On the Efficiency of Algorithm
SELECT by Floyd and Rivest

by
James R. Bitner
Department of Computer Science
University of Texas
TR 183 Austin Texas, 78712

October, 1981

ABSTRACT

We study algoritnm SpLiECT by rkloyd and Kivest for finding the ktn
largest out of n elements. 'The dominant cost of this algorithm is a
3-Way Partitioning step where an array of "small", “wmedium", and
"large" elements 1s pernmuted so that all small elements precede all
medium elements which precede all large elements. Floyd and Rivest
could not find an efficient and direct method to accomplish this 3-Way
Partitioning and used a (supposedly inefficient) two step method. we
show thelr two sStep method is not dnefficient, but in fact, optimal
and develop & simple algoritnm for directly solving the 3-wWay

Partitioning and prove 1t to be optimal.

1. INTRCDUCTION

Algorithm SeLeCT by PFloyd and Rivest [1] is the most practica

o

algorithm known for finding the kth largest out of n elements. In the
average case, n + min(k, n-k} + o(n) comparisons are regulred. Tnis
is better average case complexity than algorithm FIND by Hoare [4],
and the algorithm is simpler to implement and more practlical than that
of Blum, et.al. [b]. (A simple and efficient implementatlion ol the
algoritinm is given in [1]). linally, a lower bound on the average
complexity of the problem 1is proved [1] whicn is within Y% ol the

performance of algorithum beLLCl,

the dominant cost of elgorithm seLlCl is a 3-way partitioning
step (defined Dpelow). Floyd and Rivest could not find a method to
accomplish this partitioning directly and used a two-step wmetnod we
describe later in this section. ‘They termed direct 3-way Partitionlng
an "inherently inefficient” operation and stated that any reduction in
the complexity of their (supposedly inefficient) partitioning phase
would show up as a sidnificant increase in the efficiency of the whole

algoritnm.
The purpose of this paper 135 to:

(1) Show the two-step partitioning metnod used by Floyd and Rivest is

not inefficient, put in fact, optimal.

(2) Dbevelop a direct algorithm for solving the 3-way partitioning

problem which is also optimal.

Pauge 2

~

i

we now discuss the Ployd-Rlvest algorithm in sufricient detall

{01

Ccribe now the partitioning phase interfaces witn the

allow us to des
rest of the algorithm and the reasons for our probabiliiscic
assumptions (given later). The algorithm 1s glven a segment of an

array Alfirst..last] and & nuamber <. 1L permutes tne elements of A

such that:

A1) < AlK] for first < i < Kk and
Ali]l 2> AlK] for v« < 1 < last

Thus, 1t finds the element which would be in position Alk] it the
array were sorted. Ihis 1s somewhat more convenient than {inding the

kKth smallest elemnent in Alfirst].,.Afllast]. Let

size (= last - first + 1) be thie number of elements in the seyment,
Tne algorithm begins by choosing a sample of size s({size) centered
about positlion Kk (s is a carefully chosen function, see below). Let

corresp be the position in the sample corresponding to position v i

the wihole segment {(i.e. a fraction kK/size of the way across tne
samnple) . SELECT is called twice recursively on the sample to find the
correct values for positions corresp - di{size) and corresp + d(size).
These values are chosen as u and v. ‘the alyorithm then partitlons tne
entire segment into reglons of Tgmall®™ (less than u), "medium®
(between u and v), and "large" (greater than v) elements, Finally

SELECT is called recursively on the region containing position k.

The algorithm is very fast because we assume A 1s filled with
random numbers each Iindependently chosen from a uniform distribution
over [¥,1] (or, equivalently, A is filled with a random permutation of

n elements). The functions s and d are carefully chesen (see [1])

L

Page 3

ainnd the size of Lhe medium

such that the sizc

D
O
sl
(3
e
D
0
jo¥
.
o
o
7
&}
=
.

region after the partitioning 1is also of{n), yet with probabillity

approaching 1 the element we want will be in nn region.

