ALTERNATIVE SEMANTICS FOR

TEMPORAL LOGICS

E. Allen Emerson

TR-182 October 1981

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

ALTERNATIVE SEMANTICS FOR TEMPORAL LOGICS

E. Allen Emerson
Computer Sciences Department
University of Texas
Austin, Texas 78712

1. Introduction

A number of temporal logics have been proposed in which
the underlying semantics of a concurrent program is ex-
pressed in terms of a set of computation paths. Various
constraints on the allowable sets of computation paths can
be built into a logic in an effort to ensure that the
abstract computation path semantics accurately reflects
essential properties of "real"” concurrent programs. Three

common constraints are:

1. Suffix closure - every suffix of a path is itself

a path. (See [6].)

2. Fusion closure - a computation may follow a path
Ty until a state s is reached, and then follow
some suffix of a path Ty starting at an occurrence

in m, of s. (See [8].)

3. Koenig closure - if a path can be followed for an
arbitrarily long but finite length of time, 1t can
be followed for an infinite length of time. (See

[(11.)

The first two constraints attempt to capture the idea
that how a computation proceeds in the future depends only

on its current state. The third constraint specifies a sort

of continuity property: the existence of all finite pre-
fixes of a path ensures that the whole "limit" path is
itself a legitimate computation. An additional constraint
is

4, R-generable - the set of paths can be generated

by some binary relation R. (See L7159

A set of paths satisfying this constraint is naturally
representable as a computation tree and corresponds to
computations of parallel programs executed under pure non-
deterministic scheduling.

In this paper, we investigate the relationship
petween these four constraints. One key finding is that
Constraint 4 is precisely equivalent to the conjunction
Constraint 1 and Constraint 2 and Constraint 3. Further-
more, each of Constraints 1-3 1is independent of the others.
our results may be conveniently summarized in the Venn
Diagram of Figure 1.1 where all regions shown are non-
empty.

This paper 1is organized as follows: Section 2
gives preliminary definitions and terminology. The tech-
nical results are proved in Section 3. Their impli-
cations and significance are discussed in the concluding

Section 4.

i

i

the class
the class
the class

the class

of

of

of

of

all
all
all

all

All Regions

R-generable path sets
suffix closed path sets
fusion closed path sets

Koenig closed path sets

Shown Are Non-Empty

Figure

1.

1

2. Preliminary Terminology

We shall be concerned with temporal logics
interpreted over structures of the form (S,0I,L) where
S is a finite or countably infinite set of states,
T is a set of computation paths intended to provide
the meaning of a program, and
L is a labelling of each state with the atomic propo=-
sitions true in the state.
For simplicity, we assume that all programs are nonterminat-
ing. Thus, a path is an infinite sequence of nodes, each
labelled with a state. (We will not be concerned with the
arcs between nodes which might, for example, indicate which
process performs which transition.) We need the following
additional terminoclogy:

w:

S {(SO,sl,sz,...):vi>0 siGS} denotes the set of

th
[62]
‘..J
6]

infinite sequences over S. A member (So,sl,sz,..,) o

called a path and s® is the set of all possible paths over 5.

We use Ty Tor Tar =ces etc. to denote individual paths.

» a ﬁ‘}',xr b
¢* denotes the set of finite sequences over S. S8* = § UiAs

where A is the empty sequence and

+
S = {(so,sl,...,sk):3k>0 vigk siESJ is the set of all finite

nonempty sequences over S. The members of S* are prefixes
of paths. We use Prr Por Pgr cees etc. to denote prefixes.
In general, if m = (80’51’52"‘°) is a path, then for any
k=20 {so,..,,sk) is a prefix of m and (Sk’sk+1’sk+2i°“’) is
a suffix of m. (A is a prefix of any path 7.)

w

68}

If p = (Sy,8,,.--,8,) € 8% and 7 = (85,5{,8),...) € 5, we

write pm to indicate the path (so,sl,.

We also let

relation on

We let I <
R <

S.

