SENDIN SEQUENCES:

A TECHNIQUE TO SPECIFY COMMUNICATION PROTOCOLS

MOHAMED G, GOUDA

7% F1- /§]

DEPARTNENT OF COMPUTER SCIENCES
UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TX 78712

TR 181 Det, 1981

i.
2,

3

4,
5
6o
Ts

Table of Contents
INTRODUCTION
A SIMPLE EXAVMPLE
PROTOCOLS WHICH DEAL WITH TRANSMISSION ERRORS
VERIFICATION
SYNTHESIS
RUN=TIME CHECKING
CONCLUDING REMARKS

APPENDIX A: A SIMPLE TRANSPORT PROTOCOL

APPENDIX B: A CP PROCESS FOR 8 (N)

1

L]

) The communication between two processes can be specified using all
nossinle sequences of interleaved sending operations executed by the
two processes, we use this technigque to specify 2 number of
transmission and transport protocols, and discuss a possible role for
such specifications in the verification, synthesis, and run=time
checkinag of communication protocols,

Keywordss: communication protacol specification, Protocol
verification, Protocol run=time checking, Protocol
synthesis,

. 1, INTRODUCTION

Consider a system of two processes which exchange messades using a
nonklocking send/blocking receive primitives, 1i,e,, a process can
resume execution immediately after sending a message without waiting
for the other process to receive it ¥e propose Lo specifyv the
communication in such a system by defining all acceptable seguences of
interleaved sending operations executed by both processes, He eoall
such an all=sending sequence a "sending seguence”, Sending seguences
specify the communication as seen by an outsgide obgerveyr who watohes
the sent messages travel between the two processes but cannot
determine when each message is actually received, if at all, by its
destination process,

In this paper we use sending sSeguences to specify some
communication protocols, We also discuss technigues to use the
resulting specification 1in the verification, synthesis, and run=tinme
checking of communication protogols, = Other technigues to specify
communication protocols can be found in [11, [21, [31, angd [41,

. 2, A SIMPLE EXAMPLE

A sending sedguence between two Dprocesses P oand O can be
constructed from the definition of both P 8nd O as follows, Start
with ap "empty?® sending seguence, AL each state of the seguence, use
the definitieon of P and 0 to identify all correct sending operations
whieh c¢can be executed by either P or 3 at this state, Select at
random one of those correct sendinog operations, and add it to the
sequence causing its state to change to a new value, At this new
state, a {(possibly) different set of sending operations by either P or
2 becomes correct: one of them 13 selected at random and added to the
gequence, and the c¢ycle repesats, The cycle continues either
indefinitely vielding an infinite sending seguence, or until the
geguence reaches an end state where no sending operation can be
executed by either P or 0, Thus, the state of a sending segquence
hetween P and Q@ can either be "empty” or in the form "sendl(u,m,r)"
#hich denotes the next state of fne sequence after process u (either P
ar Q) sends a message m when the seguence is in state r,

) We propose to specify the communication protocel between two

processes by the set of all sending seguences between them, To define

such a set one needs to define all the correct (or eguivalently all

the erronenus) sending operations &t each state of earch sending

sequence, This can be done using a specification language similar to

that introduced by Guttag [5] to specify abstract data types. We
. fllustrate this by an example,

Two processes P and O communicate by exchanging "data® and *ack”
(for positive acknowledgement) messages such that the following two
conditions are alwavs satisfied:

{13 The nunmber of data megsages sent by elther process should not
excead by more than ¥ the numbher of ack messages sent by the other
process, where N iz a predefined integer whose value 1s greater than
or edual to one,

{ii) The number of ack messages sent by either process should not
sycand the number of data mesmsages sent by the aother process,

The set of all communication seqguences for this protocol can be
spacified az shown next followed by Some e¥dplanations, (Line numbers
have heen added for ease of reference},

1, Send Seg 5 (N: ioteger)

1
2 pracess P, G
3. B&g data, ack
4, initzsedsss empty
5. copsiructor send: DINCesSs X REg X 5BUssi =-> seg=al
B, siate cntd: pLogess ¥ s8gsst -=> lnledsar
T entkl pIngcess ¥ s8gzst ==> inleger
8, declare r,s: sed=si;
9, u,v: distingcl Drocess; Wi RLOC2sSss
10, d: data psg: at ack psg: m: BHU:
i1, rulies , ;
12, Lil sendshyusiissu?l
13, [1a] send(u,d,s) = grroz 1L cntdl(u,s)~cntklv,s)
14, {161 send(u,a,s) = grier L1££ contdlv,s)=cntiklu,s)
1%, L2) coubizdatasnagssinnieRisalis
16, entdl{y,s8) = 1l s = enpty
17, {2a] then 0O
18, glsif s = send(u,d,r)
i9, {2b] Lhen ontd{u,ri+i
20, 2181t 5 = zendlw,m,r)
214 {2¢] bhas ontdlu,r)
22, I3l cpunizackzpsgsz=froasnissys
23, cntklu,s) = L£ s = empty
24, {3al Lthen 0
25, glsif s = send{u,a,r)
26, [3n] Lhep cntik{u,k) + 1}
27 gizif s = sendfw,m,r)
28, [3c] Enen ontk(u,rd
29, gpd 8

