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ABSTRACT

We present a methodology to synthesize two communicating finite-state machines which exchange mes-
sages over two one-directional, FIFO channels. The methodology consists of two algorithms. The first
algorithm takes one machine M, and constructs two communicating machines M’ and N’ such that (i) M’
is constructed from M by adding some receiving transitions to it, and (ii) the communication between M’
and N’ is bounded, and free from deadlocks, unspecified receptions, nonexecutable transitions, and state
ambiguities. The second algorithm takes two machines M’ and N’ which result from the first algorithm,
and computes the smallest possible capacities for the two channels between them. Both algorithms require
an Of(st) time, where s is the number of states in the given machine M, and t is the number of state

transitions in M; thus, the methodology is practical to use.



I. INTRODUCTION

Many communication protocols can be modelled as two communicating, finite-state machines which ex-
change messages over two one-directional, unbounded, FIFO channels {1, 3, 11, 12, 13, 14]. The com-
munication between the two machines in each of these models is often expected to satisfy some "nice"

progress properties [1, 18, 19].

Four of these progress properties are of interest to the discussion in this paper. They are boundedness
and freedom from communication deadlocks, unspecified receptions, and nonexecutable state transitions.

(Formal definitions of these properties are discussed later in Section IL)

There are two basic approaches to ensure that the communication between two finite-state machines

satisfies such progress properties:

i. Analysis: Develop techniques to prove that the communication between any two given
machines satisfies the required progress properties.

ii. Synthesis: Develop techniques to complete two given (incomplete) machines such that the
communication between the completed machines is guaranteed to satisfy the required progress
properties.

Brand and Zafiropulo [4] have shown that the analysis approach is undecidable in general; i.e., no al-
gorithm can decide whether the communication between two finite-state machines satisfies any of the
progress properties mentioned earlier. (Nevertheless, the problem can still be decided for some special
classes of communicating finite-state machines [4, 7, 8, 10, 15, 16, 17].) This rather negative result of the
analysis approach makes the synthesis approach more attractive. In this paper, we present a practical
methodology to synthesize two communicating finite-state machines with guaranteed progress properties.

A preliminary version of this methodology has been presented in [6].

A. Related Work

Previous work in the synthesis approach can be distinguished into two categories based on the objective

of the synthesis.

i. Synthesis to Achieve Progress:

Zafiropulo et al. [19] have presented a methodology, henceforth referred to as the ZWRCB methodology,
to synthesize two finite-state machines whose communication satisfies some progress properties. The

methodology proceeds in steps; at each step, the following three sub-steps are performed:
i. First, the designer adds one sending transition to one of the two incomplete machines.

ii. Second, the designer executes an algorithm (based on three synthesis rules) to add the cor-
responding receiving transitions in the other machine such that freedom from unspecified
receptions and nonexecutable transitions is guaranteed. (This addition of receiving transitions



to the second machine may necessitate the addition of sending transitions, that are copies of
the previously added sending tramsitions, to this same machine; this in turn necessitates the
addition of corresponding receiving transitions to the first machine, and so on.)

iii. Third, the designer checks whether or not the added transitions can lead to a deadlock or a
channel overflow. If a deadlock or a channel overflow is detected, then the designer must take
a proper action {e.g., remove all the added transitions in this step). Finally, the designer
proceeds to the next step.

These steps continue until the designer does not need to add further sending transitions to any of the
two machines. In this case, the two machines are complete and their communication is guaranteed to be

bounded and free from deadlocks, unspecified receptions, and nonexecutable transitions.

The synthesis methodology presented in this paper also falls into this same category; it has the same
objectives as the ZWRCB methodology. A comparison between the two methodologies is discussed later

in Section VI

ii. Synthesis to Achieve Progress and Service:

Bochmann and Merlin [2, 9] have considered a special class of communicating finite-state machines. In
this special class, the sending of a message by one machine and its reception by another machine occur
instantaneously in zero time. Therefore, channels are not needed to buffer messages between different
machines; and the analysis problem becomes trivially decidable. (Actually, unboundedness and unspecified

receptions cannot occur in this class; only deadlocks and nonexecutable transitions can occur.)