The authors could not find an efficient algorithm to do 3-way

partitioning, so they used the following partitioning strategy

[
[

instead: First partition about u wusing the quicksort partitioning
algorithm [4], then partition the set of elements yreater than u about
v.e (Actually, the partitioning is done about v first 1if we expect
there will be more elements above v Chan pelow Uy,

i.e. K > {last + first)/2.)

We now formally define the three related proplems we will be
studying.

Tne Selection Problemn

lnput: An array All..n] and an integer k with 1 < k< n.

Gutput: A permutation of A such that

ali] < Alk] for 1 <1 < k and
Al1] > alk] for kK < 1 < n

in the

Analysis: pNumber of comparison pE average case where
each of the n! input permutations is equally likely (or, cgulvalently
where each element is je 1 from a uniform distribution

r
over {6,1]).

Defining the problem in this way allowed Floyd and

directly compare execution tilme witn algorithm FIND. In addit]
Floyd-Rivest algorithm constructs this permutation as it finds the ktn

element, so it 1Is cbtained at no extra cost.

The dominant cost of algorithm SELECT is a 3-way partitioning

step defined as follows:

Page 4

The 3-Way Partitioning Problem

Input: An array and Lwo values u and v (uféV),

Qutput: A permutatlion of the array such that all elements less tnoan u
(called small elements) occur [irst, followed by all those between u
and v (called medium elements) then followed by all those g?eater tﬁan
\Y (called large “elements) . the ordey of the elements within Lhese
three segments 1s immaterial.

Analysis: Average number ol swaps and ‘medfiSOﬁb where each element
is chesen independently with proebabilities P, Paoand boot belny

1 3 - - U N B . > H iy -
small, medium, and large respectively. Actually, Po, by and b, are

o ~ L s W b - . e o) . N SR e N
ELAACt“OnS OL I’x, the Sl1é4e oL e &i’fa,ay, alids PE*E{I"} fens O(‘li} . wWe uguaily
. . s
assuie k‘s S PL.

This partitioning problem is very simllar to the Dbutcn Nationaol

Flag problem [2], which is delin

The bDutch Natlonal Flac

v
5
C
e
a
)
[
o

Input: A sequence ol n pebbles. bach 1s elther red, white, or bDlue.

Output: A permutation of the sequence such that all the red pebbles
occur first followed by all the white pebbles then followed Dy all the

blue pebbles

jor

Kkestrictions: We are restricted to using the following two primitive
functions in accessing the seyuence: pugk(i) wirich glves the color ot

the ith pebble in the seyuence, and swap (1) whilch Interchanges toe
itn and Jjth pebbles. buck is deemed a §g?y expensive operation and
hence may be applied only once to each pebble in the sequence. His0,
the algorithm must oper ate using a constant amount of sBpace,

independent of the length ¢f the sequence.

Analysis: ‘'I'ne average nuwmber of swaps where each of the 3 initial
seyuences 1s equally likely. {ur, cyulvalently, where each peoble nas
probability 1/3 of being elther red, white, or blue.)

The only difference between the 3-Way Partltloning Problem and

the Dbutch Natlional Flay rvroblem i in the assumptbions about the
probability of the different xinds of c¢lements. this difference is
significant; thougnh a ygood alyorithm for the Dutch National ilay

Problem would correctly solve the selection problem, 1t

very inefficiently.

Tne paper 1s organized as Lollows: 1n Section 2 we state sone
pertinent results ftrom [3], where we developed an asymptotically
optimal algorithm to solve the butch Mational blag Problem and proved
2 theorem which allows us to calculate the minimum number ol swaps
required to permute one seyuence into another. we use these result
in Section 3 to prove & lower bound on the numper olb comparisons and

interchanges required to solve tho 3

Fartitioning Problem and use

it to prove algorithm SELECT's partit

strategyy 1s

Finally, in section 4, we develop a new, direct algorithm fLor {

=

3-way Partitionlng Problem and prove 1t to be optimal.