|

o

For any valus of N, 5 (H) is the set of all sending seguences
i
netween P and ¥ for that valuye of H: j,e,, 5 (¥} defines a4 schema of
1
sets rather than a single ser.

The specification of 2 (¥) consists of a declaration section
i
{lines 2 through 10), and a rule section {(linez 11 tnrough 283,

In the declaration gsection the following are zpecified:

= Tne comnunicating orocesses are P and & {(1ine 23
= Exchanged nesgszages are of tvypes "data® and "ack® (line 33,

= The initial state of a sending seguence 1z denoted Tempty”
{line 43,

= The domaln and range of 2ach construgtor and state function
are also spegified flines 4, 5, and 6}, Function "sgend® is
called constructer since 1t can bhe uysed to construct any
sending gequence state other than the initial state, State
functions "ontd{u,.s531% and "entikin,s)® give the total nunmbers
of data and ack messages sent so far by process u at any
sending seguence ztate s,

= Finallv, the follewing symhols are defined (lines 8, %, and
103,

r.s denote two sending seguence states

U,v denote two 4dlstingt processes, fo 1if both u and v
appear 1in one rule then U means orocess P {or 43,
and v means process 2 {(or P respectivelv},

w denotes a8 process,
d,8,m denote instances of data, ack, and general nessages

respectively, A general message 1z either of type
data or ack,

These rules are defined in the rule section, The first rule
defines the conditions under which a sending operation executed by
process u (P or 0) 1is erronecus, This rule uses the two state
functions Yontd(u,s)" and "entk{(u,s5)" which are formally defined by
the serond and third rules,

o

There are two differences between the above specification and the
specification of abstract data tvpes [58] and [&], ¥

specification does not have
seguences do not have recelving
san change the g¢urrent state

executing sending operations,
nrocess can start a new sending
surrent seqguence by inveking
defined as a functiocn, Rather,

"madifier” function
operations, Second,
of their sending s

sequence ¥nile in the

irst, the
% since

abpnye
sending

the LtwD nrocesses
eqguence only by
Thus, to aveld the zusnicion that &

middle

an fempty?® operation, "empty?®

it is5 definesd as the

sequence state before any sending takes place,

initial

ot its
is not
sending

In appendix A we discuss how to use sending sSeguences o specify a

simple transport protocol,

3, PROTOCOLS WHICH DEAL WITH TRANSMISSION ERRORS

Sending segusnces can be used to zpecify protocols which deal with
rransmission errors. ¥e consider three Ltypes of transmission errors
namely nmessage corruptisn, meszage loss, and wmessage disorder,
¥eggage corruptlion cauyses some sent messages Lo bhe recelived with some
srrors in their contents, HMessage 1033 causes some sent messages to
me lpst completely and never received, Heszsage disorder cauzes sonme
sent messages to be received in a different order €from the one in
which they are sent,

Since sending sequences have no receiving operations, thev cannot
explicitly specify a situation in which a process P receives a message
whose contents have been corrupted during transmission from another
nrocess B, Hewever, they can implvy such a situation by stating that P
sends a negative acknowledgement "nack® message to 0, after 4 has sent
a data message to P,

Similarly, sending seouences can be used to specify orotocols
which handle message loss, In such a specification, a process may re=
send the last sent dats messade even after the other process has sent
an ack message, thus implving that the ack has been lost during
transmission, Consider the following Alternating=Bit protocol,

Two processes P and D exchange three types of messages "datan”,
"datal®, and "ack® such that the follewing three conditions are
gatisfied:

(i I1f no message is leost, each process sends a datal message,
recelives an ack, sends a datal message, receives an ack, sends a datald
message and 80 on,

(1i) 1If a data message is lost during transmission from a Drocess,
then the process will not recelve an ack, and it has to time itself
nut to re=send the last data messags,