Rochmann and Merlin have also introduced the concept of a "service machine® which is a finite-state
machine that defines the service performed by a set of communicating finite-state machines. They state
the following problem. "Given n-1 communicating finite-state machines (n>>2), and a service machine, it is

th

required to synthesize an n*" communicating machine such that the service performed by the n com-

municating machines is defined by the given service machine or by a maximal submachine of it.®

Their solution to the problem consists of a "formula® that defines the required communicating machine
from the given machines. They observe, however, that the resulting communicating machine may have
many redundant transitions and may reach a deadlock with the given communicating machines. There-
fore, they suggest a subsequent procedure to *trim" the resulting machine by removing some of its tran-
sitions. The trimming procedure is based on state exploration to determine which transitions in the result-

ing machine can (or should) be removed; and so it consumes a large amount of time.

Later, Gouda and Chu [5] have discussed another solution to the Bochmann-Merlin problem in the spe-

cial case of n==2; their solution does not require any state exploration.



B. The Paper's Organization

Following the introduction, the model of communicating finite-state machines is presented in Section II,
along with its major progress properties. The two algorithms which comprise our synthesis methodology
are presented in Sections III and IV. Then in Section V, we apply the methodology to synthesize a call
establishment/clear protocol similar to that of X.25. Concluding remarks are in Section VI. Due to space
limitations, we have omitted the correctness proofs for the two algorithms; these proofs are discussed in
[15].



. COMMUNICATING MACHINES

A communicating machine M is a labelled directed graph with two types of edges called sending and
receiving edges. A sending (or receiving) edge is labelled send(g) (or receive(g), respectively), for some

message g in a finite set G of messages. No two outputs of the same node in M have identical labels.

Each node in M has a distinct label and at least one output edge. A node is called a sending (or
receiving) node iff all its output edges are sending (or receiving, respectively) edges; otherwise it is called a
mized node. One of the nodes in M is identified as its tnitial node; and each node in M is reachable by a

directed path from the initial node.

Figure 1a shows a communicating machine M with one sending node (node 1), one receiving node (node

2), and one mixed node (node 3). Node 1 is the initial node of M.

Let M and N be two communicating machines with the same set G of messages. A state of M and N is
a four-tuple [v,w x,y] where v and w are the labels of two nodes in M and N respectively and x and y are
two strings of messages from the set G. Informally, a state [v,w,x,y] means that the execution of M has
reached node v, and the execution of N has reached node w, while the input channels of M and N have the

message sequences x and y respectively.

The instial state of M and N is [vo,wo,E,E] where v, and w, are the labels of the initial nodes of M and

N respectively, and E is the empty string.

Let s=|v,w,x,y] be a state of M and N and let e be an output edge of node v or w. A state s’ of M and

N is said to follow s over e iff the following four conditions are satisfied:

i. If e is from v to v’ in M and is labelled send(g),
then s'=|v’,w,x,y.g], where "." is the concatenation operator.

ii. If e is from w to w’ in N and is labelled send(g),
then s'=|v,w’ x.g,y].

iii. If e is from v to v’ in M and is labelled receive(g),
then x==g.x’,
and s’==[v’,wx"y].

iv. If e is from w to w’ in N and is labelled receive(g),
then y=g.y’,
and s'=[v,w’ x,y].

Let s and s’ be two states of M and N. s follows s iff there is an edge e in M or N such that s’ follows s

over e.

Let s and s’ be two states of M and N. s’ is reachable from s iff either s==s’, or there exist states s,,...,s_

such that s==s,, s’==s_, and s, follows s, for i=1,....r-1.



A state s of M and N is reachable iff it is reachable from the initial state of M and N.

