. The table
"capacity' could be read by:

readf("10s,10f", capacity:"*");
with the input

plantl
plant2

wle
“

—
o~

Input can be also obtained within a loop. A sentinel pattern may be
defined which can be used to terminate the loop implicitly. This sentinel
pattern is defined as extension of the control string. Example:

loop
with capacity do
readf("10s,10f,n":"*" ;plant,c);
end;
end;

Note that here the change to a new line must be explicitly defined. The
loop is exited when the defined pattern is encountered in the input
stream.

Simple output is performed with WRITE. The arguments of WRITE are
printed in a standard way according to their type. The sequence printed
by the argument list of WRITE is automatically terminated by an
end-of~line. Table arguments can be used with WRITE; each tuple starts at
a new line.

Input is read format-free by READ. Each token is read according to the
type of the argument. The input tokens are assumed to be separated by
blanks (or end-of-line). This way it is possible to read values of
enumerated types and strings without special indicators, though quote
symbols are necessary if a string is to contain blanks. End-of-lines are
not significant, except that sentinel character sequences start in column
1. Sentinel patterns are defined in a similar way as in the formatted
case. A '0O-th' parameter can be extended by a sentinel definition if READ

is used within a loop. Values for the table 'capacity' could be obtained
by:

57

read(capacity:"*");
with the input

plantl 3.7 plant2 1.8 plant3 9.3

4.5 Data Declaration Module

The data declaration module is necessary to define the initial data
structures of a data module. The data declaration module is very similar
to a declaration module.

$ DataDeclModule = DDM-header D-declaration {D-declaration}

$ [INITIALIZE statementlist] END

$ DDM-header = DATA DECLARATION MODULE ident ";"

The index types of array attributes may still be left unspecified. When a
data module is created by the data declaration module these types will be
completely defined: Values for enumerated types and bounds for subrange
specifications are supplied. The creation of data modules is handled in
Section 5.1.2.

The initialization part of a data declaration module is optional. It

consists of assignments of constant values, like table constants. The
assignments are carried out when the data module is created.

4.6 Translaticn Unit

One or more formulations can be stored on a file and presented to the
modeling system as a translation unit.

S TranslationUnit = module ";" { module ";"}
$ module = ModelModule | DeclarationModule | RoutineModule |
$ ExecutionModule | DataDeclModule | CommandModule

The modules are translated sequentially. Though they are compiled
separately attention must be paid to their sequence so that inter-module
dependencies can be dealt with. A declaration module for example must be
already defined in the data base before it can be included in another
module; thus it must precede those modules on the file.

In addition to formulation modules handled in this chapter a
translation unit may contain command modules.

$ CommandModule = CM-header commands END
$ CM-header = COMMAND MODULE ident ";"

b

A command module is a collection of commands which a user might issue in a
dialogue to accomplish a task, but which now can be used on a routine
basis. Command modules are taken up again in Section 5.1.5.

CHAPTER 5

Command Language and Browsing

This chapter deals with the user interaction facilities of the modeling
system. The command language for defining, altering, and executing
modules is introduced. Data modules and the facilities to browse through
data are described.

5.1 Command Language

The command language is employed by the user to interact with the
modeling system. Each command starts with a keyword that identifies its
main function. Some commands put the user into different modes of
interaction, and further commands may be available in this context. At
ecach level the user can obtain a menu of available commands. The commands
at the top level of the system are summarized in Figure 5-1. Each command
is usually associated with some arguments. Command words can be shortened
to the first few letters as long as they can be recognized uniquely.

Commands come in two varieties: short commands and long commands. A
short command together with the arguments must fit onto one line; the
end-of-line acts as terminator. Most of the above commands are short
commands. The exceptions are 'create' and 'run' which are long commands.
A long command usually requires a few lines for its arguments. It is
terminated by 'end'

BROWSE enter 'browsing' mode

CATALOG give directory of modules

CREATE create a data module

Do execute a command module

EDIT interactively edit the text of a module
PROCESS process a file of formulation modules
QUIT quit the modeling system

REMOVE remove a module

RUN run an execution module

SHOW display a module

USAGE list module dependence

? give menu of commands

77 describe command further

Figure 5-1 Top level Commands

The ?? command can be used as help command in general. It gives
information about the current interaction mode the user is in. The user

60

may be parsing a command or a module, or he may be in command mode,
browsing mode, or in data input mode. Depending on the context more
specific information is given, e.g. in data input mode the user is
informed for which particular item input is currently expected. The help
command may be followed by a command name. In this case the command is
further described, e.g. ?? RUN gives help with the form and usage of the
run command. Only if the ?? starts a line is it recognized as the
beginning of a help command.

5.1.1 Simple Commands

We describe first the commands which return the user back to top level
command mode. A catalog of all modules which are stored in the data base
is obtained by the 'catalog' command. The command may be restricted to a
particular category of modules. A category is identified by one or two
letters as follows:

command module
declaration module
execution module
model module
routine module
d data declaration module
m data module

R B 0O A0

A catalog of model modules and data modules could be obtained by:
catalog m,dm
New module formulations are entered into the system with the 'process'
command. It specifies a file which contains one or more modules. The
modules are translated and entered into the data base. Example:

process ''model.1"

The file name is given by a string. A module can be entered from the
terminal if "tty" is specified.

A formulation module can be displayed on the terminal with the 'show'
command. As modules in the various categories may have the same name the
module category must be used to uniquely identify the name. Example:

show m.transportation
The interdependency of modules can be listed by the 'usage' command.

Example:

usage d.TD

61

This will list all the modules which "included" the declaration module TD.

Any kind of module may be removed from the data base by the 'remove’
command. Example:

remove d.TD

The user is reminded of the existence of other modules which may depend on
this module, and in this case an explicit confirmation must be given by
the user to remove the module.

Finally a session with the system can be ended by the "quit' command.
All other commands of the top level enter a different interaction mode.
The commands together with their sub-commands are described in the
following sections.

5.1.2 'Create' Command

The ‘'create' command is used to create a data module from a data
declaration module. The data module DM1 is created with the data
declaration module DDM by:

create DM1 with DDM
end

If the data declaration module contains incomplete type declarations for
index types of array attributes or subranges then details for these must
be supplied now. This is accomplished by a re-declaration of these types.
The user is either prompted interactively for the type declarations, or
the type declarations can be supplied in a parameter-like fashion.
Example:

create dml with ddm

type year = (@1971,@81980,@1581);
type lgt = integer[1l..10];
end

After the data structures are defined the initialization part of the data
declaration module is executed. Variables not initialized have the value
'unknown', tables the value 'empty'.

Each data module defines its own encoding of its enumerated types and
strings. This usually does not matter as user interaction or model
solutions are limited to one data module at a time; also it is more
efficient to use their internal representation. Only when data are moved
from one data module to another is it necessary to go through their
external representation.

62

5.1.3 'Run' Command

The "run' command is used to execute an execution module. It binds the
data of a data module to the execution module. Parameters for the
interface declarations of the execution module are provided on a name

basis instead of position. The execution module EX could be run with the
data module DM1 by

run EX with DM1
requirement = rlj

amount = al;
cnt = 3,
end

This assumes that the interface definition in EX is given by
interface *cnt,requirement,amount;

and that the data structures 'al' and 'rl' are available in the data
module DM1.

Type compatibility between actual and formal parameters of an
execution model needs special attention. As data modules are independent
from formulation modules we have two universes of types which must be
matched when the data structures of a data module are connected to the
execution module. For this purpose attribute names of structures of the
interface, and external declared enumeration type names are considered
implicit formal parameters of the execution module. The structures of
actual and formal parameters must be the same. A type definition for
tables includes the key definition. The types in the execution interface
are defined to be compatible with the types of their actual parameters if
the underlying type is the same, except for enumerated types explicitly
declared in the execution module; here names and values must match.

The example given below defines a declaration module and an execution
module which _ is used for demonstrating parameter compatibility of the
"run' command. Note that first a data module is created with the data
declaration module. Data for the data module could be obtained in several
ways: through the initialization part of the data declaration module, by
entering data in data input mode, or by creating values in browsing mode.
Browsing mode and data input mode are described later.

data declaration module DDM;
type year=(21980,@1981);
type mon ={(a,b,c);
var part: table [partno; k<year>:integer]
with key partno;
var ssn: table [ssno; g<mon>:integer]
with key ssno;

end;

63

execution module EX1;
type span = enumerated;
var mp: table [no; cnt:integer]
with key noj;
interface mp;
end;

A command sequence might be:

create DM2 with DDM end
run EX1 with DM2

mp = part

end

run EX1 with DM2
mp = ssn

end

In the first 'run' command the tables 'mp' and 'part' are structure
compatible. Also the types 'partno' and 'vear' are automatically provided
for the 'formal' types 'mo' and 'span' of the execution module. The table
'ssn' is similar to 'part' in structure and type and thus can be also used
as an actual parameter.

5.1.4 ‘'Edit' Command

The 'edit' command is used to interactively edit the text of
formulation modules and command modules stored in the modeling system. It
is a very simple line-oriented text editor. Lines are accessed by line
number. Lines are always numbered relative to the first line. Deletion
and insertion operations automatically adjust the line numbering. A
command consists of a line number range and a command character. The
following edit commands are provided:

d delete

i insert

T replace

P print
A line range consists of one or two numbers. The last line can be referred
to by '*'. Examples:

1.5p

“d

The insert command (and replace command) enters insert mode. All lines
entered by the user are collected. A single period on a line (or an
end-of-file condition) terminates insert mode.