, (i11) If an ack message 1is lost during its transmission from a
process, ithen the process may recelive again the last dats message,
However, the process oan detect this redyndancy by recoanizing that
hoth mesgages are of the game tvpe, l,e,, they are both of tvpe datald
or tvpe datal,

A gserding sequence specification for tnis protocol is as follows:

. CopSea S 4init empty
3

Rrocess P,0
msg Aata0, datal, ack

coRSLIuUcLor send: DIOLEeSS X TSU X Segssb===>segsst

state lastd: proCesSsxsegsst===>psg
ack?: processxssegsst===>poolean

dacliate r,s5% sag=sL:
U,v: distincl pIocess; Wi RILRERSS:
d0,e02 dlsilingt datad msg? di,el:distinct datal msg:
8% ACK 288r mi psg;

Lulas
Lil sepdebyspliss=u:
send(u,d0,s8) grzozr if lastdlu,s) = e0
priiastd{u,s) = e}
and Bob ack?{u,s))

gsend(u,d41,8) 8zrpr 1£f s = empty
£ lastdlu,8) = 21
prl{lastdi{y,s) = &0
and npL ack?iu,s)

‘l) send(u,a,s) ezrar if ack?(v,s)

L2} léslisdatasnsgefrol=nrasns
lastd(u,s) = 1£ 8 = empty g § = send{u,di,r)
then 41
glslf 5 = sendlu,d0,17)
Lhen 40
£lsif 5 = send{w,m,r)
thaplasta{u,rl

+34l haszlasi=zdaiaspsgsfropsuzbesneacknoyledgedsls
ack?(u,8) = l£f ¢ = empty gr 8 = sendi{v,a,r)

Lthep Lzus

glsif s = sendlu,d40,r) g s = send{u,di,r)
Ltbhen Zalse
2lsif s = send(w,m,r)

Lhep ack?lu,r)
apd 5 3

Sending seguences can be also used to specifv protocols which
handle message disorder, In one such protocol, a process sends N data
messages hoping that they will be received in order by the oiher
process, #¥hen the other process responds by sending back an ackin)
message, 1t indicates that only n of the H sent messages have been
received in orderz the remaining Hen have been regeived putenf=arder
and hence discarded, This causes the £first process to resend the last
Henn messages and adds n new messages and the cyele repeats, This
protocol can be specified using sending seguences, we leave the
Aetalils to the reader,

10

' 4, VERIFICATION

Let 5 be a set of sending sSeguences between two processes; and let
B oand 3 be t¥wo communicating processes, P and 4 are said to zealize 5
if each sending sequence between P and 4 is a member in 8, To prove
that some P and O realize a glven &, one shnuyld prove that eaenh tine B
{oy 43 is aboult to send a message, the error condition for sending, as
defined by 5, 18 false at this time, This is better illustrated by an
exanple,

Consider the set & (H) of sending sesguences defined in section 2.
1
The arror condition for P to send a "data® message is (line 13):

entsdP = ontgkl = H {11

where ¢ntsdP 18 the number of data messages sent so far by P, and
entski is the number of ack messages sent so far by 8, Thus, to6 oprove
rhat a8 given process P sends data messages according to the definition
of & (W), it is sufficient to show that the condition

i

entsdP = cntsks € W {21

holds just before P sends anv data message,. &Since P and § commynicate
using nonblocking send/blocking receive primitives, we have

cptskd 2 ontrkp £33

where contrkP 1s the number of ack messajges received by P, From (33,
condition (2) can be replaced by

cntsdP = ontrkP < H (4)

S8imilariy, to prove that a given P gends ack messages according te the
definition of 8 (¥}, it ls sufficient fo show that the condition
i

entrdP = cntsgP > 0 (53

holds dust before P sends any ack message, vhere onird?P is the number

11

‘l' of data wesgsages received go far by P and cocntskP is the number of ark
messaces sent so far by P, Below we sghow an annotated program for
nrocegs P folloved by some explanations:

pracess P
Canst N B se4f
Bsg data, acks
¥ar nuni, num?z : integer:
ented?P, ontskP, ontrdP, contrkP @ ipteger

begin numl = numZ = 03
cntsdP 23 ontskP 1= ontvdP = ontrkP i1z G
18}

#{numi<i * HNEW(datal:l
{8*8} GQldata} cntsdP =
numi = numl 4+ 1 {R}
[inumi > 0 * GPacks
{8} cntreP = ontrkP + 13
numi = nuni = 1 {B}
[Inum2 <« § » NYT(data) * Q7data:
{8} ontrdP iz ontrdf + 13
numZz = num? 4+ 1 4R}
[Inum?2 > 02
{8°T} Glack; cntskP iz cntskP + 13
num?2 = num?2 = 1 {R}
J
". end P;