As explained in Section

‘.,sk,sé,si,s'z,g..),

s“ denote an arbitrary nonempty set of paths.

S x S denote an arbitrary nonempty binary

1, there various con-

are

straints one might wish to impose upon Il so that the program

it represents has a sensible "meaning”.

We formally define

these constraints below:

(3)

(4)

T is suffix

(51,82,83,..

I is fusion

closed provided (so,s?,sz,a.e) € T implies
4.

.)€ T

closed provided

(plswl

II is Koenig

€ II and » € 1)

25To

closed provided

P1P2To

°
®

where each oy € S"L

PP P 3T

BN

i

€ I
- implies
3 € i}

o

and each Wi £ 5 .

I is R-generable provided

there exists a relation R ¢ S x 8 such that

(30,51,52,...) € 1

We define two operators

s¥ _sxs

RELN: 2 = 2

iff vi > 0 (s.,s. .) € K.

PATHS:2°"° o 2

as follows:

{a)

(b)

Given a binary relation R,

= : vi o> ., S,
PATHS[R] {(so,sl,sz,...) € S : vi 0 (s:L s,

Given a set of paths 11,
RELN[T] = {(s,t) € Sx8: 371 € I, o € S*, 7' € s¥

T = pstw'}.

Note: if I is R-generable then 11 = PATHS[R].

Remark 2.1

(a)

(b)

If 11 is suffix closed and (SO'SI’SZ"") € 11 then for

all k¥ 2 0 the suffix (s ..) € 1.

k7 Sk+1"5k+2""

If 1T is fusion closed and p{ST1,0,8T, € I then (by sym-

metry) it follows that p25W1€ I as well as QlSWZE n. =

Remark 2.2

If R is total (i.e., vs € & 3t € s (s,t} € R} then

PATHS[R] # @. 1If R is not total, then it is possible that

PATHS[R]

@. For example, if R = {{a,b)} then PATHS[R] =

t

Also, if I # @, then RELN{II] is nonempty and total. Since

z.

we are interested only in nonempty sets of paths, throughout

the remainder of the vaper we assume that R is nonempty

and total. ®

3. Technical Results

Theorem 3.1

If the set of paths I is R-generable then
(i) @I is suffix closed,
(ii) 1T 4is fusion closed, and

(iii) T is Koenig closed.

Proof. By hypothesis,

= = ° 1 = . . “}
il PATHS[R] {(so,sl,sz,...) € 87: vi 0 (sl,sl+l) € Rt.

(1) : Choose an arbitrary (so,sl,sz,...) € . By
definition of PATHS[R], (SO,S?) £ R, (51,52) £ R,
(82,83) € R, »e. « This trivially implies (81,82} € R,
(52,53) € R, (s3,s4) € R, ... and that

(31,52,53,...) € PATHSI[R] = 1.

(ii): Choose arbitrary p,sT7 € I = PATHSI[RI].

15T 7P 5T,

Now, we can write Py = (SO’SI"“’Sk—l

nition of PATHSI[RI], (50'51) € R, (sl,sz)eR,...(s

) and 8 = 3 By defi-~

K*
k—l'sk) £ R.
By repeated application of (i), s, € PATHSIR]. If we write
Ty = (Sk+l’sk+2’sk+3'°")’ it follows that (s
(

kSx+1) € Ry

Sk+1’sk+2) € R, (Sk+2'sk+3) €E R, vo. . Hence,
(50’51’52"°‘) = pysT, € PATHS[R]. Similarly,

08Ty € PATHSIR].

(iii) : Choose arbitrary Ty rMorTgre.. £ II such that
— ¥ - v = | ~ <
™y plﬂl, L P105T5y w3 plpzp3ﬂ3, ... where each 04 £ 5%
. w
and each Wi € S°. Let Ty = P1PP3.e. = (50,31,52,..,}, We

wish to show that T € [= PATHS[R]. It suffices +to show

that each consecutive pair of states (s) € R. We

1i7%i+1
observe that for each i > 0, there exists a 3 > U such that

ﬂj is of the form (""Si’si+1"°'}‘ Since Wj €

PATHS[R], it follows that (s.,s.,,.,) € R. ®
1 i+l

Lemma 3.2

For all sets of paths I, 1 < PATHS[{RELN[II]].