Edit mode is terminated either by the commands 'end' or 'process'. In
the first case a flag is set to indicate that the internal form of the
module is now different from its external form. In the second case the

64

module is translated. If there exist any modules which depend on this
module then the user is asked to re-translate these modules.

5.1.5 'Do' Command

The 'do' command starts a sequence of commands stored in a command
module. A command module is to a limited extent comparable to a control
card macro; it can be used with parameters. The parameters may be
identifiers, numbers, or strings which are used in the body of the command
module for text substitution. Example:

do tryl "x",1

The formal parameters of a command module are imbedded in the text where

the substitution is to take place. The parameters are referred to by $1,
$2, etc. Example: '

command module TRY1;
process $1

run EX with DMS$2
end

With the 'do’' command above this results in the commands:

1 1t
process X

run EX with DM1
5.2 Browsing Mode
In browsing mode the user has direct control over a data module. The
user enters browsing mode by attaching to a data module with the 'browse'
command:

browse DM2

In browsing mode the user is prompted for entering declarations,
expressions, statements, or further commands. Each construct entered
must be terminated by a semicolon.

DESCRIBE describe variables or types

ENTER enter data

KEEP keep newly created data structures
LIST list items in data module

REMOVE remove item from data module
RETURN return to command mode

SHOW display contents of data item

? give menu of commands

77 get help

Figure 5-2 Commands of Browsing Mode

A variety of commands is available with which the user can look at the
data structures and data, and with which the data can be manipulated. The
commands are summarized in Figure 5-2.

5.2.1 Simple Commands

Simple commands return the user back to browsing mode. Most of these
commands provide information about a data module.

The items in the attached data module can be listed by the 'list'
command. The command can be further modified by 'new' and 'types' or
'variables'. Example:

list new variables;

In this case only the variables which were created during browsing mode
are listed. The names of the items and their structure, e.g. if the item
is a scalar, tuple or table, are displayed.

A more detailed description of an item is obtained by the 'describe’
command. For a table for example all attribute names and their types are
given.

The contents of a data item is displayed by the 'show' command. The
attribute names of tables and tuples are also given.

Ttems of a data module are removed by the 'remove' command. Types can
be only removed if there exist no current data structures which use them.

Finally browsing mode can be ended by the 'return' command. This puts
the user back into command mode.

5.2.2 Expressions and Statements

The main feature of the browsing facility is the possibility of
evaluating expressions and statements interactively. The data
manipulation facilities are a sub-set of those available for model
formulations.

Of particular importance is the relation comstructor with which the
queries are formulated. When an expression is entered then the result is
displayed on the terminal. Statements on the other hand are processed
without creating output. However, the user is informed when possible that
an action has been carried out. This information is in the form of how
many tuples have been affected by the action. After an expression or
statement is evaluated the user is prompted for the next input.

The available statements are the assignment, delete, insert, and
modify statement. The table handling statements can be used in

66

conjunction with the for-statement. The following example shows a short
dialogue with the user in browsing mode (the prompt character is '>'):

browse DM2
>list variables;
part ssn
>show part;
partno k.1980 k.1981

1123 10 10
3725 11 12
>{partno | part: k[980] > 10};
3725
>p:={partno | part};
2 tuples

>describe p;
var p: table [partno:partno]
>delete part[3725];

1 tuple deleted
>

Of interest here 1is the assignment statement. In browsing mode the
assignment statement can be also used to declare a new variable. The type
of the variable is derived from the right-hand side, e.g. from the type of
the relation constructor in the example above. This facility is useful
for creating temporary data structures while the user is browsing through
the data. If the user forgot a declaration, or wants to know of what type
the newly created variable is then this information can be obtained by the
'"describe' command. The user is reminded of the temporary variables when
browsing mode is terminated. These variables and their associated values
are deleted at that time unless they are kept with the 'keep' command.
The newly created variable p in the example above is made part of the data
module by:

keep p;

5.2.3 Declarations

As the user has control over the data module it is possible to declare
new types and variables. The user can enter type or variable declarations
in the same manner as expressions. Example:

>var k: table[x,y:integer] with key x;
>

Variable declarations entered in this way create temporary variables.
They are deleted from the data module when browsing mode is ended unless
they are explicitly kept.

67

5.2.4 Data Input

Data can be entered into tables with the 'enter' command. This command
is also used for adding data to a table. The 'enter' command puts the user
into data input mode. The prompt character in this mode is '#'. Data
input mode is terminated by a single period on a line, or by an
end-of-file condition. Example:

>enter part;

8 33372 11 12
57268 3 0
7.

>

Input is free format, each token must be separated by a blank or an
end-of-line. Input is read according to the type of the current item to
be read. The ?7 command can be used to ask for the type of the expected
input, and in case of a table the user is also informed about the current
attribute name.

An alternate form of the modify statement is also available in browsing
mode which allows the user to enter data directly. The grammar rule for
this form is given by

S modification = MODIFY ident [accesslist]

When this form of the modify statement is used then the user is prompted
for input for each attribute. Only those fields are changed for which
values are supplied. This mode can be terminated by a single period on a
line, or by an end-of-file condition. Example:

>modify part[1123];
k.1980
k.1981 : 22
>part|11237];

1123 10 22
>

This form of the modify statement can be used also within the
for-statement. Before the user is prompted for values for the fields of
the tuples the tuple is first identified by its key.

CHAPTER 6

Implementation Issues

The implementation of the modeling system requires a major programming
effort. It is important to divide the task into manageable parts which
can be developed independently and then later integrated into a system.
This modular development has also the advantage that parts of the system
can be replaced when necessary. The major components of the system to be
developed are:

- the data base management system for storing data and modules

- translators for data definition, data manipulation, and model
formulations

- interpreters for carrying out the data manipulations and the
data generation for the solution system

- the user interfaces for supporting the browsing facilities,
help facilities and editing facilities.

The components of the system are highly interdependent, e.g. the
translator requires the services of the data base. It is therefore
necessary to isolate the dependencies of the modules into interfaces so
that the modules can be developed separately.

The design of the system could be carried out without regard to any
programming language. However, it must be recognized that a design is
strongly influenced by the actual language chosen and by the environment
in which the system is implemented. One of the design goals of the system
was also the abilitity to develop a model on perhaps a small machine and
then solve the model on a larger machine. This requires that the software
must be written in a language which allows it to be easily transported.

Several languages were considered for implementing the modeling
system. As a fair amount of 'system' work is required the choice was
narrowed down to Fortran and Pascal [Wirthl]. The final choice was Pascal
due to its superior data structuring facilities and language constructs.
Also experience had been gained in transportablity with a parser
generation system [Burger2] written in Pascal. By adhering to a subset of
the language this system could be directly moved to a variety of machines.

This chapter describes some of the design considerations and problems
in implementing a modeling system. The first section describes the data
base management part. The next section deals with the translator. The

70

last section handles the run-time storage organization and the input
generation for the LP solution system.

6.1 Data Base Management System

The model system requires a data base which must be able to store the
relational data structures as well as the internal and external
formulations. Directories must be kept to find the objects in the data
base and to determine how these objects are stored. Furthermore
"internal' structures, such as symbol tables which are created during the
translation of formulations must be stored.

The design of the data base proceeds in hierachical levels in a
bottom-up fashion. This also corresponds to the actual implementation of
the data base subsystem. A similar approach is taken in [Schmidt3].

The lowest level of the system is concerned with providing bulk
storage. The next level manages 'objects' in the data base. Objects fall
roughly into four categories: data objects, text objects, compilation
objects, and system objects. The third level provides object-specific
operations, e.g. data manipulation operations for data objects. Finally
the last level implements the operations mnecessary to interface the data
base with other components of the modeling system.

The data base storage of the modeling system is realized by two random
access files. One file is used to hold 'permanent' objects, the other
file is used for temporary objects. Only the file with permanent objects
is retained when the modeling system ends. Both files, however, are
treated the same way by the routines of the data base management system.

6.1.1 Page Manager

The basic 'external' storage unit available from an operating system is
a 'page' which can be accessed in a random fashion. By building on this
storage unit all data base operations can be implemented in a machine
independent way. The lowest level implements a page manager which makes a
page available when it is needed by a higher level. Pages are kept in a
page pool in main memory. When a new page is obtained from secondary
memory then the least recently used page in the pool is removed, and if it
was altered written back to secondary memory.

6.1.2 Objects

There are four basic kinds of objects which are stored in the data
base: data objects, text objects, compilation objects and system objects.
A directory for example is a system object. An object may be composed of
several 'primitive' objects. We will refer to such an object as a
"composite' object. A primitive object consists of one or more pages in
the data base. The primitive object is identified by an internal address.

71

This address is the page number of the first page used for the object. The
system maintains a directory of all objects (primitive and composite).
This directory is itself an object. (The first entry in this directory
contains information about itself). The directory entry of a primitive
object records also the 1last page allocated to the object. This
information is used when the object is extended with further pages. Pages
belonging to the same object are connected by links (see Figure 6-1).
Some words on each page are reserved for organizational information. The
links use part of this space. Links are necessary for processing an
object sequentially.