entsdP ¢+ 1

i2

. Hotes: (i) Although we use a syntax similar to that of Heoare [71,
the

semantics of our communication primitives 1ls different fros tnat
a0f npis, The receiving primitive *0%mY in 8 guard ¢ becomes LIug when
i

an "m" message is at the head of P®s input buffer, @anen guard g

i

merames Liue and 1z selected 50 that its following executable

statements § are to be executed, then the head "mn® message must be

i
removed from the Bfs input buffer before executing 8 . The sending
i

primitive "Qim® is executed by adding an "m" message to the tall of

B*s input buffer, (ii) Nine assertions {,,.,} have been inserted in

nine places in the above program; they are based on three assertions
R, 5, and T defined as follows:

R 13 (cntsdP = cntrkP = numi) * (0 £ numl £ N} =
{cntrdP = cntskP = num2) * (0 £ num2 £ H)

8 13 (numl < H)

T 23 (num2 > 0)

Assertion R is the loop invariant, It i3 straightforvard to show
rhat each of the nine assertions holds in lts place in the oprogram,
Since (R*5}, whicnh implies c¢ontsdP = cntrkpP < ¥, holds just before
sending any data messace and since {R*T}, which inmpllies cntrdP=
entskP>0, holds dust before sending any ack message, nhen P sends all
messages according to the specification of 8 (N}, Also, we can design

i
a program for 0 sisilar to that of P and prove that Q aslsc sends all
messaoes according to the specification of 5 (#), (1i1i) The above
1

grheme has sonme disadvantages and some advantages, Dissduaniagns:
The variables c¢ntsdP, cntskP, contrdP, cntrkP, along with their
increment operstions are redundanti thev are only introduced for the
sake of the proof and they have to be removed later, Ad¥adiages: The
nroofs do not vreguire formal definitions for the communication
primitives, Also the proof for P proceeds independently from that for
5 gimilar to the proof system discussed in [Bl.

8o far we have proved that so long as P and 3 gontinue to exchange
messages, their sending sequence 1is a vprefix of a2 sending seguence
in 8 (MY, To prove that thelr sequence 1s indesd an element in 5 (W),

1 i
it is sufficient to show that each sending seguence between P and 4 1is
infinite; i,e,, P and 4G cannot reach a state after which no more
sending or receiving is peossible, This reguires to prove ithe
following four assertionsg

13

Ri1: Neither oprocess can reach a state after which neither sending
nor receiving is enables, [A process is said to be In & sending stale
if a sending operation is enabled in this state, It is in 5 zeceixing
state if a receiving operation is enabled and no sending operation 1is
enabled in this state,]

%72: ko DReadlngks: Both processes cannot reach receiving states
while their input message huffers are empty,

R3: Mo Unspecified RBecentions: Neither process can reach a
receiving state where no message of type t 18 expected while a message
nf type t is at the head of the input message buffer of the process,

R4: Ho Upbaunded Loapiublicailoni Hpither Drocess can reach a
sending state while the input message buffer of The other process is
£uil.

Next, we present formal statements for these assertions and prove
them for the above processes P and O, The proofs are by contradiction:
i.8,, ®¥& show that ' = false £0r 1 = lrsesshs

i

. R 2z P is in nonsending and nonreceiving state
i

L S R
i 2
wnere T ¢ P is in nongending state
i
I fnumi € 83 ® {num?2 > 0)e,.From P def,
22 (nmumi = HY * (num?2 = 0) senfFrom inv, R
and T g2 P is in nonreceiving state
2
g2 fnuml = 0)Y * {num2 = K3 sssfrOm P and R

Thus R 13 false

Thus

Thus

R

R

and 2 1is in &
&%}f ﬂ? &?f
2 3
T 2 2 is in
i
it {numil =
12 {ontsdp
T g2 & is in
2
12 (ontsdl
T :: input m
3
t3 (ontsdd
T 2% input m
4
12 (entsdp
1y false
is in unspecif
* T {data)
2
T HEH
i
-]
T (ty g3
2
T (data) HH
2
T fack) 3
2
T () 3t
3
iz false

deadlock state

4

a receiving state
By * (numZ = 0)

= cntrkP = H) * (¢

a receliving state

= entskG = N} * (o
egssage buffer of P

= gntrdpP = 03 * (¢
esgage byffer of o

= ontrdl = 03 * (¢

ied reception state
& 7 {datal)) v (7

3 1
P is in a receiving

fnumi = H) ® {(num?
P is not eypecting

{num2 < H} = [num?2
{numi > 01 = (numi
a message of tvpe L

inout buffer,

ntrdP = cntskP = 03
atrdl = catski = 0}
is empty
ntrdi = eontskd = 03
is enmpty
ntsk? = cntrka = 07