{)akj’&i §)

2. APPLICABLE PREVIOUp RESULTS

In this section we state some results from [3] ceoncerning tne
putch National Flag Problem which are applicable. in [3) we studled a

generalized version of the problewm where we are given a sequence ot

colors and nmust order tne

pebbles each wilthh one oif ¢
seyuence such tnat all pebbles ol color 1 precede all those of color
i+ 1 {(for i = 1l,e00,C — 1). We developed a correspondence between
seguences of pebbles and eulerian diyraphs (see below for detbinivion),
and used it to derive a lower bound on the number of swaps reyulired Lo

order any seqguence.

Detfinition: An eulerian digraph 1s a dirvected graph in whicn every

vertex nas its indegree equal to 1ts outdegree. We allow a digraph to
have multiple edges and self-loops. For an eulerian digraph G, let

¢ (G) be the number of edges in G, and ilndex(G) be e{G)-m(G) where #M{G)

is the number of cycles in a maximal decomposition of G Into edge
disjolnt cycles. A cycle is a path in the digraph winose initlal and

final vertices are ldentical. 1t may pass through a vertex more Lhan

To develop a correspondence between sequences of pebbles and
eulerian digraphs, we [irst divide a sequence into "reglons'. 1t
there are a total ol x; pebbles of color 1 in the sequence, let the
first Xy positions pe reglon 1, the next x, in region 2, and so on.

The digrapn corresponding to thls seguence has ¢ vertlces and is

created by adding one edge Lrom vertex 1 to vertex 1 for every pebble

of color 1 in region j. HNote that a sequence is completely ordered it

and only 1f rfor all i, all pebbles of color 1 are in region 1.

bies rygnga
LR S

the digraph corresponding to the coumpletely ordered s

uence Consists

solely of self-loops.

Theorem 2.1 [3]: A digraph constructed from a Segyuence as descriped

above is an eulerian diyraph.

To order a sequence, glven any decomposition of the corresponding

digraph (call it G) into edye-disjolint cycles, we lgnore the zelf

loops and sequence through the remaining ¢ycles in any order. L Clhie

current cycle ds v, .y, ..., v, , there must be a pebble of color
i) 2 K

1. in region i3+1 for 3 = l,...,k - 1 and a pebble of color i, in

L

reglon 1y, Clearly K - 1 swaps can be used to put each of these k

pebbles in the correct region. slso note that alter processing all

Lhe decompositblon has K

o
s

the cycles, the seyuence willl be ordered.

cycle

s with the ilth having lenytn L. rlhe
o 4 is Lhe
k
15 2: [Li -~ 1] = e{(G) - K. Cilearly, thils guantlty 18 mindmizod Ly
=i
using a maximal decomposition.

total nuwber ol swaps done

Further, using the above procedure with a maximal decomposition

uses the minimal nuuber of swaps over possible algoritnms

just those using this strategy. To prove this an “entropy argument”
was used, where index(G) is the entropy function. (G is tue digraph

corresponding to the current seguence in th

o

execution of some
algorithm.) Index(G) wmust be decreased from its initial value down to
zero. Proving that cach swap decreases index(U) by at most one gives

the following result:

Page 8
o e 21 . SRR T ST . , . . 5o ;) ; 13
rheorem 2.2 [3]: Glven a sequence Ve let Gy be the corresponding
digraph. Then at least im@exiob) S be used in ordering b,
, 3 0
and this lower bound 1is acnlievable.
To calculate Index{G we must find a4 maximal decomposition.
!

Though findin

N

; a maximal decomposition for arbitrarx

4.

nard problem, for "swell” ¢ we can use a

the shortest cycle first algoritum, wnlcn, at each step, arbltrarily

removes any of the shortest cycles remaining in the digraph.

Theorem 2.3 [31: For an eulerian digraph witn at most Live wvertic

IS

(i.¢. ¢ < 5) the shortest cycle first algorithm finds & maximal

decomposition.