‘ |

; | Directory

| |

i First i >i | T n —
' i | i 1 i
e —— L
| | e e .
|] N L
S B S S
| L A

! | ‘

| |

Figure 6-1 A Primitive Object in the Data Base

There are three basic storage structures in which information is
stored in the data base: indexed structures, linear structures, and
blocked structures. An object is represented by one of these structures.
The structure is chosen according to the information content of the object
and the particular access requirements. Data for example is usually
stored in an indexed structure. The storage structures are described
further in the next sectiomns.

Object management is mostly concerned with managing the object
directory. An object is created by making the appropriate directory
entry. The allocation of space is handled by the access and manipulation
operations specific to the storage structure of the object. An object is
deleted from the system by removing the directory entry. Any pages which
the object occupied are made available for re-use.

To speed up the access to objects a limited number of directory entries
is kept in main memory in a directory pool. When a new entry is placed
into the pool then the least recently used entry is discarded. If this
entry has been modified then the system directory entry is updated.

72

6.1.3 Data Objects

Data objects implement the table structures of the modeling system. A
table structure consists of a collection of tuples which may need to be
accessed by key. Other operations to be carried out are insertion,
deletion, and modification of tuples in the table structure. Several
organizations are discussed in [Ullman] to handle these operations

efficiently. The storage organization chosen here for tables is an
indexed structure.

An indexed structure consists of an index and the tuple structure (see
Figure 6-2). The tuples are stored in sorted order according to their
key. The index is also a tuple structure. The tuples consist of the key
values of the first tuple on each page and the page number. The index is
sorted. It is possible to create several levels of indexes, however, a
one level index seems to be adequate for the needs of the modeling system.

First

First

Directory

Data 57 |

TN

..__..___..__.__...__.__.__._...__.__.__‘L,___"L__.._,...____..J_._.._._____J._

Figure 6-2 Indexed Structure

73

A tuple access by key proceeds as follows: First the index is searched
to find the page on which the tuple may be located. Then this page is
searched for the tuple. Page searches are done by binary search as all
entries on a page are sorted.

The insert and delete operations of tuples keep the tuple structure as
well as the index "structure sorted. As the index entries can be
considered to be tuples the same insert and delete operations are
applicable to both structures. When a tuple is inserted into a page which
is already full then this page is split into two pages. Two (logically)
adjacent pages are combined when a tuple is deleted and the remainder of
the entries on the two pages fits onto one page.

One advantage of the indexed storage structure is the ability to store
duplicate values easily. Further all data is accessible sequentially in
sorting order. Tables which are not declared with the key property can be
stored without an index and the same access and manipulation operations
are still applicable. The disadvantage of this index organization is that
a tuple in the tuple structure is not associated with a fixed location.
Tuples are moved around to maintain the sorting order when tuples are
inserted or deleted. This property of the tuple structure must be taken
into consideration when operations on tables are implemented. In
particular it precludes the use of additional structures which could
facilitate the implementation of relational operations between tables.
It was assumed, however, that most queries are simple in nature and that
no additicnal access paths to data are required. The resulting data base
structure therefore is simple to implement. It would have been also
possible to use B-trees [Bayer]. A complication with this organization
would have been the handling of duplicate elements. In our case this
structure is not necessary as the anticipated update activity is rather
small.

6.1.4 Relational Operations

This -level in the data base design implements the relational
operations. It also constitutes the interface to other components of the
model system which manipulate table data. Of importance here are the
relation comnstructor and the for-each clauses of the language. These
constructs are transformed inteo loops which use the access and
manipulation operations of the previous level. In particular the join
operation is expressed by nested loops.

Several semantic interpretations of the loop construct are possible
(see [Ahol]). Here we process the tuples of a table sequentially. The
loop mechanism consists of a loop variable (which provides storage for a
tuple) and a pointer to the 'next' tuple to be processed. Before the loop
body is evaluated the 'current' tuple is retrieved from the table and
stored in the loop variable. The organization for handling loops over
tables in the data base is shown in Figure 6-3. Here two loops exist over
the same table.

74

There are two particular problems which arise with insert and delete
operations within a loop. When a change is made to a table over which the
loop ranges then the pointer to the 'next' tuple must be updated as the
tuple in the table may have moved within the structure. It may be

Table descriptor Directory Table Structure

|
|
l
|
g

L

next tuple

I—

next tuple

|
|
|
|
|
|
%
—
|
|
|

-
|
|
|

Figure 6-3 Loop Organization

necessary to update several pointers if several loops exist for the table
(see Figure 6-3). The second problem is of a semantic nature. In the
given implementation tuples are accessed sequentially. The result of a
loop can depend on where a tuple is inserted into the table. If the tuple
is inserted after the current tuple of the loop then this tuple will be
within the range of the loop still to be processed. If this problem is to
be avoided then an auxiliary table must be created into which the new
tuples are inserted. This table is then combined with the original table.

75

6.1.5 Data Values

The system is designed so that each component of a tuple occupies one
word of memory. Integers and reals can be stored directly. Scalar values
and strings, however, must be encoded into integers. Most of the data
base operations can be carried out without having to resort to the
original representation of these values. Transfer structures are
provided which map the external representation into the internal
representation and vice versa.

Two tables are created for each scalar type which accomplish the
mapping. We refer to them as input and output tables. By restricting the
scalar names to a certain length they can be used as a key in the input
table to obtain the encoding. When e.g. the scalar values need to
printed, then the encoding is used as a key in the output table to obtain
the representation of the scalar value.

For strings a more elaborate storage scheme would be necessary as
strings might be arbitrarily long. In this implementation, however, they
are restricted to a fixed upper bound length, and the same storage
mechanism as for scalars can be used. A string type is treated to be
universal within a data module and thus two tables per data module are
sufficient to handle the string mapping. There is, however, a difference
between strings and scalars for comparison operations. Strings
themselves are values, and therefore their actual representation must be
used for comparison. Scalars are synonyms for their encodings, and thus
the encoded value of a scalar is sufficient for these operations.

As string and scalar representations are stored separately from the
"actual' data a problem arises with the deletion of these entries. When a
tuple is deleted which contains values belonging to a domain of scalar or
string values then the representation of these values could be also
deleted if there exist no other tuples which refer to these values.
Finding these tuples is an expensive operation as all data structures must
be searched which have 1links to the representation structure. The
deletion of any 'unused' entries in the mapping structures is therefore
deferred to the time when the data base is re-organized. (Data base
re-organization is done externally).

6.1.6 Array Attributes

Array attributes require some special considerations. The array items
are stored in a 'linear’ storage structure. A linear storage structure is
characterized by two properties: Items are not ordered, and each item in
the structure has a fixed position. An item can be therefore accessed by
a pointer. A pointer consists of the page number on which the item is
stored and an offset on the page where the item starts. New items are
always added at the end of a linear structure. An item is deleted by
setting the appropriate delete bit in the organisational words of the page
on which the item appears. This information is checked when a linear

76

structure must be processed sequentially. The storage occupied by deleted
items is reclaimed when the data base is re-organized.

A tuple of a table which contains array attributes is organized as
follows. Each field which represents an array attribute contains a
pointer to the array of values stored in the respective linear structure.
Many data manipulations can be carried out without concern for array
attributes.

6.1.7 Text Objects and Compilation Objects

Text objects contain the external formulation of modules. A variety of
access criteria to parts of text might be useful e.g. for supporting
incremental development or phrase-oriented editing. In the initial
design of the modeling system, however, text objects have no internal
structure. Text objects are always treated as a whole.

Text is stored as a 'blocked' storage structure. Pages are only
artificial subdivisions so that the basic mechanisms of the data base
system can be used to store the information. For editing purposes a text
object is actually transformed into a file on which the modifications are
carried out. This file is then transformed back into a text object,
replacing the original text object in the data base.

Compilation .objects are produced when an external formulation is
translated. The translation of a module usually creates two cobjects: a
symbol table and a code table. Compilation objects are also stored as
blocked structures. For access or modification a compilation object is
always moved as a whole into main memory (thereby removing the artificial
page boundaries).

6.1.8 System Objects

Directories are system objects. Depending on their need for sequential
access they are stored as index structures or as linear structures. Two
directories are described briefly: the system directory and the module
directory.

The system directory of objects is a linear structure. An entry in the
system directory contains besides page information other object related
information. The entry for a data object for example contains a pointer
to the directory entry for its index, the number of tuples stored in the
tuple structure, and information on where the fields are in the tuple
which form the key.

The module directory is organized as an index structure. The module
name is used as key to access the module directory. An entry contains
pointers to the objects which constitute the module, e.g. pointers to
compilation objects and text objects. Associated with the module
directory is a table which records the cross-references between modules.

77

Other system objects are the objects which are created for the purpose
of interfacing with a solution system. These objects may represent text
or data. They are stored in the data base as blocked storage structures.
They are kept in the data base until a solution is obtained from the
solution system and the solution is converted into the representation used
by the modeling system.

6.1.9 TFurther Problems

An implementation of the data base system must deal with two additional
problems: data base recovery and data base re-organization. Data base
recovery is of practical importance as a crash of the system may destroy
the data base. At least some rudimentary mechanisms must be provided to
keep a data base usable. Data base re-organization on the other hand is
not necessary for the operation of the modeling system. However, it may
be used to improve the performance of the data base.