In designing a pair of communicating machines M and N, a designer may commit some design mistakes
which cause the resulting machines to exhibit some progress errors during the course of communication.
Five of these progress errors are defined next.

i. Unbounded Communication:

The communication between M and N is said to be bounded by a positive integer K iff for any reachable
state [v,w,x,y] of M and N, |x| < K and |y| <K, where [x] is the number of messages in the string x. The
communication is said to be bounded if it is bounded by some positive integer K. Otherwise, it is un-
bounded. Notice that an unbounded communication cannot be implemented correctly using finite-
capacity channels.

ii. Communication Deadlocks:

A state s=|v,w,x,y] of M and N is a deadlock state iff (i) both v and w are receiving nodes, and (ii)
=y=E. A reachable deadlock state constitutes a progress error, since the two machines cannot progress
after reaching a deadlock state.

iii. Unspecified Receptions:

A state s=|v,w,x,y] of M and N is an unspecified reception state iff one of the following two conditions
is satisfied: Numerate {x=g1.g2. ... .8y, for some k> and v is a receiving node without any output edge
labelled receive(gl) in M. y=g,.8,. ... .8, for some k>1 and w is a receiving node without any output

edge labelled receive(g,) in N.}

A reachable unspecified reception state is a progress error since at least one of the two machines cannot

progress after reaching an unspecified reception state.

Notice that according to this definition unspecified receptions can occur only at receiving nodes. Hence,
this definition is different from the one in [19] where unspecified receptions can occur at receiving or mixed
nodes.

iv. Nonexecutable Transitions:

Let e be an edge in machine M (or N). e is said to be nonezecutable during the communication between

M and N iff there is no pair of reachable states s, and s, such that s, follows s, over edge e.

A nonexecutable edge is not strictly a progress error, since the communication between M and N can
proceed properly even in the presence of nonexecutable edges. Nonetheless, they serve no function, and it

is desirable to remove them from M and N.



v. State Ambiguities:

A state [v,w,E[E] of M and N is said to be stable iff x==y=E (the empty string). A stable state am-
biguity exists between M and N iff there are two reachable stable states |v,,w, EE] and [v,,w,,EE] such
that either v, ==v, and wl,é.wz, or vl,&v2 and w,=w,. A state ambiguity is not necessarily an error unless

the designer intends to have no state ambiguities in the resulting two communicating machines. |

In this paper, we present a methodology to construct pairs of communicating machines whose com-
munication is free of the above progress errors. The methodology consists of two algorithms named the

machine synthesis algorithm, and the channel capacity algorithm.

The machine synthests algorithm takes as an input one communicating machine M and constructs two

communicating machines M’ and N’ which satisfy the following two conditions:
i. M’ is constructed from M by adding some receiving edges to it.

ii. The communication between M’ and N’ is free of the above five progress errors.

The channel capacity algorithm takes as an input the two machines M’ and N’ which result from the
first algorithm and computes the smallest possible channel capacities between them. In other words, it
computes the smallest positive integers ¢, and c, such that for any reachable state [v,w,x,y] of M’ and N,
x| < ¢, and |y| < c,. The integer c, is the smallest possible capacity for the output channel of N’, and ¢,

is the smallest possible capacity for the output channel of M'.



Ii. THE MACHINE SYNTHESIS
ALGORITHM

In this section, the machine synthesis algorithm is discussed. First, two machine synthesis examples are
discussed in Sections IIILA and HIL.B to motivate the algorithm. Then, the algorithm itself is given in Sec-

tion 1I1.C.
A. Dual Machines and Winner/Loser Nodes

Consider the communicating machine M in Figure 1a. Assuming that M can be modified slightly by
adding receiving edges to it, it is required to synthesize another machine N’ such that the communication

between the modified M, called M’, and N’ is free from the five progress errors discussed in Section II.

The first step is to construct a dual machine N (Figure 1b) which is identical to M except that each
sending {or receiving) edge in M is replaced by a receiving (or sending respectively) edge in N. Thus, each
sending (or receiving or mixed) node in M corresponds to a receiving (or sending or mixed, respectively)
node in N. Two corresponding nodes in M and N are called dual nodes. For convenience, every node in N

has the same label as its dual node in M.

During the communication between M and N, the two machines traverse dual paths in harmony; i.e.,
while one machine sends some message the other machine receives the same message. This continues until
M and N reach dual mixed nodes. In this case, both M and N may traverse paths of sending edges
causing a loss of synchronization. For example, the two machines M and N in figure 1 can start from the
initial state [1,1,E,E| and traverse dual paths to reach the state [3,3EE|. From this state, M can send
message g, and reach receiving node 2; and N can send message g, and reach receiving node 1; i.e., the
state {2,1,8,,8,] is reached. There are two problems with this state.

i. Machine M does not expect to receive message g, at receiving node 2; and N does not expect
to receive message g, at receiving node 1.

ii. Assuming that M receives g, at node 2 and N receives g, at node 1, and so they both recog-
nize loss of synchronization, what should they do to restore their synchronization?