* 7 gacx) = T {acg)l
2 3
state

=)
5 message of tvpe t

2]

43

03

i

is at the head of P’s

i5

. R t: the inputl buffer 6f O can hold more than N data

4
messages + ¥ ACKk massages,
1y T~ T
i 2
wnere T $3 P is in a sending state
i
t2 {(npumi <€ W) v {(numZ > 03
t: (cntsdP = ecntrkP < H) v {cntrdpP = cntskP > 0
22 {entzdP = ontsks € N) v {cntsdd = cntskP » 03
T tf input buffer of & has ¥ dats messages + N ack
2
MESEAgLs
22 {entsdP = ontrdg = H) ® {(cntskP = ontrki = &)
22 {entsdP = ontgkG 2 H) ® {(cntskP = ontgdd 2 03

Thus B 12 false
4

This completes the proof that the above processes P and § realize

8 (u2,
i

5, SYNTHESIS

The set of sending seguences between two processes can be ysed o
deduce the external pehaviour of beoth processes; this can be a first
step towards their complete design, Consider the class o0f sending
gsequences which can be represented by regular expressions, In this
class, the set of sending seguences between processes P and § can be
represented by a regular expression over the alphabel:

{send(P,m 3, send(Q,m), ,.., send{(P,m }, sendl(d,m)}
i i T Y

Where m , ..., M are distinct message types, An egample of such
i ¥
regular expression is asz follows:

(send(P,m),(send(Q,m J,[send(Q,m)I#%,s5end(P,"%) + send(P,m }))%*
1 2 3 4 3

which can be represented by the finite state machine In Figure 1ia,
Next, we discuss an algorithm to solve the following problem, Given a
f#inite state machine M5 for the sending seguences between tLwo
processes P and 0, construct two finite state machines MP and H to
represent the external benhaviours of P and @ (respectively) such that
rthe following two conditions are satisfied:

{i) The communication between MP and M@ 1is deadlock=free, bounded,
and has no unspecified receptions,

(i1} Each sending sequence between HP and Mg is ldentical to a
sending seguence in ¥8 with the possible exception of some additional
"rull® message sichanges batvween HP and My, 'Hull messages are added
rn engure fresdom of deadlocks, boundedness, eto,]

The algorithm {s based on twoe assumptions, First, the output
edges of any node in M85 must have distinct labels, Second, messages
transmitted between HMP and MO arrive without errvrors, and in the sane
order they are sent, The algorithm consists of four steps,

Lluprilbn:

Step 4: Construct a finite state machine MP didentical to M3, and
1

17

‘ label its edges such that if an edge is labelled send{P,m) or
i

gsend(Q,m) in MS, then the corresponding edge in #HP is 1a@éized
i i
sndf(m)} or rcvi{m) respectively, Edges labelled snd(m) (or rcv(m)) in
i i
¥E are called sending {(or receiving) edges,
i

Step 23 For any node x with both sending and receiving output
edges in ¥P , do the following:
3

= Ahedd a new node v to WP
i
= BAdd & directed edoge labelled revinull) from % to

= A1l the sending output edges of x become outputs of vy, Thus,
the outputs of node ¥ are all receiving edges, while the
nutbuts of node y are all szending edges,

Let #P dennte the resulting finite state machine after all such
2
modifications,

‘I' Step 3: For any directed cycle in ¥P whose edges are all sending
2
(or all receiving), add a new node with one receiving (or one sending)
adge labelled rcvinull) (or snd(null)) respectivelyl, Let MP denote
rhe resulting finite state machine after all such modification,

Step 4: Construct a finite state machine MO ildentical to MP; and
tabel its edges such that 1f an edge is labelled snd(m), snd(nulll,
i
rev(m), or rcvinull} in ¥P, then the c¢orresponding edge in MG is
labelies rovim 3, rovinulll, saé(%ﬁ), or sndinull) respectively.l]

i i
Applying this algerithm teo the M3 in Figure la, we gel the #P and
M0 in Figures 1d and le respectively. S5ten . and step 4 in the
e Rt t ?3
algorithm guarantee that the nneration executed by HP {or HG) is 8

th
sending operation where a message "m® is sent 1f the 1 operation of
¥0O (or MP respectively) is a receiving operation where "m® is
received, Thiz iz suffirient to prove that the compunication between
4P ang w0 is deadlncke=free and has no unspecified receptions,

ig

‘IE To prove boundedness, it is sufficient to find upper bounds KP and
KQ

sn the number of messages that can eXist, at any instant, in the
input message buffers of MP and MG respectively, To find KP, Temove
all the sending edges from MP; the resulting graph 1is acyclic from
step 3 in the algorithm, The number of edges in the longest path in
this araph is KP, GSimilarly, ¥0 can be evaluated from MG,

snd(Q,m)

snd(Q,m,
Start
snd (Q, m,) snd (P, my) snd(P,mS)