When a fatal error occurs in running the modeling system then
information contained e.g. in a directory entry may have been updated in
memory but not yet written out to the data base thus making the
information in the data base inconsistent. A crash can also be induced by
the user when a run of the model system is aborted. There are two ways of
handling this situation depending on the severety of the crash. The first
one is to go back to a previous version of the data base and to re-apply
the modifications made so far. This requires that the sequence of
modifications is kept. The second one is to try to crash 'gracefully' and
to keep the data base information consistent.

The second method is only applicable in circumstances where it can be
assured that the crash did not occur during the modification of the data
base or a data base related structure. We may then assume that the part of
the data base which is kept in memory is still consistent with the data
base. After control has been regained from the operating system modified
pages in the page pool and directory entries in the directory pool are
written back to secondary memory. In addition certain environment
information, e.g. the symbol table of the current module being processed
(which is resident in memory and which also could have been altered) is
stored back into the data base.

Data base re-organization can be handled by a utility program outside
the modeling system. Certain operations do not delete information in the
data base but simply make the information inaccessible. This space can be
reclaimed by re-organizing the data structures concerned. Based on
statistics gathered on access activities of certain data objects the
utility could be also used to define additional levels of indexes, or used
to transform a linear structure into an indexed structure.

78

6.2 The Translator

The translator transforms the various formulations into symbol table
information and/or code for the interpreter. The translation process
consists of four phases: lexical analysis, syntactic analysis, semantic
analysis, and code generation. In addition an error handler is provided
which reports the errors which might have been encountered in any of the
phases.

The translator is called in several contexts: during command
processing, in browsing mode, and in the translation of formulation
modules. Depending on the context the translator accepts input from the
terminal, from a file, or from a text object in the data base. When input
is interactive then the translation is terminated whenever an error is
encountered. The user is returned to a state in which he can start over
with the tramslation. When input is not interactive then the whole file
or text object is always processed.

There are two features special to this translator which distinguish it
e.g. from a translator for a programming language. One is the need to
handle entities which are stored in the data base. The other is the need
to generate code which combines data manipulation with symbol
manipulation. With this in mind we describe in the following the symbol
table structure, the storage administration, and the handling of data base
objects referring to the run-time environment if necessary. Alsoc the
translation of some language constructs is described, in particular the
translation of equations.

6.2.1 Implementation Method

The lexical analyser and the syntax analyser are generated with the aid
of the XBSW parser generator system [Burger2]. This system accepts an
LALR(1) grammar [Aho2] definition of the language as input and produces
from it lexical scanner tables and parse tables. These tables are then
used in the scanning and parsing algorithms of the analysers. One
significant advantage of using a parser generator is the increased
reliablity. A mechanically-generated parser is more likely to be correct
than one produced by hand.

The grammar rules are associated with 'semantic actions'. This allows
a syntax-oriented translation scheme where the code generation and symbol
table manipulaton can be directly related with the syntactic structure of
the language. Semantic actions are calls to routines which perform the
required operations. These routines are supplied by the implementor.

The translator employs a semantic stack which is used for storing
properties about the constructs being translated. This information
together with the information stored in the symbol table is used for
semantic analysis, e.g. for checking type compatibility between operands
and operators. Other information is also stored on the stack which is
needed for code generation.

79

Code is generated for a stack machine in the spirit of the Pascal-P
compiler [Nori]. Data manipulation operations are translated into
postfix sequences. These sequences can be evaluated by the interpreter
with the help of a run-time stack. An instruction consists of an operator
and of up to two operands. Expressions which involve symbolic operations
are translated into tree structures. Here an instruction consists of an
operator and up to two links. An expression is evaluated by walking
through the tree using the stack if necessary to keep track of the
branches. Operators themselves are interpreted according to their
context.

6.2.2 Symbol Table

The symbol table contains the names and structure descriptions of named
entities (e.g. variables) found in a formulation module. Symbol tables
are created for all modules. A symbol table may consist of three
structures: the name table, the scope table, and the string table. The
name table contains information about an entity such as name, type, kind,
structure, etc. The scope table is used to partition the name space of a
symbol table. With the help of this table the translator manages the
visibility of names in any given context. The string table is used for
storing string constants encountered in the text of a module.

While the information described so far serves mainly for semantic
analysis additional information for code generation is required. In
particular addresses must be assigned to entities for which storage will
be allocated at run-time. The storage administration is described in the
next section.

An entry in the symbol table can be also directly associated with an
object in the data base. A pointer to the system directory entry of the
data object is then stored in the symbol table. Table constants are
handled in this way. Of interest here is the symbol table of a data
module: the symbol table acts also as directory for the data objects
stored in the data module.

6.2.3 Storage Administration

The modeling language is essentially a block-structured language. A
dynamic storage allocation mechanism is used for providing storage for
blocks. Whenever a block is entered a so-called stack frame is created
which contains space for the entities of the block and some organizational
information. This stack frame is de-allocated when the block is
terminated. Relation constructors, routines, equations, problem
definitions, and modules themselves are blocks in this sense.

Code for accessing entities is generated according to the stack frame
concept. Frames are accessed by base addresses. Base addresses of frames
are managed at run-time by a display (see Section 6.3.1). The entities
within a frame are addressed relative to the beginning of the frame.

80

These addresses are stored in the symbol table together with other
relevant information of the entities.

There are three kinds of entities for which space is provided in a
frame: parameters, variables, and descriptor blocks. Descriptor blocks
-are entities which are associated with data base objects. Space for
variables and parameters is allocated in the usual way of Pascal-like
languages. Reference parameters need space for holding an address.
Variables (not associated with data base objects) and value type

parameters need space according to their type. A tuple for example
requires several storage units.

¢—————> symbol table

¢ ———— > system directory

association {

|
1
l
part | pointers to
] loop descriptor
| blocks
| |
|
) ;
|
|
buffer |
i
l
|

Figure 6-4 Variable Descriptor Block

A descriptor block consists of an association part and a buffer. The
buffer is used to hold an element of the associated data base object.
Buffers are treated like local variables with respect to code generation.
There are two kinds of descriptor blocks: variable descriptor blocks and
loop descriptor blocks. The association part of a variable descriptor
block is initialized at run-time either when the associated data object is
created, or in the case of an execution module when the data object from
the data base is bound to a variable of the execution module. The
association part contains pointers to the symbol table, the system

directory, and pointers to loops which may be in existence for the data
object (see Figure 6-4).

The association part of a loop descriptor block is initialized when a
loop is started. It contains a pointer to a variable descriptor block of
the data object over which the loop ranges, a pointer to the next tuple
which is to be accessed, and the termination condition of the loop (see
Figure 6-5). The buffer always holds the 'current' tuple.

81

¢ ———> yariable descriptor
{ block
¢— > pointer to 'next’
| tuple in table
condition

f
I
{
I
|
%
[¢ > end-of-relation
i
|
!
buffer |
|
|
1

Figure 6-5 Loop Descriptor Block

6.2.4 Equations

Equations are transformed into 'special' procedures which when called
generate part of the input to a solution system. The generation of the
solution system input takes place when the solve-statement of a problem
section (see Section 4.1.3) is executed. The generation combines data
manipulation operations with symbol manipulation operations: model
'variables' are transformed into names, whereas 'parameters' reference
the data base to obtain their values. For an LP solution system this step
represents the matrix generation. The equations generate row and column
names as well as the matrix elements.

Equations are translated into expression trees. The tree structure is
chosen for several reasons. First the structure of an expression must be
preserved as it 1is not possible to generate code for arithmetic
operations. The operands involved may be parameters or variables (in the
modeling sense), and this information is only supplied when the equation
is called. Second tree structures can be easily re-arranged if e.g. an
expression must be re-ordered. Finally the same tree building mechanisms
would be applicable for the translation of non-linear equations. Figure
6-6 shows the tree built for a simple equation. '

A variable in the expression tree is represented by its symbol table
address. If the variable is a model variable at run-time then the symbol
table address is used in the name generation for the solution system. If
the variable is a model parameter at run-time then the descriptor block of
the variable in the stack frame is accessed to obtain the value. If the
operands of an arithmetic operation are values then the operation is
carried out with these values, otherwise some part of the solution system
input is generated. Mapping tables are established for name generation
when a problem section is executed. Name generation as well as the
generation of LP input is described further in Section 6.3.2.

82

Also of interest is the handling of implicit variables. They are
defined in the solve statement of a problem section. The solution system
interface provides a symbol table of 'standard' names and their structures
which are special to the solution system which is going to be used for

Equation

each i in I::
sigma (j in J:: x[i,j].k*a[i,j].n) <= b[i].m

Tree Structure

l T
| get i | code | <= lole]
| check | L b
| incr | ‘//////////' \\\\\\§
S
1 T l T
| sigma |*|/] | var |e]¢]
L - f l /] |
/’. b [get i !COde
1 T | access |
| loop |[*]|*] | select m |
L Ll - 1
h——/ \ e
| get j | code | * lele]
| check | ’ L
! incr ‘ / \
I |
(A oo [—
| var |eje] | var = |e]|*]
r Lo L Lol
x"////,l get 1 | code ad/////-! get i | code
get j		get j
access]	access	
select k		select n
S S		

Figure 6-6 Tree structure for a simple equation

83

solving the model. The information of this table is added to the symbol
table when the solve statement is processed.

6.2.5 Other Features

In this section we handle interface specifications and use- and include
clauses.

The include clause adds the type and variable declarations of a
declaration module to the symbol table of the current module. The name of
a type or variable already declared in the module may appear also in the
declaration module if name and structure are exactly the same.