To solve the first problem, an output edge labelled receive(g 4) should be added to receiving node 2 in M,
and an output edge labelled receive(ga) should be added to node 1 in N. These added edges are called
correcting edges. Notice that we have not yet defined the head nodes of these correcting edges; this is

done next as we discuss a solution to the second problem.

When M receives g, at node 2, it should recognize that a loss of synchronization with N has occurred at
node 3. In particular, it should recognize that while M itself has reached node 2, N has reached node 1.
Therefore to restore the lost synchronization, M should leave node 2 and reach node 1; i.e., the correcting
output edge of node 2 should be input to node 1 in M. On the other hand, when N recognizes the loss of

synchronization, it should remain at node 1 knowing that eventually M will reach node 1 also, and the



synchronization will be restored. Hence, the correcting output edge of node 1 should be input to node 1 in
N. The resulting M’ and N’ after adding the correcting edges to M and N are shown in Figures 1c¢ and 1d

respectively. For convenience, the correcting edges are shown as dashed edges.

During the course of communication between M’ and N’, whenever a loss of synchronization occurs at
the dual mixed node pair (3,3), machine M’ is forced to stop its progress and rejoin N’ thus restoring the
synchronization between the two machines. Hence, mixed node 3 in M’ is called a loser, while mixed node

3in N’ is called a winner.

It would have been also possible to make the correcting edge of M’ from node 2 to node 2, and the
correcting edge of N’ from node 1 to node 2. In this case, whenever a loss of synchronization occurs,
machine N’ would be the one forced to stop its progress and rejoin the other machine M’. Therefore in this
case, mixed node 3 in N’ would be the one called a loser, while mixed node 3 in M’ would be called a

winner.

From the above example, we reach the following conclusions concerning loss of synchronization between

dual communicating machines:
i. Loss of synchronization can start at any dual mixed node pair.

ii. Loss of synchronization can be detected by either machine receiving an unexpected message at
the first receiving node following the mixed node where the loss of synchronization has started.

iii. Loss of synchronization can be corrected by one machine stopping its progress and rejoining
the other machine. The mixed node where loss of synchronization has started in the former
machine is called a loser, and its dual mixed node in the latter machine is called a winner.

iv. From i and iii above, one node in each dual mixed node pair should be selected as a loser while
the other node in the pair is selected as a winner.

v. Which node in a dual mixed node pair is selected as a loser or winner is, in principle, an ar-
bitrary decision.

B. Receiving a Sequence of Messages

Consider the communicating machine M in Figure 2a. As before, it is required to modify M slightly by
adding receiving edges to it to become M’ and to synthesize another communicating machine N’ such that

the communication between M’ and N’ is free of the progress errors discussed in Section IL

Figure 2b shows the dual machine N for the given machine M. The only dual mixed node pair in M and
N is (1,1). Assume that node 1 in M is selected as a loser; then node 1 in N must be selected as a winner.
It remains now to add the correcting edges to M and N, thus constructing the required machines M’ and
N

The correcting edges of M should be added as outputs to the first receiving nodes which follow the
mixed node 1 in M. There is only one such node, namely receiving node 3, in M. Also, each correcting

edge should be labelled receive(g) where g is a message that can be received at mixed node 1 in M. There



is only one such message, namely g,. Thus, one correcting edge labelled receive(g 4) should be added as an
output of receiving node 3 in M. The destination of this edge should be the node which can be reached

from mixed node 1 by the edge labelled receive(g,), namely node 3 in M, as shown in Figure 2c.