Lfter using the shortest cycle first algorithn to find a maximal
decomposition, the following lemma gilves an easy way to calculate

ingex (G .

iy

Lemma Z2.1: Given an eulerian digraph, G, with at most 3 vertices, i

iy

i
A

a maximal decomposition has 8 self-loops, Z-cycles and U 3-cycles

cnen

Procf: The first eguallity cleariy holds because o + 1 + U 15 the

number of cycles In the decomposition. ‘ane second follows from the
first and the fact tnat e(G) = 5 + 2% + 4d%UY. 1t can also be seen by

observing we are charged K - 1 swaps ifor removing a cycle of lengtn k.

L

the preceding has assulled we were

i

we will be interested 1n the expected value ol index(G) wuere G ig

digraph corresponding to a "random" arrangemnent. The next theorem
extends Theorewm 2.3 from [3}] to apply to cases where a pebble g not

equally likely to be red, wiite, or blue.

Tneoren L.4: Let G pe the digyraph corresponding Lo an arrangen

TR, o v b vk e oo el owwd b orobabillity ; ; P
walch o each pebble 15 red wilh probabllity Voo white witn probapilicy

i

P 4 N EE by a kel T A s 4 e " R 1 N P
i and plue with probabilivy Pp, then the expected value ob ilndex (G)
(Pupy + Prby + Pubgin + o(n)

for large n, which 1s toe optimal nunber ol swaps required to order

thie arrangement.

Prootf: we give the intuition pehind the prool; an exact argument can

e constructed along the lines obf Theorewm 2.3 from (3] e onid

-

probable class ol digraphs correspondi

to an initlal arrangement 1s
shown in Figure 2.1. We only need to consider digraphs of this class,

because the probability of a "rancgom™ diyraph G

in this

approacines 1. Yhe probability U 1s nobt in tne cless in o(l), and tue
contripution of these digraphs to index(G) 19 oln) and hence <an Lo

ignored.

Figure 2.1 1s obtalned by noting the final red, white, and Dlue

- e e CLt T T - T ey . T P BRI >}) . . o K
regions will be of size (approximately) Pun, Pyn, and Ppn respectively

and that, originally, each contained red, white, and blue pebbles in

the ratio PR‘PW:PD' By Theoremn 2.3 aind L

; i Tex (G = 1x (P P 3 3 [2 3 e o~ f vs Y % s "3 e Y
E(index(G)) 1 Wb+ boron 4 oo (n)y v Z2%o g

i

Fage

1y

3. A LOWER BOUND

In this section we determine tne opliwal nunber of comparisons
and swaps required to solve Lhe 3-way Partitioning Problem In the
average case. Wwe then show the bFloyd-Rivest partitioning strateyy 1s

optimal.

Tiieorem 3.1: The optimal number ol swaps Lo solve SWiay

Partitioning Problem 1s Pop. pn + o(n), and the optimal number of

comparisons

o
"
5.
i
i
o
-
4
—~
(o
o
-
S
o

Po < Pyo)
Proof: by Theorem 2.4 the optimal number ol swaps 1s

(Fapy + PoPy + PuPp)n + o(n) = Pobpn + o(n)

Yo compute the number oL Comparisons roeguired, W note [

buck operations must be performed. ‘The optlmal way ol accomplisuing
this is by first comparing with v f{or u 1L P > p. then o id

necessary. This reqgulres [1%P 4 0%y
L {

-
|
T
et
[S—
i'S
o
¥
o
e
-
it
.
[
|
s
T
-
L
-
o
.

comparisons to perform n buck operations. (]

We use the tollowing to calculate the cost obf the

Floyd—-Rivest partitioning scheme.