Proof. Choose an arbitrary (so,sl,sz,...) € I. It
suffices to show that for all 1 =2 0, (Si’si+1) € RELN[II.

But this is immediate by definition of RELN[I]. ®

Theorem 3.3

Suppose the set of paths 1 satisfies the following
three closure conditions:
(i) suffix closure
(ii) fusion closure
(iii) Koenig closure

Then, there exists a relation R such that I = PATHS[R].

Proof. Let R = RELN[II]. We wish to show
I = PATHS[R] = PATHS[RELN{H}}. T < PATHS[RELN[II]]: This
follows immediately from Lemma 3.2,

PATHS[RELN[II]] « @I: Choose an arbitrary (50,51,52,...}
€ PATHS[RELN[T]]. For each i > 0, by definition of PATHS,

(Si’si+l) € RELN[II]. By definition of RELN, there is a
path in II of the form 0;8;8, w

. re o, * T,
15i+17; where 03 € S* and i € 5

Since M is suffix closed, s.s.

iSi+1™y € II. In other words,

s.s.7w, € I,

05171 slszw2 € I, szs3w3 € I, We now use the

fact that I is fusion closed. Fuse sosl?ﬁr:L and slszﬁ2 on Sl

to conclude that soslszﬂ2 € 1. Fuse sgslszﬂ2 and 523333 on

S5 +o conclude 80815253“3 € M. In general, we can fuse on

s, to conclude that s R LN € II. This process can be re-

k 0
peated indefinitely and it follows that SuS1T1 € 1,

- . _ .
soslszﬂz e 1, soslszs3w3 € I, BSince II 1s Koenig
closed, S0S1Spe-- = (50551,82,...) € 1.

We conclude that T = PATHS[RELN[II]] = PATHSI[R]

as desired., ®

Together, Theorem 3.1 and Theorem 3.3 egtablish a

key result:

Theorem 3.4

A set of paths I is R-generable iff it is
(i) suffix closed,
{(ii) fusion closed, and

(iii) Koenig closed.

The Propositions in the remainder of this Section estab-
lish that each region of the Venn Diagram in Figure 1.1 is
nonempty. The letters a, b, ..., g denote distinct states.
For each region, we exhibit a path set II that belongs in the
region. To simplify the notation, we use extended regular
expressions to represent sets of paths; e.g., a+bw denotes
the set of paths {(a,b,b,b,...), (a,a,b,b,b,...),

(a,a,a,b,b,b,...), ...}, and a*bc” denotes the set of paths

{(b,c,c,c,...), (a,b,c,c,c,...), (@,a,0,C,C,C,eeu),; oo.t.

Finally, recall that F denotes the class of fusion closed
path sets, X denotes the class of Koenig closed path sets,

and S denotes the class of suffix closed path sets.

Proposition 3.5

SNFnKE#EG®Q@.

Proof. Let 1T = {a+bw, cde®, fag®i.

T is not suffix closed: While ab® € T by virtue of

a'b®, the suffix b® ¢ 1.

T is not fusion closed: While cde” € T and fégw € 1,
cdg” ¢ 1.
T is not Koenig closed: Each of ab®, azbm, a3bw,

€ T by virtue of a+bw. Yet, the "limit" a¥ ¢ m. =

Proposition 3.6

SnNnFnNnEK#GQ.

Proof. Let I = {abc®, dbe’}.

M is not suffix closed: While abc” € I, the suffix
bc® ¢ 1.

T is not fusion closed: While abc® € T and dbe® € I,
abe" ¢ 1.

I is Koenig closed: Assume that for each i,
Ppe-ePyTy € II. It must be each Pyee-PyTy is the same string,

- w w w
either abc” or dbe"” (because abc® and dbe® have no nonempty

common prefix). That P1P P € T follows immediately. ®

11

Proposition 3.7

SnNFNKFG.