Adding correcting edges for a winner node is more complicated than that for a loser node. In case of a
loser node, a correcting edge receives the first message sent by the other machine during the loss of
synchronization, and re-directs its machine to rejoin the other machine. In case of a winner node, a cor-
recting edge receives all the messages sent by the other machine during the loss of synchronization, and
"diseards" them, and directs its machine to stay at its current node. Thus, a correcting edge for a winner

node should satisfy the following two conditions:
i. It should form a self-loop at a first receiving node following the winner mixed node.

ii. It should be labelled receive(x), where x is a complete sequence of messages sent by the other
machine during the loss of synchronization. (An edge labelled receive(g,.g,. ... .g,) is equiv-

alent to a directed path of r receiving edges labelled receive(g,), receive(g,),..., and receive(g )
respectively. To refer to it as an edge rather than a path is a notational convenience.)

The only sequence of messages sent by machine M during its loss of synchronization with N is g, g,; thus
each correcting edge added to N should be labelled receive(g,g,). Also, N has only one receiving node,
namely node 2, that follows the winner mixed node 1; hence one correcting edge, labelled receive(g,sg,),
should be added as a self-loop at node 2 in N. The resulting machine N’ is shown in Figure 2d.

C. The Algorithm

The above examples are intended to give some insight into the different steps of the machine synthesis
algorithm. The algorithm is presented next. (A correctness proof for the algorithm is given in [15].)
Algorithm 1:

Inputs: A communicating machine M which satisfies the following two conditions:
i. All edges in M have distinct labels.
ii. Each directed cycle in M must have at least one sending and one receiving edges.
Qutputs: Two communicating machines M’ and N’ which satisfy the following two conditions:
i. M’ is constructed from M by adding some receiving edges to it.

ii. The communication between M’ and N’ is bounded, deadlock-free, and has no un-
specified receptions, no nonexecutable transitions and no state ambiguities.

Steps:

i. Construct the dual machine N from the given machine M by replacing each edge labelled
send(g) (or receive(g)) in M by an edge labelled receive(g) (or send(g)) in N.

ii. Select each mixed node in M, at random, to be either a loser or a winner. If a mixed node in M
is selected a loser (or a winner), then the corresponding dual node in N must be selected a
winner (or a loser, respectively).

iii. Construct M’ from M by applying the loser (or winner) transformation, defined next, to every
loser (or winner, respectively) mixed node in M. Similarly, construct N’ from N by applying
the loser (or winner) transformation to every loser (or winner, respectively) mixed node in N. |
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Notice that if M has no mixed nodes then steps ii and iii will not modify M and N in any way; and the
required M’ and N’ are the original M and N. Next, we define the loser and winner transformations for

mixed nodes in M. (The loser and winner transformations for mixed nodes in N are similar.)

Loser Transformation: for a loser mixed node v in M (Figure 3a).

Let u; (i=1..m) be all the receiving nodes such that there is a directed path of sending edges from node
v to node u; in M.

Let receive(g;) (j=1..n) be the label of a receiving edge from node v to some node v; (j=1..n) in M.

Then add a correcting edge labelled receive(g;) from each u; (i=1..m) to each v; (i=1.n)in M. I

Winner Transformation: for a winner mixed node v in M (Figure 3b).

Let y, (i==1..m) be all the receiving nodes such that there is a directed path of sending edges from node
v to node y; in M.

Let X (i=1..n) be an ordered sequence of messages which label the edges of a directed path of receiving
edges from node v to a sending node in M.

Then add a correcting self-loop labelled receive(xj) (7=1..n) at each receiving node u; (i==1..m) in M. ||

Later in Section V, we discuss how to apply Algorithm 1 to synthesize two communicating machines

which represent a call establishment/clear protocol similar to that of X.25.
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IV. THE CHANNEL CAPACITY
ALGORITHM

In this section, the channel capacity algorithm is discussed. First, we discuss two examples in Sections
IV.A and IV.B to motivate the algorithm. Then, the algorithm itself is given in Section IV.C.
A. Dealing with Loser Mixed Nodes

Consider the communicating machine M’ in Figure 1c; and assume that it is required to compute the
smallest possible capacity for its output channel to N’ (i.e., compute the maximum number of messages

which can exist simultaneously in the output channel of M’).