Lemma 3. 1: Yo partition a random arrangement of 1 elements apout

value u using the yuicksort wartitioning algorithm requires

(1-p)pn + o(n) swaps and n comparlsons where p 1s the probablli

>utimal.

element 1s less than u. Further, these

pgme

o

Proof: Clearly n Comparlsons areg use
optimal. To calculate tne number
final left and rignt regions are of

respectively, each originally

greater than u 1In the ratio p :
elements are "out of place” In the le

the algorithm swaps an element at wos
performed. To show this 1s opti
PV\E = l"‘i); i.JD = P

Theorem 3.2: The Floyd-rRivest pa

Popin + o(n) swaps and (2-P)0 +

0 {ig)

3

a by the alyorithm, and this s
oL swaps peritormed, note that the
itze pn oo (1) and (L-p)in + o(n)
ontained elements less than u and

Rl S fherelore pli-pin 4+ o (g

swapped.

o {n) are

SWaps

mal, use Tneorem 2.4 with ¥ - P
4
C)
HE USRS alyorithm regqulres

COMparisoni

> -
Proof: By Lemma 3.1, the 1Lilrst gulcksort partiti regqulres
Po(l-Pg)n + o(n) = PgPp + o(n) swaps (since p = Po) and n comparlsons
The second step operates on {iw%b;n + oo (1) eloments G114 UHeh
Pm/{ym + PL)*{1~PM/{PM+PL)}n + oo {(n) = {elements can only be

medium or large

so p =

comparisons.

o (1)

U

;;) L -+

Page 13

4. A NEW ALGURITHM

Iin this section we develop « simple alyorithm to solve Lne C-way
Partitioning Problem and prove 1t to be opbimal 1n Lhe average case.

The algorithm is developed usinyg tecnniques Lrowm

an optimal

N

algorithm <for the wvutch National Flag

developed. Fiilw

algorithm would not be optimal 1L 1t were used Lo solve the d-way

Partitioning Preblem because ol the ditference 1n tne probeblli

assumption in the two problems. PR orlithm is constructed
along similar lines.
The following predicates are convenioent (u and v ooare given and

are not changeq):

issmall (%) 1ff x < u
ismedium(x) iff u 4
islarye{x) it ow o> owv
In addition to the specilications given in bection 1, we assume

we are glilven two variables, ML and MR gsuch that ismedium(ali]) for all

i such that ML < 1 < mMk. fFurther, we assume this reglion contalins &t

1

least 2 elements {(i.e. ML + 1 < mR - 2) since

ot

Slmplifies our

arguments. ltinally, we assume the re 15 a fraction VY. sorpss the
¢ across L

i

Q

array. All these conditions are met when the 3-way parcicioning

routine is called In alyorithm sSonLbBECL,

The existence of a wedium regilon having at

significantly simplitfies

because what we do to elements
to the left of this reglon never allfeclts those to the right, and wvice

VETSa. Having 2 elements also 1o convenient because a swap
o }

5

make the

Our development

elements
temporaril
greatly

wiien

Our loop

first
piL 4+

R+

4

region

at

Y

simplifies our discussion

writing

1

N

14

Page

between ML + 1 and #r - L be empty {(even tem

reol

po)

of the alyorithm assumes & medium on

all times. This 1is a simpliticatio

contailn only vlewent, bub lygnori possibilitvy

one

s introduce complication

1 verslion oL

assertions for the [inal

invariant (1) wilil be
. 1 SO T T U B s
< 1 < L= 1 —-—> ilssmallisalrl)] and
" pa i1 1 - 5 r F .
< i MR- L - dsmedlu M’ Li,&j alid
< 1< last - 1] and

and the following predicates 11 and 12 arce uselbul:
11 = first < 1 <L -1 ~=> jgssmall {(a{il]) and
ML + 1 < 1 < MR - 2 -2 1bmea3um(m{1§; andu
R+ 1 < last ~=> dislarge(alil])
12 = first < 1 <L -1
ML + 2 < 1 < MR - 2
R+ 1 <1 < last
The initializations are obvicus from L. ‘‘ne end test for the
loop is " (L < ML) or (MR < K)" since its negation will imply there arc

decrements
nolds after
region of
guarantees

an invalid

Now A[L]

than

unclassified

immediately

GG

of the loop ftirst increments L

body

elements. The

v over small and large ements respectively.

iteration. Hote Lhat the

cach 3 [ic

medium elements in tne wmiddle of the array Seent
that each loop will Lerminate pefore either L or R Dbecomes
subscript.