(a) MS: A finite state machine for the sending sequences bet. P and Q.

rcv(m)
rcv(m)
! rcv(m) snd (m D snd(m)
(b) MPl: An initial finite state machine for the

external behaviour of P.

rev(m,)
3
rcv(m4)
3 1
rcv(mz) snd(ml) snd(ms)
snd{(null) 9
(c) MPZ: Adding "null" messages to ensure freedom of

deadlocks, and absence of unspecified receptions.

FIGURE 1. An example for constructing the external behaviour of
P and Q from their sending sequences.

rcv(ma)

rev{(null)

snd(ml)

snd(nulll) snd(ms)

(d) M™MP: Adding "null" messages to ensure
boundedness.

snd(m4)

snd (null)

rev(null) _~ rcv(ms)

(e) MQ

FIGURE 1 (Continued)

Process P

m2, null

ml

Process CP

ml, null

ml, null, err

Process Q

m2

m2, null, err

i)

Process CQ

FIGURE 2. A runtime checking system for the communication
between P and O,

6, RUN=TIME CHECKING

Sending sequence specifications can be also used in checking the
external benaviour of communicating processes at run=time, Let 5 be a
set of sending sequences; and let P and (& be two communicating
arncesses designed to realize 5, To check that indeed P and 4 realize
S, two additional processes (P and (2 are designed, using the
specification of B, and placed between P and G as in Figure 2., Both
CP and 0 store the current state of the sending seguence constructed
sc far between P and @, When a message mi 1s sent by P, it first goes
te CP where sequencing errors are cherked, If there are no errors, a
"null® message is sent to P so that 1t can resume execution, Then, m

i
is sent to CG which updates its current state of the sending seduence
and sends back a "null® message to (P so that it also updates its
current state of the sequence, Finallvy, m1 is sent to process 0, If
¢p detects a sequencing error on receiving mi, 1t sends an ferr®
message to C(Q; and both CP and (Q reach an ERROR state and stop
execution., A proaram for the CP process is as follows?

23

¥{P? mi t I segeerr(mi): CQ! err; ERROR
. {1 segeerr{mild: P! nully CO! mi;:
[Co? null: update=segimi)
{ica? m2: update=seqg{ml); update=seqgin2)
130027 err: ERROR
3
3
[1C07? m2e €G! null; Q! m2; update=sed(m2)
[10a? err: ERRDR
3

24

dotes: (i) After CP sends mi to €0, it waits to receive a "null”

messace from (87 hovever 1t may vrvecelve an n or a null message

, , 2

instead, 0On receiving m , (P updates tne current state of the sending

2

seguence using m» then m , On the other side, C0 must do the same 50
! 2

that both CP and CG reach the same state of the sending seguence,

(ii) The types of exchanged mesgages m and m , the predicate seg=

i 2
err(m), and the execution statements update=seqg(m) can be all
i i

deduced from the given specification of 5, As an exanmple, we present

in Appendix B a detailed definition nof CP for the set o0f sending

sequences 5 (N) defined in section 2, (i1ii) In the above scheme, it

t ,
is assumed that the following condition is satisfied:

1 send(P,m ,8) <> error apd send(@,m ,8) <> error

i 2
then send{G,n ,send{P,m ,81) <> error
Z i
for any state s of a sending sequence between P and GO, and for any =
i
and m s¥changed Dpetween them, This condition means that 1f it is

Y
correct, at some stage of the communication, for P to send a message

m ar for © to send a message m , then 1t must be corvect at this
i 2
stage for P Lo send m bhen for @ to send @ 411 reasonable
i 2
rommunication protocols should satisfy this condition,

25

7. CONCLUDING REMARKS

e nave proposed to specify the communication protocol between L¥o
processes by the set of all sending seguences between them, and
suggested a simple specification language for this purpose, e have
also discussed hnn¥ to use suych specifications in the verification,
synthesis, and run=time checking of communication protocols.