First we observe that each sending edge in M’ contributes one message to the output channel of M’. So,
we assign each sending edge a weight *1*, and assign each receiving edge a weight "0", as shown in Figure
4a. Next, we apply a number of transformations on M’ to remove some of its directed paths such that the
following condition holds. For each removed path p,, M’ has a remaining path p, such that my>m,,
where m; is the maximum number of messages which can exist simultaneously in the output channel of M’
as M’ "executes" path p, (i=1,2). These transformations leave M’ acyclic; thus the smallest possible
capacity for the output channel of M’ is the weight of the directed path with the maximum weight in M.
(Recall that each edge in M’ has a weight; hence, the weight |p| of a directed path p is the sum of weights
of its edges.)

During the communication between M’ and N’, M’ can go from node 3 to node 1 either by receiving
message g, or by sending g, then receiving the correcting message g,. The second path adds one message
to the output channel of M’; but the first path does not. Therefore, removing the first path from M’ will
not change the output channel capacity of M’. The procedure to remove the first path may seem strange
at first: Remove the correcting edge in the second path, and change the weight assigned to the receiving
edge in the first path from 0 to 1, as shown in Figure 4b. So now, M’ must traverse the receiving edge to
go from node 3 to node 1; but in doing so, it simulates the effect of the second path, namely it sends one
message and receives g,. The reason for selecting this indirect procedure to remove the first path is to

ensure that this transformation with other transformations will leave M’ acyclic.

Because of the way M’ and N’ are constructed by Algorithm 1, the following property holds during the
communication between M’ and N’. If M’, or N’, ever sends a message then receives a non-correcting
message, then its output channel must be empty immediately before the message reception. (A proof of
this property is given in [15].) From this observation, whenever M’ reaches node 2, then immediately
before receiving g, its output channel must be empty. Therefore, it is possible to partition node 2 into two
nodes 2’ and 27 such that 2’ has all the sending input edges, of node 2 and 2* has all the receiving input
edges and all the receiving output edges of node 2, as shown in Figure 4c. Notice that in this case node 2
(and so node 2") has no receiving input edges. Notice also that this partitioning of node 2 removes many

directed paths from M’, namely those paths which contains node 2. However for each removed path p;, M’
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still has a path p, which contains 2’ or 2" (but not both) such that m,>m, where m, is the maximum
number of messages which can exist simultaneously in the output channel of M’, as M’ traverses path p,
(i=1,2).

The resulting M’ is acyclic; and so the smallest capacity of its output channel is the weight of the
directed path with the maximum weight in M’. From Figure 4c, the directed path with the maximum
weight in M’ is (2%, 3, 1, 2'); its weight is 0+1+1=2; hence the smallest output channel capacity for M’ is
two.

B. Dealing with Winner Mixed Nodes

Assume that it is required to compute the smallest capacity for the output channel N in Figure 1d. As
before, assign each sending edge a weight of 1, and each receiving edge a weight of 0, as shown in Figure

5a.

Correcting edges for winner nodes can be removed without affecting the output channel capacity. There

is only one such edge in N’; and so it can be removed as shown in Figure 5b.

As discussed earlier, whenever N’ (or M’} sends a message then receives a non-correcting message, the
output channel of N’ (or M’, respectively) must be empty immediately before the message reception.

Based on this observation, the following two transformations can be applied on N’

i. As shown in Figure 5c, receiving node 1 is partitioned into two nodes 1’ and 1" such that I’
has all the sending input edges of node 1, and 1" has all the receiving input edges and all the
receiving output edges of node 1. (Notice that node 1, and so 1*, has no receiving input
edges.)

ii. As shown in Figure 5d, the winner mixed node 3 is partitioned into two nodes 3’ and 3" such
that 3’ has all the sending input edges and all the sending output edges of node 3, and 3" has
all the receiving input edges and all the output edges (whether sending or receiving) of node 3.
(Notice that node 3, and so 3", has no receiving input edges.)