The use clause adds the names of routines and their parameter
declarations of the referenced routine module to the symbol table of the
current module. Either all routines or only those selected by the import
list are added. Type declarations for routine parameters must be defined
in the current module. These types are checked for compatibility with the
types as defined in the routine module.

Interface specifications of model modules and of execution modules are
syntactically similar but they are handled differently. The interface
specification which appears in the problem definition of a model module is
a formal parameter definition. It is handled in a similar fashion as the
formal parameter definition of a routine. At translation time, however,
it is not known which variables of the model module are local variables or
which ones are formal parameters. For translation purposes all variables
are considered to be formal parameters. At run-time two stack frames are
allocated, one for their role as parameters, and one for their role as
variables. The variables of the variable stack frame are taken by default
as the actual parameters of the model module. This parameter assignment
is overwritten by the actual parameters supplied by the execute statement
according to the definition of the problem which is being executed.

The interface specification of an execution module on the other hand is
a binding and intialization mechanism. All variables of the execution
module are local variables. The run command initializes the respective
variables of the execution module with values, or binds them to the data
structures of the data module with which the execution module is executed.

6.3 The Interpreter

The interpreter executes the code generated by the translator. The
interpreter is called by the 'run' command. It is also called in browsing
mode to handle the data manipulations. This section deals only with two
aspects of the interpreter which are of interest: the run-time storage
organization and the LP system input generation.

84

6.3.1 Run-Time Storage Organization

The interpreter can be thought of as a simulator of a high-level
machine specifically tailored to the needs of the modeling language. This
machine provides three storage areas and several registers. Two of the
storage areas contain code segments and symbol tables respectively.
Access to code segments and symbol tables (except to the symbol table of a
data module) is read-only. The third storage area is organized as
run-time stack. The registers contain pointers to the code (program
counter), top of stack, and current active stack frame: (the display). In
the initial design of the code generator no relocatabie code is produced
for the interpreter. Additional mapping registers are therefore provided
which are used to address the appropriate code segment or symbol table.

Before the interpreter starts, the code segments and symbol tables of
the modules needed for the execution are obtained from the data base and
loaded into the storage areas. In browsing mode this step is done when
the 'query' command is issued. Here the symbol table of the data module
is loaded. The 'run' command loads the execution module, possibly a model
module and several routine modules. In addition the symbol table of the
respective data module is locaded so that the variables of the execution
module can be bound to the data objects in the data base.

Stack

Display
(active stack frames)

static stack frames
(for routine modules)

stack frame

stack frame

organizational
information

parameter area
stack frame <

top of stack —>

-— v

|
|
i
l
5
| local variables
|
|
I
|
|
|

Figure 6-7 Run-Time Stack

85

Next the run-time stack is initialized. If routine modules with global
variables are present then stack frames for these modules are allocated.
The stack frame for the execution module is allocated and the interface
variables are initialized. The information for variables associated with
data base objects is obtained from the symbol table of the data module.
This step checks also the type compatibility between the variables
declared in the data module and in the execution module. From then on
stack frames are allocated and de-allocated by the interpreter in a
dynamic manner (updating the display accordingly). Figure 6-7 shows the
run-time stack structure.

In browsing mode the run-time stack initialization is similar. An
execution-module like stack frame is built up when a data manipulation
operation is translated. This stack frame is allocated and initialized
with the data objects in the data base. The symbol table of the data
module is modified when new types and variables are declared, or when a
new variable is created through a data manipulation operation.

6.3.2 LP System Input Generation

LP system input is generated when the solve-statement of a problem
section is executed. Each equation called generates some parts of the LP
input. These parts are then assembled to form the standard LP input of
the system in use.

Row names and column names are obtained as follows. The symbol table
address of an equation together with the index values of the outermost
loops of the equation represents a row name. The symbol table address of
a variable together with the symbol table address of the field name and
the index values represents a column name. These representations are
mapped into actual names which are used in the input formulation of the LP
system. Two tables are established for this purpose when the problem
section of a model module is executed. (These mapping tables are used
again when the results of the LP solution are stored into the respective
data objects of the data base).

The following example demonstrates what input is generated for the LP
system by a simple equation.

constraint is
each 1 in I::
sigma (j in J:: amount[i,j].x) <= capacity[i].k;

We make the following assumptions. The model variable is amount{i,j].x.
The set I contains 2 elements and the set J contains 3 elements. The
'capacity' table in the data base contains the values 5.0 and 10.0. The
equation call then generates 2 row names, 2 right hand sides, and 6 matrix
elements. The row names and column names are mapped as described above.
The equation represented by (constraint,l) for example is mapped into the
row name R00001. The model variable amount[1,1}.x may be represented by

86

(amount,x,1,1). It is mapped into the column name C00001. The equation
above then generates the following three parts of the LP input:

ROwW ID
R0O0O001 L
R0O0002 L
MATRIX
C00001 R0O0O001 1.0
€00001 ROOO0O02 1.0
€00002 RO0001 1.0
Co0002 RO0002 1.0
C00003 RO0001 1.0
C00003 RO0002 1.0
RHSIDE
R00001 5.0
RO0O002 10.0

Letters in the row identification section indicate the kind of equation.
The letters are L, G, R, or E which denote less-than, greater-than, range,
or equality equations respectively.

Additional parts of LP input will be generated by other kinds of
equations, e.g. a bound equation generates a bound section.

6.4 Implementation Stage

Parts of the modeling system have been implemented on CDC Cyber and
DEC-10 machines. The user interface for command processing and for
browsing mode is operatiomnal. Data declaration and data manipulation
constructs can be processed and executed in browsing mode. The lower
levels of the data base management syvstem as well as a restricted relation
constructor have been implemented. TFormulation modules can be parsed and
stored in the data base. Work is continuing on the translator for
equations, and on the solution system interface.

CHAPTER 7

Conclusion

7.1 Highlights of the Thesis

We developed a system for mathematical programming which approaches
the problem of model formulation and model data management in a new and
different way by bringing ideas from programming language design and data
base design to the area of operations research. We identified the
problems in model development and introduced the module mechanism to break
the modeling task into subtasks that can be handled separately. In
particular model formulation and model data management are treated
independently.

We separated further the model formulation into two parts: equation
formulation and problem formulation. Algebraic notation is used to
express the model equations. This notation is more natural to a model
builder than for example the notation required for matrix generation in
programming LP models in commercial systems. A set of equations may be
used to represent similar and related models. The problem definitiom
selects the relevant equations for a particular model. This mechanism
allows us to test and examine different aspects of the real-world problem
which is being modelled.

We introduced data handling facilities based on the relational data
model to deal with the important problem of model data management. The
relation constructor was defined for expressing simple queries in a
non-procedural form. The data definition and data manipulation language
was integrated with the model formulation language to share a common
notation for data declarations and data operations.

We provided an interactive environment for the modeling system to
support the design process of a model and to make it possible to explore
alternative solutions of a problem. To this end a command language was
defined with which different modes of man-machine interaction can be
initiated. The browsing mode is of significance here for exploring
alternative solutions. In this mode the user can apply the data
definition and data manipulation comstructs interactively. This can be
used to change or create data for a different solution; it may be also
used to learn more about the data at hand. Results can be obtained in a
short period of time thus making the modeling system a valuable tool for
decision making.

Finally we considered the design and implementation issues of a
modeling system. The three major parts of the system we dealt with were
the data base, the translator, and the interpreter. We described the data

88

base structures which are necessary to store model data and model
formulations in the data base, and which can support the relational data
operations of the modeling language. We assumed that the data definition,
data manipulation, and model formulation constructs are translated for a
stack machine. We paid some special attention to the translation of
equations and the handling of data base objects. We further described the
run-time organization of the interpreter and the generation of input for a
mathematical programming solution system.

7.2 TFuture Research

We developed a modeling system that can handle problems which fall into
the class of well-structured problems expressible by mathematical
programming. Further research is required to extend the modeling system
for models which deal with less structured problems, and which require for
their solution the active participation of the user of the model system.
Models of this kind may be solved by simulations or by a combination of
optimization and simulation [Wolters]. Research is also needed to develop
methods for analyzing the model formulations. Special properties of a
model could be exploited to select the best solution method.

More research is warranted in the area of man-machine communication. A
suggestion mechanism which guides the user through model design and model
solution could be added to the user interface. This facility would be
valuable to the experienced user as well as to the novice. It will be
important when the problems to be handled by the modeling system become
more complex. Ideas on a suggestion mechanism in the context of a program
design system were developed in [Moriconi].

The data analysis capabilities of the modeling system is another area
of interest. These capabilities could be greatly enhanced by providing
interface facilities for statistical analysis systems. Extending the
system in this direction would require a re-evaluation of the current
design of the interfaces to application packages in general. The
interface design could be generalized to include also interfaces to
external data base systems. Preliminary work on the integration between
data base systems and applications has been reported in [Mitchell].

The most ideal implementation of the modeling system would consist of
some loosely coupled self-contained programs. Current operating systems
have difficulties to support such a concept. The notable exception is the
UNIX operating system [Ritchie] which provides interface handling for
program modules. More complex programs can be built up by connecting
input/output of the existing programs. A research effort must be
undertaken to identify the problems of sharing and composing software
parts for the development of large software systems. In particular
operating systems must be developed which can support the integration of
software.