In this 9paper, processes are assumed to communicate using
nonblocking send/blocking receive primitives, This impllies that
receiving 2 message by one process ocours, 1f at asll, a8t some later
rime after the message is sent by the other process, To avold this
potentially complex dependency between sending and receiving
operations, we have decided to use seguences of sending operations
only in our specification, This has contributed greatly 0 ithe
ginmplicity of the resulting specifications,

Hoare [91, Misra and Chandy (8], and Bochmann [10]1 have suggested
similar specification technigues when the processes communicate using
mlocking send/blocking receive primitives, The specification language
in this papery rcan be alse used in this case witn tne added
uynderstanding that each sending operation by one process implies a
receiving operation by the other proCess,

The discussion 4in this paper 1is 1limited to the case of tvwo
nrocesses, However, it is straightforward to extend the specification
janguage and some of the verification and run=time checking technigues
to more Lthan Lwoe DYOCESSE8E,

ACKNOWLEDGEKENTS: The author is thankful teo Professors Chandy and
#¥isra for helopful discussions during the course of this work., He is
alse thankful to Dr, Sunshine for his comments on an earliey draft of
this paper, Thanks are also due to K, F, Carbone for her careful
typing,

25

. REFERENCES

1.

24

3,

4

LY

&,

7

Ba

P, ¥, Herlin, "sSpecification and Validation of Protocols,”
LEEE Iranse 0D LoBR., ¥Yol, CUM=27, Hov, 1972, pp, 186i1=
1680,

. &, Sunshine, “Formal Modeling of Communication
Protocols,” USCLInf0. 8C. ipsi. Isch. Benori Bl=83, #Har,
81,

5, Y. Bochmann, ®i General Transition Model for Protocels
and Communication Services,” LEEE Irkans. 20 L0ZB., Vol
CoM=28, No, 4, April 80, pp. 643=650,

v, H, Thompson, et al, "3pecification and Verification of
Conmunication Protoceols in AFFIRY lUsing Btate Transition
Hodels," UBLLInfol. 8C» IbsL. Isch. Eeporl BismBE, #Har., 81,

J. Buttag, "Abstract Dats Types and Lhe Development of Data

Structures,” Cobfte oOf Lha ACH, Vol, 20, Junes 1977, po,
386=404,

L, Flon and J, Hisra, "A Upified Bpproach to the
Specification and Verification of Abstract Data Types,”
BroCe. 0f Lthe Lonf. obh Specii. £pr Reliable Softyare, 1979,
pp, 162=169,

¢, A, R, Hoare, "Comnunicating Seguentisl Processes,” Lokis
af the ALK, Veol, 21, %o, 8, 1878,

J, Hisra ang K M, Chandy, "Proofs o¢f HKetworks of
Processes," LEEE Irabs. on spiflgare Epgipsering, Vol, SE-7,
No, 4, July 1981,

f, A, R, Hoare, YA Hpdel for Cossynicating 3Seguential
Processes,® Comput, Labk,, Oxford Univ,, Deo, 1978,

P, Herlin, and G, V., Bochmann, *ln the (onstruction of
Communication Protocols and Mpdule gpecifications,”
Unixerlie De Hobirzreal. DRebpie DLliinformaticue. I8ch. Bepe
384, Jan, B8O,

27

APPENDIX A: A SIMPLE TRANSPORT PROTOCOL

Two processes P oand ¢ communicate according to the following
transport protocol:

{4) A connection is established between the Two processes only
after esach of them sends a "connect” messade,

{11y After establishing the connection, each process can send a
teredit(kiipieger)y message to indicate that it is willing to receive
at most Kk "data’ messages from the other user, Later, the credit nay
ne extended by sending other credit messages,

{iii) The connection between the two processes continues until one
sf tThenm sends a "disconnect® message., In fhis case, the other process
alen sends a "disconnect? message to remove the connection, There i3
a delay of at most N(N21) message transmissions after the first
process sends a disconnect message and before the second process sends
a disconnect message,

(iv) After the connection removal, tne two processes go to a sleep
state until both of them send "connect” messages and the cycle
repeats,

The following sending secguence specification for this protocol has
¢our ztate functions:

isstm{u,8)1 is the type of the last message sent by pRrocess U #hen
the sending sequence is in state s, If u has not sent
any message vyet, then lastm(u,s) = nmg, If the last
message sent by u is of type connect, credit, data, or
disconnect, then the value of lastml{u,s) is con, crd,
dta, or dsc respectively.