The resulting N’ in Figure 5d is acyclic. The directed path with maximum weight in N' is (3%, 2, 3, ');
its weight is 0+1+1==2. Therefore, the smallest output channel capacity for N’ is two.
C. The Algorithm

The above examples are intended to give some insight into the different steps of the channel capacity
algorithm. The algorithm is presented next. (A correctness proof for the algorithm is given in [15].)
Algorithm 2:

Inputs: Two communicating machines M’ and N’ which result from Algorithm 1.
Outputs: The smallest possible capacities for the two channels between M’ and N'.
Steps:

i. Assign each sending edge in M’ a weight of "1, and each receiving edge in M’ a weight of "0*.
In such a weighted graph, the weight |p| of a directed path p is the sum of weights of its edges.

ii. Construct a directed weighted graph from M’ by the following four steps:



a. for each loser mixed node v
do find a directed path p, of sending edges, which starts with v such that |p|>|q|, where
q is any directed path, of sending edges, which starts with v; change the weight of each
receiving output edge of v (from "0*) to |p|.

b. Remove all the correcting edges.

¢. for each loser mixed (or receiving) node v that follows immediately a sending edge
do partition node v into two nodes v’ and v", where v’ has all the sending input edges
and all the sending output edges of v, and v* has all the receiving input edges and all the
receiving output edges of v.

d. for each winner mixed node v that follows immediately a sending edge
do partition node v into two nodes v’ and v*, where v’ has all the sending input edges
and all the sending output edges of v, and v*" has all the receiving input edges and all the
output edges (whether sending or receiving) of v.

iii. The resulting graph is acyclic. Thus, the smallest capacity for the output channel of M’ is |p]
where p is the directed path with maximum weight in the resulting graph.

iv. Repeat steps 1, ii, iii on the other machine N’ to compute the capacity of its output channel. I

Notice that if M’ (and so N’) has no mixed nodes, then the smallest output channel capacity of M’ (or
N’} equals the length of longest sending path in M’ (or N, respectively). Next, we discuss how to use

algorithms 1 and 2 to synthesize a call establishment/clear protocol similar to that of X.25.
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V. SYNTHESIZING AN X.25 PROTOCOL

Consider the two communicating machines M and N in Figure 6. They represent the call
establishment/clear protocol in X.25 [13], where M models the DTE, and N models the DCE, and the

exchanged messages have the following meaning:
g, stands for call request.
g, stands for call connected.
g5 stands for incoming call.
g, stands for call accepted.
g5 stands for clear request.
g stands for clear indication.
g, stands for clear confirmation.

The functionality of M and N can be defined as the set of all sequences of sending and receiving opera-
tions executed by the two machines starting from their initial state until they both return to nodes 1 and

1. Five examples of these sequences are now discussed.

1. In this sequence, M establishes a connection with N, then clears it:

<M sends g,, N receives g,, N sends g,, M receives g,, M sends g, N receives g5
N sends g,, M receives g,>

2. In this sequence, N establishes a connection with N, then clears it:
<N sends g,, M receives g,, M sends g,, N receives g,, N sends g4, M receives gg Msends g,
N receives g,>

3. This is a "collision® sequence, where each of M and N tries to establish a connection, then the
DTE M wins (i.e. it establishes the connection, then clears it):
<M sends g,, N sends g,, M receives g,, N receives g,, N sends g,, M receives g,, M sends g,
N receives g, N sends g;, M receives g,>

4. This is a "collision" sequence, where each of M and N tries to clear the connection; they both
succeed:
<M sends g, N sends g4, M receives gg, N receives g,>

5. In this sequence, M tries to establish a call; but before it receives a response from N, it clears
the call:

<M sends g, N receives g, N sends g,, M sends g5, M receives g,, N receives g., N sends g7
M receives g,>

Let us use our synthesis methodology to try to construct two communicating machines M’ and N’ with
the same functionality as M and N. We start with the communicating machine M in Figure 7a.
(Constructing this initial machine is not part of our synthesis methodology.) This initial machine should
satisfy conditions i and ii in the input section of Algorithm 1. Hence, instead of having three occurrences

of the message label g, we distinguish them into gg, gg, and gg, similarly for g4 and g,.
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Communicating machine M in Figure 7a has two mixed nodes; each of them can be selected arbitrarily
as a loser or a winner. Assume that all the mixed nodes in M are selected as winners, and apply the winner
transformation to each of them. The resulting communicating machine M’ is shown in Figure 7b. {Notice
that in M’, all the message labels gi5, g-", and g%,‘, are replaced by 85, 8¢, and g, respectively. This is

possible since the replacement does not cause a node in M’ to have two output edges with identical labels.)