Proof. Let T = {a+bw}.

M is not suffix closed: While ab® € 1 by virtue of

a p®, the suffix b® ¢ 1.

T is fusion closed: Fusion must be performed on either
k £,
a or b. First, suppose we fuse on a. Let T, = a laa lb“
k2 %2 ki taw
and T, = a "aa b”. Then the fusion a “aa “b € 1 by virtue

+. W k1£1 w
of a b . Now suppose we fuse on b. Let o= a b "bbh” and

k2 £2 w . kl 21 W ..
T, = a b “bb~. Then the fusion a b b € II trivially.
I is not Koenig closed: While each of abw, azbwy

3, w

w
arb a

, ... € 1 by virtue of a ¥, ¢ . =

Proposition 3.8

SNFNEKEH#EQG.

Proof. Let T = {ab”}.

I is not suffix closed: While ap® € T, the suffix
b* ¢ 1.

T is fusion product closed: Since Il contains only one
path, this follows immediately.

I is Koenig closed: Since II contains only one path,

this follows immediately. ®

Proposition 3.9

Proof. Let T = {abcw,bcwgcw,dbew,bem,ew,f*gw}s

12

I is suffix closed: This may be verified by inspection.
I is not fusion closed: While abc® € 1 and dabe® € i,

abe” ¢ T.

2 3 w

I is not Koenig closed: While fgm,f gm,f g ;... € 1

by virtue of f*g¥, ¥ ¢ 1. ®m

Proposition 3.10

SnFnK#GJ.

Proof. Let T = {abcw,bcw,cw,dbewfbew,ew}.
T is suffix closed: This may be verified by inspection.
T is not fusion closed: While abc® € T and dbe® € 1,

abe® ¢ 1.

IT T
il 1t s

T is Koenig closed: By inspection, if iy € I, o €

and Ty # Ty then Ty and LN do not have a common nonempty
prefix., Hence, if plpz...piﬂi € T for all i, it must be

that all PP eel.pL,Ti o= Ty for some Ty € . It follows that

2 i

i
plpZQB,..==WO € 1. =

Proposition 3.11

SNFNKF¥EG.

rroof. Let I = {a*b®}.

T is suffix closed: ‘If 7 € 11 then n is of the form
i w

a b w)

If i = 0 then 7 = bY and the suffix of w, b, € 1.
If i > 0, then the suffix of 7, a~ 'b®, € T by definition
of a*b™.

I is fusion closed: We must fuse on either a or b.

13

k £ k £
If 7. = a laa 1,9 and M, = & 244 2

k £ w kl Zl N
a aa b € Il as desired. If ﬂl = a b “bb and

k2 £2 w kl ﬂl W
= a “b “bb~, then the fusion a b "bb € I immediately.

bw, then the fusion

I is not Koenig closed: While each of abw, azbw,

a’p®, ... € 1, the limit a* ¢ 7. =

Proposition 3.12

SNFNK¥FJ.

Proof. Let I = {a”}. It follows immediately that I

is suffix closed, fusion closed, and Xoenig closed. B

14

4. Discussion

suffix closure is the only restriction placed on a set
of paths by Lamport [6] with the intention that "future
behavior depends only upon the current state, and not upon
how that state was reached." However, the formal notion of
suffix closure is not guite strong enough to guarantee that
Lamport's informally stated requirement about future
behavior is satisfied. To see this, consider the path set
m = {abc?,bc”,c?,ebd”,ba”,a”} € s n F n K. 1In state b, the
next state is

(i) ¢ if the previous state was &,

(ii) d if the previous state was b, and

(iii) either c or d if b is-the initial state of the path.