2 accessList

APPENDIX A

Syntax Summary and Index

TypeDeclaration = SimpleTypedecl | StrictTypedecl |

StructTypedecl
SimpleTypedecl = TYPE ident "=" basicType
StrictTypedecl = DOMAIN ident "=" strictType
StructTypedecl = TYPE ident "=" structType

basicType = standardType ["[" range "]"]
standardType = INTEGER | REAL | BOOLEAN | STRING

range = rangeConst ".." rangeConst | POSITIVE | NEGATIVE

rangeConst = ["+"|"-"] (number | INF)

strictType = (basicType | enumeration | externaldefined)
[constraint]

enumeration = "(" ident {"," ident} ™))"

externaldefined = ENUMERATED | SUBRANGE

constraint = ORDERED | UNORDERED | RESTRICTED
structType = tupleType | tableType | setType
tupledef = "[" attributeSequence "]"

tupleType = TUPLE tupledef

attributeSequence = attribute {";" attribute}

attribute = ident [extension] |
ident {"," ident} [extension]

simpleType = ident | basicType

extension = "<" ident ">"

tableType = TABLE columndef [WITH (keydef | DUPLICATES)]

columndef = ident | tupledef

keydef = KEY ident {"," ident}

setType = SET simpleType

VariableDeclaration = VAR ident {"," ident} typedef

typedef = ident | basicType | structType | derivedType

derivedType = TYPE ident ["." ident] | TUPLE ident

primary = designator | number | sconst | tconst |

StructConst | FunctionCall | RelationConstructor

1,1

simpleType

ton

factor = primary | "(" expression)" | N-operator factor
term = factor {M-operator factor}

simpleExpr = ["+"|"-"] term {A-operator term}

expression = simpleExpr [R-operator simpleExpr]
N-operator = NOT | TAKE

M-operator = "¥" | "/" | DIV | MOD | AND

A-operator = "+" | "-" | OR | UNION | INTERSECT | MINUS
R—Qperator = '7=‘1 ‘ '¥<>'f ‘ T'<" l 1l>'| l "<=T‘ l '|>=|! ! IN I

CONTAINS | PARTOF
ident [accessList] [fieldSelector] [property]
"[" expression {"," expression} "]"

designator

Won

90

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

fieldSelector = "." ident ["[" expression '"]"]

property = "'" ident ["[" expression "]"]

sconst = string | TRUE | FALSE | UNKNOWN

slconst = ident | ["+"|"-"] number | sconst

tconst = typeop slconst

StructConst = [typeop] (SET setstruct | TUPLE tuplestruct |
TableConst | EMPTY)

setstruct = "[" setElement {"," setElement} "J]" | "[" "]"

setElement = expression [".." expression]

tuplestruct = "[" tupleElement {"," tupleElement} "]"

tupleElement = [expression]

typeop = n$n typeref noon

typeref = ident | basicType | derivedType

RelationConstructor = "{" resultPart rc-op inputPart
[selectionPart] "}"

Tt 11 1
rc-op = |7 | "||
resultPart = telement {"," telement} [WITH keydef]
telement = tident | ident "=" tident
tident = ident ["." ident]

inputPart = itable [BY bySelector] |

o1

itable "," itable "(" tident J-operator tident)"
itable = [ident IN] ident
J—Operator — ‘|=‘7 I "<>" ‘ Y,<" ['|>'| I ‘!<=7| i 1'>="
bySelector = ident ["[" expression "]"]
selectionPart = ":" expression
FunctionCall = ident "(" [ActualParameters] ")"

ActualParameters = expression {"," expression}

statement = [assignment | insertion | deletion |

ProcedureCall | IfStatement |
LoopStatement | ExitStatement |
ForStatement | WithStatement |
Modification | ImputOutput |
ExecuteStatement]
statementlist = statement {';" statement}
assignment = reference ":=" expression
reference = ident ["." ident ["[" expression "]"]]
insertion = INSERT expression INTO ident

deletion = DELETE [ALL] expression [FROM ident]
ProcedureCall = ident ["(" ActualParameters ")"]
IfStatement = IF expression THEN statementlist

[ELSE statementlist] END
LoopStatement = LOOP statementlist END
ExitStatement = EXIT WHEN expression
ForStatement = FOR ForSelection DO statementlist END
ForSelection = selection [":" expression]
selection = [ident IN] ident [BY bySelector] |

ident IN basicType

WithStatement = WITH ident DO statementlist END
Modification = MODIFY ident [accessList] (WITH | DO)

statementlist END
ModelModule = MM-header M-declarations M-equations

problemsection END

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
128
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

MM-header = MODEL MODULE ident ";"
M-declarations = {D-declaration} {R-declaration}
M-equations = EQUATIONS M-equation {M-equation}

M-equation = equationHeader IS equation ";"

equationHeader = ident ["(" Q-formal {";" Q-formal}")"]
Q-formal = ident {"," ident} ":" typeref
equation = [EACH eachpart] Q-leftpart Q-rightpart

Q-selection {"," Q-selection} ":"
[expression] ":"

Q-selection = [ident IN)] ident | ident IN basicType

i

eachpart

summation = SIGMA "(" eachpart Q-expression ")"
Q-primary = designator | number

Q-factor = Q-primary | summation | "(" Q-expression)"
Q-term = Q-factor {QM-op Q-factor}

Q-expression = ["+"]|"-"] Q-term {QA-op Q-term)

QM-op = "x" | "/" | MOD | DIV

QA-Op - 'l+" l "_"

sQ-primary = ["+"|"-"] Q-primary

Q~leftpart = Q-expression

Q-rightpart = Q-op sQ-primary | OBJECTIVE |

RANGE sQ-primary "," sQ-primary

Q-op = EQ | LEQ | GEQ | = | <= | >=

problemsection = problem {problem}

problem = problemHeader {TV-declaration} [interfaceSpec]
[statementlist] SolveStatement [statementlist]
END

problemHeader = PROBLEM ident ";"

3

interfaceSpec = INTERFACE ["*"] ident {"," ["*"] ident} ";
SolveStatement = SOLVE SS-interface actualmodel END
actualmodel = variables objective constraints [bounds]
variables = VARIABLES ":" v-ident {"," v-ident } ";"
v-ident = ident ["." ident]
objective = OBJECTIVE ":" option equationcall
option = MINIMIZE | MAXIMIZE
constraints = CONSTRAINTS ":'" equationcall {equationcall}
bounds = BOUNDS ":" equationcall {equationcall}
equationcall = ident ["(" expression {"," expression}")"]
SS-interface = '"(" ident ":" SS-parameter

{"," sS-parameter})"
SS-parameter = ident ['=" expression]
DeclarationModule = DM-header {D-declaration} END
DM-header = DECLARATION MODULE ident ";"
TV-declaration = TypeDeclaration ";" |

VariableDeclaration ";"

D-declaration = TV-declaration |
INCLUDE ident {"," ident} ";"
RM-header {D-declaration} {R-declaration}
END
RM-header = ROUTINE MODULE ident ";"
R-declaration = routineheader {TV-declaration}

BEGIN statementlist END ";" |

3
use-declaration ";"

ot

RoutineModule

13

"o
3

91

92

147 routineheader = PROCEDURE ident [formalPart] ";" |

148 FUNCTION ident [formalPart] ":" typeref ";"

149 formalPart = " (" parameterDeclaration

150 {";" parameterDeclaration} ")"

151 parameterDeclaration = [mode] ident {"," ident} ":" typeref

152 mode = VALUE | CONST

153 use-declaration = USE ident [IMPORT ident {"," ident}]

154 ExecutionModule = EM-header {D-declaration} [interfaceSpec]

155 {R-declaration)} statementlist END

156 EM-header = EXECUTION MODULE ident ";"

157 ExecuteStatement = EXECUTE ident OF ident sharedVariables

158 sharedVariables = "(" ident {"," ident} ™"

159 InputOutput = WRITE "(" expression {"," expression} ")"

160 WRITEF "(" expression {"," expression } ")" |

161 READ "(" [sentinel ","] reference [sentinel]

162 {"," reference [sentinel]})" |

163 READF "(" expression [sentinel] "," reference

164 [sentinel] {reference [sentinel]} ")"

165 sentinel = ":" expression

166 DataDeclModule = DDM-header D-declaration {D-declaration}

167 [INITIALIZE statementlist] END

168 DDM-header = DATA DECLARATION MODULE ident ";"

169 TranslationUnit = module ";" { module ";"}

170 module = ModelModule | DeclarationModule | RoutineModule |

171 ExecutionModule | DataDeclModule | CommandModule

172 CommandModule = CM-header commands END

173 CM-header = COMMAND MODULE ident ";"

A-operator 34 -38

accessList 41 =42 91

actualmodel 123 -124

ActualParameters 68 -69 81

assignment 70 -77

attribute 18 18 -19

attributeSequence 16 -18

basicType 3 -6 10 21 28 55 89
104

bounds 124 -130

bySelector 62 -66 88

CM-header 172 -:173

columndef 23 - 24

CommandModule 171 -172

constraint 11 -14

constraints 124 -129

D-declaration 96 135 -139 141 154 166 166

DataDecl1Module -166 171

DDM-header 166 -168

DeclarationModule -135 170

deletion 70 -80

derivedType 28 -29 55

designator 30 -41 106

DM-header 135 -136

eachpart
EM-header
enumeration
equation
equationcall
equationHeader
ExecuteStatement
ExecutionModule
ExitStatement
expression

extension
externaldefined
factor
fieldSelector
formalPart
ForSelection
ForStatement
FunctionCall
IfStatement
InputOutput
inputPart
insertion
interfaceSpec
itable
J-operator
keydef
LoopStatement
M-declarations
M-equation
M-equations
M-operator
MM-header

mode
ModelModule
Modification
module
N-operator
objective
option
parameterDeclaration
primary
problem
problemHeader
problemsection
ProcedureCall
property
Q-expression
Q-factor