entmiu,sl: is the number of messsgss sent 30 far bBY process u
when the szending sequence is In state s,

entdlu,sd: ig the nunmber of dats nesssages sent 50 far by process
y when the sending seguence 1s in state s,

enter{u,si: is the number of remaining credits granted by progess

28
U to the other nrocess to send data messages 1o 4,

The sending sequence specification is as followss

SendSeg S (M3 dpiegez)
3
process P, ©
Init=segssl emply
constouckhar sendt pLOLRsSs
state lasim? RLOGESS
cntmi RIRCESS
cntd: RLRLRSS
cnter: RLOLCEES

380 % 384m3L ==> 58485L

segsst ==> {(nmg,con,crd,dta,dsc)
segzst =-=> lplage:

sggzsst ==> ipieger

seasskt =-=> ilniegs:r

o M M

derlane 1,8
11

t Sea=sb: ki inisgselr

,vE distinct procsess? ¥i RLoCBSSS

c: connect msgs elk): creditfipLeger) msgr d: data @sg;
i: disconnect Bsg! "1 BaZ:

rules
Lil zend=hy=piszil

sendfu,c,s) = srror 1££ lastm(u,s) = con
gr lastw(vw,s) = crd
ar lastm{w,s) = dta
send{u,efk),s) = grzer 1if lastm{¥,5) = nmg
gr lastm{u,¥) = dsc

ar {lastmlv,s8) = dsc¢
gpg cntmlu,s) = W)

grror iif iastm{w,s) = nmng
or lastmi{u,s) = dsc¢
g (lastmlv,s) = ds¢
and cntmlu,s) = Nj
o ontd{u,s) = cnteriv,s}

#

send{u,d,8)

grror 1E£ lastm(u,s) = n
gr lastmiy,s8) = 4

it

send{u,i,83

121 lasti=nsgsfrolzbRissu!l

lastm{u,s8) = Laze & 8i
emptyi nmg
gsend{u,C,ri: con
send{u,el{kl,rl: cra
send(u,d,r}: dta
send(u,i,r): dsc
gend{v,m,r): lastm{u,r)

29

L3l couniznsdssfiioneiprszul
entmfu,s) = LE 5 = enpty R 8 %
then O

glsif s = send(u,e(k),r} @kt s

gsendlv,i,r)

Lhen cntm{u,r) + 14
g2l8if 5 = sendi{w,m,r)
then cntoml{u,r?

L4l coupt=daia=nsgssfroBaprszus
entd(u,g) = 1£f 58 = enpty pL st
then 0

sendl{u,c,r}

218if 5 = send(u,d,r)
then entd(u,r) + 1
glsit s = sendlw,m,r)
then cntdalu,r)

I8 roupiazciadliissiioisirasi:
enter{u,8) = 3£ 5 = enpty L S
Lhep 0

gend{u,Cc,r)

elslfi s = sendlu,e{kl,r)
phen ontor{u,r) + K
glsif s = gend(w,m,r)
then enter{u,r’

iz
B

gendlu,d,r)

30

. APPENDIX By 2 CP PROCESS FOR B (M)
i
& CP process can be constructed from the specification of 85 (H) in
i
section % as follows, The state functions cntdiP,.esle CnLalid, e,
entk(P,,s), Aand cntk(8,..,) in the 8 (¥) specification are mapped to
i

the local variables ontdP, cntdi, cntkP, and cntkg respectively in P,

The sending error conditions in 8 (W) specification are mapped Lo the
i

nredicates sedg=er7l...3 in CP, A program for CP is as follows,

Brogsszss P
zsg data, avk, null
¥ar cntdP, cntdd, cnt¥P, cntkl: intasgaer

bagip
entdP 22 entdd 3 ontikpP = ontkd 1= O@
#{p? data: | cntdp = cntkld = Hg O} erri ERROR
{lontdp = eontkd €3> H: P! null: £l data
I €8% null: ocntd?P 3= eontdP+l
[102% datar contdP iz cntdP+l; ontdl iz ontdo+d
(1007 acks; contdpP = ontdP+lz ontkl = ontich+l
{1067 err: ERROR

] L

{1r? ack: [ontdl = ¢cntkP = 6z 04l err, ERRDOR
{lentdd = ontkP €2 03 P! null: €8¢ ack
[£4G7 null: entkP = ontkPi]
L1CG? dataz ontkP 23 cntkP+l: ontdd iz cntdisl
[IQA7? ack: ontkP =z cntkP+lz ontkd f= entkO+il
53 0% err: ERHOR

opuni

{1Cce? datay COl ﬁull; Pl data; ontdd 1= cocntdi+d
Pich? acxe: €2l nully Pl ack: ontkd 1= ontki+l
E1¢Q? errs ERROR

3