Thus, both fusion closure and suffix closure are needed to
meet Lamport's informal requirement. Fusion closure

derives from the notion of the fusion product of two paths

described in [8] and [5]. (The fusion product of
(50,...,sk) and (Sk’sk+l"°‘) is (so,sl,sz,..ﬁ),) Note that
in [8] and [5] which are "exogeneous" logics, there

are no constraints on the sets of paths that determine the
semantics of atomic programs; fusion product is merely a

device used in defining the semantics of composite programs.

The concept of Koenig closure appears in [1] (where the
terminology used is "a closed process"). The notion of R-
generable occurs in a number of logics. See, e.g., [71, [2]

and [3].

i5

Which constraint or combination of constraints yields
the most desirable underlying semantics for a temporal
logic? The answer, of course, depends upon the intended
application of the logic. Note that there are applications
in which it would make sense to violate certain constraints.
For example, if the states referenced by the logic contain
information about the data values stored in a process but no
control information about a process, then the future
behavior of a program may very well depend on its past
behavior and not just its current state. In this case, it
would make sense to allow an underlying semantics in which
a set of paths I (which would really be a sequence of data
values) violated the suffix closure and/or fusion closure
constraints. It might also make sense to allow the Koenig
closure constraint to be violated when discussing programs
executing under fair scheduling: Let b denote a state
which results from execution of process 1 and ¢ denote a
state which results from execution of process 2. Then each
path represented by (b+c+)w is a fair path along which both
processes execute infinitely often. If {(b+c+)w} c I and
M is Koenig closed, then the unfair path bY € 1.

Nonethless, for most applications it seems desirable to
require that II be R-generable. One might think that the
fewer the restrictions on I built into the underlying seman-

tics of the logic, the better, because the logic would be

more general. But the resulting generality may be of little
use in practice because it allows programs with "pathologi-
cal® behavior that correspond to no real world model of
concurrency. In contrast, the requirement that II be R-
generable corresponds naturally to execution under the weak-
est scheduling criterion which guarantees that some process
make some progress: pure nondeterministic scheduling. The
next state relation R is defined in terms of arbitrarily
choosing an enabled process and executing one step of that
process. If we wish to talk about processes executing under
fair scheduling so that the set of paths corresponding to
fairly scheduled executions is not Koenig closed, we should
specify this wish through a specification formula of the
logic and not in the underlying semantics. This allows sub-
stantially greater flexibility than building in the fairness
requirement into the underlying semantics because we can
still talk about processes executing under pure nondetermi-
nism if desired. In general, if we wish to restrict our
attention to a subset II' ¢ N that is not R-generable, then
the members of II' should be specifiable by a formula of the

iogic.

REFERENCES

(1]

(2]

[3]

[51]

[6]

[71]

(8l

Abrahamson, K., Expressiveness and Decidability of
Logics of Processes. Ph.D. Thesis, Univ. of
Washington, Seattle, 1980.

Ben-Ari, M., Manna, Z., and Pneuli, A., The Temporal
Logic of Branching Time. 8th Annual ACM Symp. on
Principles of Programming Languages, 1981.

Emerson, E. A. and Clarke, E.M., Characterizing
Correctness Properties of Parallel Programs as
Fixpoints. Proc. 7th Int. Colloguium on Automata,
Languages, and Programming. Lecture Notes in
Computer Science #85, Springer-Verlag, 1980.

Hughes, G. and Cresswell, M., An Introduction to
Modal Logic. Methuen, London, 1968.

Harel, D., Kozen, D. and Parikh, R., Process
Logic: Expressiveness, Decidability, Completeness.
21st Annual Symposium of Foundations of Computer
Science, 1980.

Lamport, L., "Sometime" Is Sometimes "Not Never."”
7th Annual ACM Symp. on Principles of Programming
Languages, 1980.

Manna, Z. and Pnueli, A., The Modal Logic of Programs.
Proc. 6th Int. Colloguium on Automata, Languages,
and Programming, Lecture Notes in Computer Science
#71, Springer-vVerlag, 1979.

Pratt, V.R., Process Logic. Proc. 6th Annual ACM
Symposium on Principles of Programming Languages,
1979.