101
154
10
98
127
98
75
-154

7
L

32
51
78
131
163
19
10
-32
41
147
86
73
31
71
74
56
70
118
62
63
23
72
93
97
93
33
93
151
-93
74
169
32
124
127
149
-30
117
118
94
71
41
105
-107

102
156
-12
101
129
-99
157
171
-85
-35

53

79
131
165

20
-13

32
-43
148
-87
-86
-68
-82
159
-62
-79
122

63
-65
-25
-84
-96

97
-97
-37
~95
152
170
-91
169
-36
127
128
150

32
117
121
117
-81
~4b
107
108

105

154
63

-98

-170

-151

-118

-109
108

130

42
67
82
159

33

113

130

43
69
85
159

=131

44
69
87
160

51
77
103
160

93

94

Q-formal
Q-leftpart
Q-op
Q-primary
Q-rightpart
Q-selection
Q-term
QA-op

QM-op
R-declaration
R-operator
range
rangeConst
rc-op
reference

RelationConstructor

resultPart
RM~-header
routineheader
RoutineModule
slconst

sconst
selection
selectionPart
sentinel
setElement
setstruct
setType
sharedVariables
simpleExpr
simpleType
SimpleTypedecl
SolveStatement
sQ-primary
SS-interface
SS-parameter
standardType
statement
statementlist

strictType
StrictTypedecl
StructConst
structType
StructTypedecl
summation
tableType
tconst
telement

term

tident
TranslationUnit

99
101
114

-106
101
102

-108
109
108

96

35

56
77
31
56
141
144
-141
~-46
30
87
57
161
50
48
15
157
-34
20

119
-112
123
132

-70
-76
119

=~

w
[PV B

-105

30
59
-33
60
-169

1

1

99
113
116
107
114
102
109
111
110
141
-39

-58
-78
-56
-59
143
147
170

47
-45
-88
-67
161

50
-50
-26
158

35
-21

123
114
132
133

76

82
119
-10

-4
-48
-15

107
-23
=47
59
34
60

-100

-104
109

-144

161

46

162
~-51

35
26

115

-134

76

83
145

-60
34
-61

155

162

163

84
155

63

163

164

86

164
164 -165
30 92

tupledef
tupleElement
tuplestruct
tupleType
TV-declaration
TypeDeclaration
typedef

typeop

typeref
use~declaration
v-ident
VariableDeclaration
variables
WithStatement

-16
52
48
15

118
-1
27
47
54

146

125

-27

124
73

17 24
52 -53
-52
-17
-137 139
137
-28
48 -54
-55 100
-153
125 -126
138
-125

-90

144

151

95

APPENDIX B

Transportation Model Example

This appendix contains an example session for the formulation and
solution of a transportation problem. Though the model chosen is rather
simple we still can demonstrate with it the important features of the
modeling system.

First we specify the transportation model in mathematical notation. We
introduce the symbols used, and then define the model equations. The
transportation model is stated as follows. Goods are shipped to markets.
The constraints are the capacities of the plants where the goods are
manufactured, and the demands of the markets (equation 1 and 2). The cost
of shipping is to be minimized (equation 4). All shipments must be
positive (equation 3). This simple transportation model is then extended
with two additional constraints: A minimum of goods must be shipped from
a plant (equation 1'). Further the transportation capacity between a
plant and a market may be limited (equation 3.

The transportation model is then handled with the modeling system. We
describe a scenario which consists of three major parts: the definition of
the transportation model in the language of the modeling system, the
creation of a data module, and the solution of the transportation problem
with the given data. The session was created for the most part with the
available front-end of the modeling system. Annotations were added in the
form of comments.

The transportation model is defined by three modules. The first module
is a declaration module which corresponds to the symbol definition of the
mathematical formulation of the model. The second module is the model
module which contains the model equations and two problem sections. The
first problem section defines the simple transportation problem, the
second problem section defines the extended transportation problem. The
third module is an execution module which defines the operational aspects
of the model solution. It contains two execute statements for each of the
problems of the transportation module. The data interface of the
execution module uses tables which are different from those which are used
for the problem execution. This allows us to demonstrate some of the data
manipulation statements.

The data module 1is created interactively. The user defines data
structures for information on plants, markets, and shipping. This is
followed by the entering of data.

98

Solutions for the transportation problems are obtained by running the
execution module with the data module just created. The values for the
model variables of the optimal solutions are stored in the shipping
information table. The optimal solution for the simple transportation

problem and the extended transportation problem are then displayed side by
side.

The Specification of a Transportation Model

Symbol Definition
i plant i in the set of plants I
j market j in the set of markets J
ki capacity of plant i
rj requirements of market j
m minimum shipment from plant i
xij amount of goods shipped from i to j
Cij cost of a unit shipped from i to j
1ij limit in shipment from i to j
Equations
(1 - I ox,., £ k., iel
ij i
jed
(2) r x,, 2 r jeJ
1) J
iel
, > . .
(3) xij 2 0 iel, jed
(&) Minimize
L I c.. x,,
i3 1]

iel jeJ

Extensions

IA
]
»

A
b<n

(1) m, iel

i ij i

(3" 0

IA
IA
-

iel, jed

Sample Session

Modeling System (Vers. 1)
type ? for help

-> 7
available commands:
BROWSE
CATALOG
CREATE
PROCESS
QUIT
REMOVE
RUN
SHOW
OPTION
7
-> process '"example"
-- the transportation model modules and the
-« execution module are read from a file

processing file example

1 declaration module tpdecl;

2

3 var capacity: table [plant; k:real]

4 with key plant;

5 var requirement: table [market; r:real]

6 with key market;

7 var cost: table [plant; market; c:real]
8 with key plant, market;
9 var amount: table [plant; market; x:real]
10 with key plant, market;
11 var mshipment: table [plant; m:real]

12 with key plant;

13 var tplimit: table [plant; market; t:real]
14 with key plant, market;
15

16 end;

17

18 model module transportation;

100

19

20 --declarations

21 include tpdecl;

22 var ii: set plant;

23 var jj: set market;

24

25 equations

26 -- & plant cannot ship more than it produces

27 cpconstraint is

28 each i in ii::

29 sigma (j in jj:: amount[i,j].x) <= capacity[i].k;
30

31 -- a market must at least receive what it requires
32 mkrequirement is

33 each j in jj::

34 sigma (i in ii:: amount[i,j].x) >= requirement[j].r;
35

36 -- shipments must be positive

37 nonnegbound is

38 each i in ii, j in jj:: amount{i,j].x >= 0;

39

40 -- cost function

41 totcost is

42 sigma (i in ii,j in jj:: amount[i,j].x¥cost[i,j].c)
43 objective;

44

45 -- minimal shipment reguirement

46 msconstraint is

47 each i in ii::

48 sigma(j in jj:: amount[i,j}.x) >= mshipment[i].m;
49

50 -- limitation on transportation

51 shipmentbound is

52 each i in ii, j in jj:: amount[i,j].x <= tplimit[i,j].t;
53

54 problem pl;

55 var rs: boolean;

56

57 -- problem interface

58 interface rs, capacity, requirement, cost, amount;
59

60 ~-- index computations

61 ii:= {plant | capacity};

62 jj:= {market | requirement};

63

64 solve (PDQLP: status)

65 variables: amount.x;

66 objective: minimize totcost;

67 constraints: mkrequirement;

68 cpconstraint;

69 bounds: nonnegbound;

70 end;

101

71
72 rs:= status 'name="optimal;
73 end;
74
75 problem p2;
76 var rs: boolean;

7
78 -~ problem interface
79 interface rs, capacity, requirement, mshipment,
80 tplimit, cost, amount;
81
82 -~ index computations
83 ii:= {plant | capacity};
84 jj:= {market | requirement};
85
86 solve (PDQLP: status)
87 variables: amount .Xx;
88 objective: minimize totcost;
89 constraints: mkrequirement;
90 cpconstraint;
91 msconstraint;

2 bounds: nonnegbound;
93 shipmentbound;
94 end;
95
96 rs:= status 'name="optimal";
97 end;
98
99 end;
100
101 execution module example;
102 -- declarations
103 include tpdecl;
104 var plantdsr: table [plant; k,m:real] with key plant;
105 var shipmdsr: table [plant; market; c,t,x1,x2:real]
106 with key plant,market;
107 var rs: boolean; ‘
108
109 interface plantdsr,requirement,shipmdsr;
110
111 -- get values for first problem
112 capacity := {plant,k | plantdsr};
113 cost := {plant,market,c | shipmdsr};
114
115 execute pl of transportation
116 (rs,capacity,requirement,cost,amount);
117
118 if rs then write(" Optimal solution found');
119 for s in shipmdsr do
120 modify s with x1l:=amount[plant,market].x end;
121 end;

122 else write(" No solution found');

102

123 end;

124

125 -~ get values for second problem

126 mshipment := {plant,m | plantdsr};