is medium or largye and A[R] 1s small or wedium. Hacner

considering ach of the Lour possible cases

only what is required when Al

is the only case with

sure it is executed efficient
18

that A{L]

e,
o

and

o

nearly always it will we

) e

advance®™ L and R.

these "advances® not

are

decrementing. aAfter swappling

12 and not islarge(all))

and L # mbL + 1 —-->
and R # MR~ 1 —=>
so Yadvance LY must be

(ATL]) an

112 and

and L—-1 # mL

{12 and

[

< ML owe need do noth

1

precondition become

1 > ML we must "V

overlapping. This works bec:
{12} ML = mL + 1
(Actually we choose to write

"retreatc”®

L1 is

nDon—ney probatsl .

[
LY.

is

(-
I
u

ML Lo keep tne reglong

iswedium{A[ML+1]) }

=

e et
PN ML

i

& R L othiis tiie case, {(and
swap ALL] and AR} . Alter Lpatb, W
quite as simple or
AlL] and AlH] we have:
and nol issmall (AR
ismedium{A{mnbLeyl];
ismediuvm{almstrl])
50 Lhat
d Lo#F mbdrl —=> lsmedium(AiMLELl])]
“advance LT
ismedium(A{mbL+i])]
{11}
4+ 1 to include tihilis small element in the
ed by a statement{s) S such that
+1 == dusmedium(A{ML+L])]
5
ismedium{aML+i])}
ing because then we have L o~ 1 # #L 4+ 1
s L2 and lsmedium{aliab+l]) . Un the otaer

from

1; L := L 4+ 1", these two forms are clearly eguivalent

.

"sdvance K'Y is simlilar. unis glves an dncomplete version

algorithm wnicn 1s snown in Filgure 4.1.

)

We can now analy<e the average case complexity of the

because tnis path through the loop with

'

{
i~
o
{
e
{

p
{1
4

aluorithm

1-o0(n). <Clearly, as lonyg as (L < ®mL) and (MR < Ry the number

N

we have lsmedium(alLl) or igsmediunm{alr

—
o
U

o
i
~

C

P

—

—
»

once one of "L < mL" or "MR <K

sified elenments peca

o
j93}
U

[

o{n) unc

e
(S
-
¢
o
{
—
s
e
-
s
o
o
o

medium region. wilnce we will hanc

M

constant amount of time, fhie amount ICRUNNTS
s and on Pcleaning up® alter the swmall

the medium reglion is o{n).

1

ict our atitention to small

pased on the above, we restc

"

ali

probaplitty

i

addition

Iye
e

U

elements. mince g swap will be done fLor cach large pebble

final small region, Fobyon o+ o(n) swaps are reyguired,
one

163

only
the
in 1

lar L

in toe

vhich 18

optimal. o count the number ol comparisons, note thatgcomparlison 1s

done {for eacn small element in the final small region and
large element in the final large reugion. Pwo comparisons a
larg lement 1In the final laryg ¥ r

in the snall region and small elements in

o8]

large element

e 3 - T N) }
region. Hence 1 * (b L T SO S QL);EJL + PoP)n

optimal (=P yn + o) = (1 + ro)n + o(n) unless P
Po < Pp.) Tals is o because we did

compare against v Dbefore comparing against u (1L

re done for
the

+ o (1) -
Ulhian e

algorithm could be rey

rewriting the

size (by compari

refering to 1t wnen we

is, nowever, optlimal as

Wwe now considger what

medium after the

SWap

statements nandling tnis

{12 and ismedium{hlL

]
{1z

Since the

tlowever, 1t L

progress. Since L < ML

{12 and L < ML and

2 and ismed

{1

and now setting ML :

This

included, and it 1s routl

assertions account lfor t

2 e¢lements.)