Let N be the dual communicating machine for M. Like M, N has two mixed nodes. Each mixed node in
N should be selected as a loser, and the loser transformation should be applied to each of them. The
resulting communicating machine N’ is shown in Figure 7c. (As in M’, the message labels gis, gl and gl;,

are replaced by g, g4, and g, respectively in N")

Algorithm 2 can now be applied to M’ and N’ to deduce that the smallest output channel capacity of M’
is two and that the smallest output channel capacity of N’ is three. (The smallest output channel capacity

of the original M, or N, is four.)

Define the functionality of the network M’ and N’ as the set of all sequences of sending and receiving
operations executed by the two machines starting from their initial state until they both return to nodes 1
and 1. Comparing the functionality of the constructed network M’ and N’ with that of the original net-

work M and N yields the following observations:

i. For each of the "important" sequences of types 1, 2, and 3 for M and N, there is an identical
counter sequence for M’ and N'.

ii. For the sequence of type 4 for M and N, there is no identical counter sequence for M’ and N'.
Instead, there is an "equivalent® sequence, namely:
<M’ sends g;, N’ sends g4, M’ receives gg, N’ receives g;, M’ sends g;, N’ receives g,>
This sequence is equivalent to the type 4 sequence since in both sequences, the two machines
try to close the connection and succeed.

iii. For the sequence of type 5 for M and N, there is no corresponding sequence for M’ and N’.

From iii, the functionality of the constructed network M’ and N’ is a "proper subset" of the
functionality of M and N. After trying for some time, we feel that achieving all the functionality of M and
N, using our synthesis methodology, is impossible so long as the constructed machines M’ and N’ are

expected to exchange only seven types of messages.
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VI. CONCLUDING REMARKS

We have presented a two-algorithm synthesis methodology. The first algorithm takes one communicat-
ing machine M, and constructs two communicating machines M’ and N’ such that (i) M’ is constructed
from M by adding receiving edges to it, and (ii) the communication between M’ and N’ satisfies some
required progress properties. The second algorithm computes the smallest possible capacities for the two
channels between M’ and N’. It is straightforward to show that each algorithm requires a time of Of(st)
where s is the number of nodes in the given machine M and t is the number of edges in M. The efficiency

of these algorithms is the major advantage of our synthesis methodology.

The communication between the two constructed machines M’ and N’ has a fixed pattern. The com-
munication proceeds in harmony until a loss of synchronization occurs at two dual mixed nodes in M’ and
N’. When a loss of synchronization is detected by both machines (not necessarily at the same time), then
one machine (a loser) stops its current progress and rejoins the second machine, while the second machine
(a winner) discards all the messages sent by the first machine during the loss of synchronization. Then, a
harmonious communication between the two machines is resumed. This fixed pattern of communication is
the major disadvantage of our synthesis methodology. For example, the methodology cannot synthesize
the two communicating machines in Figures 6a and 6b since their communication does not follow the
above pattern. Instead, the methodology can synthesize the two *functionally-equivalent® machines in

Figures 7d and 7e whose communication follows the above pattern.

It is useful to compare this synthesis methodology with the ZWRCB methodology [19] as they both

share similar objectives.

i. The ZWRCB methodology supports a reasonably rich class of communication patterns,
whereas our methodology supports one fixed communication pattern.

ii. The ZWRCB methodology is based on generating and processing reachability trees to detect
deadlocks and overflows, Therefore, it requires more execution time than our methodology.

iii. The ZWRCB methodology is based on a trial-and-error principle and so it can consume large
amounts of execution time whenever the designer proceeds in erroneous directions. For in-
stance, the designer may add some new sending transition to one of the two machines, and
then later discover that this added transition will cause a deadlock, and so he removes it. By
contrast, our methodology is deterministic, and so is not based on trial and error.

The discussion in this paper is limited to the case of two communicating finite-state machines. Extending
the synthesis methodology to more than two machines is still an open problem that requires further

research.
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