127 tplimit := {plant,market,t | shipmdsr};

128

129 execute p2 of transportation

130 (rs,capacity,requirement ,mshipment,tplimit,
131 cost,amount);

132

133 if rs then write(" Optimal solution found");
134 for s in shipmdsr do

135 modify s with x2:=amount[plant,market].x end;
136 end;

137 else write(" No solution found");

138 end;

139

140 end;

no errors found

-> catalog
-- the user checks which modules are in the
-- data base
d.tpdecl
e.example
m.transportation
-> browse
module name: tpdata
module not found, create new module (y or n)? y
-- the user creates interactively a data
-- module, defines the data structures, and
-- enters the data
processing module tpdata
type 7?7 for help

=> 7
available commands:

DESCRIBE

ENTER

LIST

RETURN

SHOW

OPTION

7
=> var plantdata: table{plant; k,m:real]
* with key plant;
=> var marketdata: table[market; r:real]
with key market;
=> var shipmentdata: table[plant;market;
w c,t,x1,x2:real]

e
iy

=> list variables;
plantdata marketdata shipmentdata
=> enter plantdata;
Pl 50 20
P2 100 95
£
=> enter marketdata;

Ml 50
Mz 70
M3 20

4
r

=> enter shipmentdata;
P11 Ml 5 30

P1 M2 5 40

P1 M3 10 5

P2 M1 15 40

P2 M2 30 50

P2 M3 5 20

#.

=> return

leaving browsing mode

[oNoNeNeolo]
[oNeNeNeleiol

-- the user executes next the example with
-- the data module just created

-> run example with tpdata

* plantdsr = plantdata;
requirement = marketdata;
shipmdsr = shipmentdata;

end

e
iy
ole
w

ol
iy

wait
Optimal solution found
Optimal solution found

-> browse tpdata
processing module tpdata

type ? for help

=> {plant,market,x1,x2 | shipmentdata}l;

Pl M1 0.00 10
P1 M2 50.00 35.
P1 M3 0.00 0
P2 M1 50.00 40.
p2 M2 20.00 35
P2 M3 20.00 20.

=> return

leaving browsing mode

-> quit

end of session

with kevy plant,market;

.00

00

.00

00

.00

00

103

”3

REFERENCES

[ADA]
"Reference Manual for the ADA Programming Language', United States
Department of Defense, July 1980

[Ahol]
A.V. Aho, J.D. Ullman, "Universality of Data Retrieval Languages',
Conference on Principles of Programming Languages, San Antonio,
January 1979

[Aho?]
A.V. Aho, J.D. Ullman, '"Principles of Compiler Design",
Addison-Wesley Publishing Company, Reading, Massachusetts, 1977

[Aigner]
D.J. Aigner, "An Interpretative Input Routine for Linear
Programming', CACM 10, 1, January 1967

[Alter]
S.L. Alter, "A Study of Computer Decision Making in
Organizations', MIT, Dissertation, June 1975

[Baver]
R. Bayer, E.M. McCreight, "Organization and Maintenance of Large
Ordered Indices', Acta Informatica 1, 3, 1972

[Brodie]
M.L. Brodie, "Axiomatic Definitions for Data Model Semantic
Integrity", University of Toronto, Dissertation, CSRG-91, March
1978

[Burgerl]
W.F. Burger, M. Chandy, "A Language and Data Base for Modeling",
ORSA/TIMS, November 1978

[Burger2]
W.F. Burger, "XBSW 3.3 - A Parser Generator', Software Systems
International, Washington, D.C., December 1979

[Burroughs]
"GAMMA User's Manual', Burroughs Corporation, Detroit, Michigan,
1976

[Chamberlin]
D. Chamberlin et al., "SEQUEL 2: A Unified Approach to Data

Definition, Manipulation, and Control', IBM Journal of Research
and Development 20, 6, November 1976

106

[Coddl]

E.F. Codd, "A Relational Model of Data for Large Shared Data
Banks'", Communications of the ACM 13, 6, June 1970

[Codd2]
E.F. Codd, "A Data Base Sublanguage Founded on the Relational

Calculus', ACM SIGFIDET Workshop on Data Description, Access and
Control, 1971

[Dahl]
0.J. Dahl et al., "Simula 67 Common Base Language', Norwegian
Computing Center, Oslo, 1968

[Date]
C.J. Date "An Introduction to Database Systems', Addison-Wesley
Publishing Company, 2nd Edition, Reading, Massachusetts, 1977

[DTBG]
DTBG of CODASYL Programming Language Committee Report, ACM, New
York, 1971

[Fromm]
G. Fromm, W.W.L. Hamilton, D.E. Hamilton, '"Federally Supported
Mathematical Models: Survey and Analysis", US Government Printing
Office, Washington, D.C., 1974

[Haverly]
"OMNI Problem Descriptor System', Haverly Systems Inc., Denville,
New Jersey, March 1980

[Huits]
M.H. Huits, "Requirements for Languages in Database Systems', in
Data Base Description, North-Holland Publishing Company,
Amsterdam, 1975

[Katz]
S. Katz, L.J. Risman, M. Rodeh, "A system for constructing linear
programming models', IBM Systems Journal, 19, 4, 1980

[Kernighan]
B.W. Kernighan, D.M. Ritchie, "The C Programming Language',
Prentice-Hall, Englewood Cliffs, New Jersey, 1978

[Ketron]
"DATAFORM", Ketron, Inc., Arlington, Virginia, 1978

[Klein]

M. Klein, "FINSIM - A Decision Support System for Financial
Planning and Engineering', IFIPS 1977

Faal

QP

107

[Labstat]

"LABSTAT User's Guide", U.S. Department of Labor, Bureau of Labor
Statistics, 1978

[Meeraus1]

A. Meeraus, "GAMS - General Algebraic Modeling System', World
Bank, Development Research Center, August 1977

[Meeraus2]
J. Bisshop, A. Meeraus, "Toward Successful Modeling Applications
in a Strategic Planning Environment', World Bank, Development

Research Center, Working Paper, March 1980

[Mever]
D. Meyer, "Entwurf und Implementation von Pascal-Erweiterungen
fuer die Bearbeitung relationaler Datenbanken', Universitaet
Hamburg, Institut fuer Informatik, Bericht 52, June 1978

[Mitchell]
F.S. Carl-Mitchell, R.F. Berry, A.G. Dale, "April: Accessing and
Processing Interface Language for Data Base Applications"
University of Texas at Austin, ICSCA, RDS-2, February 1979

1)

[Moriconi]
M.S. Moriconi, "A System for Incrementally Designing and Verifying
Programs'", University of Texas at Austin, ICSCA, CMP-9, December

1977

[Nori]
K.V. Nori, U. Ammann, K. Jensen, H.H. Naegeli, "The Pascal-P
Compiler: Implementation Notes", ETH Zurich, Institut fuer
Informatik, Bericht 10, 1974

[Prenner]
C.J. Prenner, L.A. Rowe, ''Programming Languages for Relational
Database Systems', National Computer Conference, 1978

[Ritchie]
D.M. Ritchie, K.L. Thompson, "The UNIX time sharing system', CACM
17, 7, July 1974

[Schmidtl]
J.W. Schmidt, "Type Concepts for Data Base Definitions: An
Investigation Based on Extensions to Pascal’, Universitaet
Hamburg, Institut fuer Informatik, Bericht 34, May 1977

[Schmidt2]
J.W. Schmidt, "Some High Level Language Constructs for Data of Type
Relation', ACM Transactions on Database Systems 2, 3, September
1977

108

[Schmidt3]
J.W. Schmidt, H. Fischer, M. Jarke, D. Meyer, W. Ullmer, "A
Structured Framework for the Implementation of Relations", Bericht
46, University of Hamburg, February 1978

[Smith]
J.M. Smith, D.C.P. Smith, "Database Abstraction: Aggregation and
Generalization', ACM Transactions on Database Systems 2, 2, June

1978

[Suvorov]
B.P. Suvorov, A.B. Florinsky, '"Main Features of the Automated
Information System 'ELLIPSE'", Data Models and Database Systems,

Proceedings of the Joint US-USSR Seminar, Moscow, November 1977

[Turnherr]

B. Turnherr, C.A. Zehnder, "Global Data Base Aspects, Consequences
for the Relational Model and a Conceptual Schema Language', ETH
Zurich, Institut fuer Informatik, Bericht 30, 1979

[Ullman]

J.D. Ullman, "Principles of Database Systems', Computer Science
Press, Potomac, Maryland, 1980

[Welch]

J.S. Welch, "Answers Delayed are Answers Denied", SIGMAP Bulletin
28, December 1979

[White]
T.R. White, W.A. Mitchell, "AMBUSH - An Advanced Model Builder for

Linear Programming', National Petroleum Refiners Conference,
Houston, November 1971

[Wirthl]
N. Wirth, "The Programming Language PASCAL", Acta Informatica 1,
1, 1971

[Wirth2]
N. Wirth, '"Modula-2", ETH Zurich, Institut fuer Informatik,

Bericht 36, March 1980

[Wolters]
J.A.M. Wolters, "Computer Based Planning and Modeling Systems",
IFIPS 1977

[Zannetos]
Z.S. Zannetos, 'Intelligent Information Systems: A Decade Later',

Sloane School of Management, MIT, Working Paper 1028-78, November
1978

4)

	tr81-177a
	tr81-177b