I
ot

3
G

In the remainder L

then prove termination.

lies on the probable path

P

making. It also makes

his

glves a complete alyorithm,

he

Lo Know A

L stands 1L tne
to do o 1n Lne

Agaln, we

lmprovable Ccase

and Lo# Mo+

N
/

NS

and

precondition lmplies tne postcondition, we

< My

swap does n

ismediwmn (AL
AL} <==>
iuvw(Aa{ML])

oY

arnd

= ML - 1 will yive us

Snown

ne to prove tne

medium reglo

this se W

secblion,
The siwplitil
lo

throuyh tne

(O

pProot

we swap Alk]

iy
™

terminat

L e, EERe!
Paye 4

3
Uil (.4 { (SR8 CLlaril ‘\,}1 | Y
B TR A EIRY? - PR 3 N
Lo combletely calculate T
O L Course;j SLOrlng it GG

size. Hote the aluoriinm

Li's

median 1s souynt.

Tsmediup{AalmbLri])

ase where Al or Alr] i
only consider Loand il lie
must Latlsiy
bo==> dsmedium (s {mbel])

do not have Lo do

and Af{mL] in order to

Hrare

ot affect 12 and we have

and
L]
ismedium(A{ML+Ll])

ismedium (A lmb+1]);

et

12 and ismedium{a{mb+il]).

in Figure 4.2, Assertions are

clgoritoam Lrom Clhieu. {(these

notemporarily having

e Lirst simplify the algoritoam

cation is important because 1t

op and thus 1s well wortn

4

10 easier. {(we choos

e it becaus

[

prove the algorithm, then s

appears to be much harder Lo prove.) The

i ~, 1

Pd

IF L ML UHEN ML o= mbL o+ 4 and thie corroes

and MK. CQur intuition tells us that once

medium regions have run into each other) we
1, and 1t seems senseless Lo Keep updalln
consider the statement concerning L and b b

similar.

It is easy to see that the value ol ML

vl ALL] < U PHENY 1s monotonic non—-increa
can be broken into two phases. In the first

in this case, the body of "IF L > ®mL Thhn"

the second we have L > ML, and the bod

cannot Dbe Since the body ot

references tor comparing

eliminate the Lo ML O THBEN® statement it

£
(SR

from now on. ‘Ihis 1s guaranteed ause ML

b

3

@

<

i
i

will only be incr ed. ‘herefore the "1F

be eliminated without affectling the executl
final version of the algoritnm (sce Pigure 4

Finally, we prove this wverslion term

function ™ML -~ L 4+ K - mR. Clearly -4n < ¢

can prove termination by showing that every

decreases this function. ‘The only patn tha
through the null ELSE of "I L < mbL THENY an

tne simplified wversion

statements 1n yuestlohr are

ponding sStatement Lor K
Loo» ML {i.e. the small and
will alwvays bave mL o= L -
g both variables. we only
gcause the otnher case 1s
- L, chserved just before

sing. Therefore execution

Lo< ML oat thls wolint.
¥ S b

can never be executedu. in

<

ik L ML YHEN®

y of

this 1F contains the only

CO L) s We can sately
we car insure that L > wmbL

will never change

L > L

1 BN can
O, fhis glves us the
2 3) .

inates by examining the
L -~ L + R - MR < 4n, so0 we

thirough the loop

t does not do this must

£
o

g the null oLsid of R

Page 19

=> MR THEN" (and, in addition, sxip the bodles of both WilLE loops).

This implies we had L > ML and K < M at the wning of wnils

iteration. dowever this is impossible because 1t 1s the negation of

o
.

the WHILE condition. Therefore all possible wpaths decrement the
i 1

function and the algorithm terminates.

The algorlithm was implemented on & vsl~-18 1In PASCAL and was
compared with algorithm SbLuCl. For tfinding the median of 1u, &by

elements, the average of lU trials was 76t@.1l ws. for algorichm selLeCy

and 785.6 ms. for our algorithim. The difference of

s
o
-
U
O
s

significant in view of the wide spread of executlion timings (for

example the times for &algorithm SpLiCYl ranged from 676 ms.

NS.)

The near-eqguality of execution times 1s to be expected as both
alyorithms are optimal and does show that the 3-way Partitioning

Problem can be scolved efticliently, in practice as well as theory.

page 20

Figure 2.1

A very probable class of digraphs. The number beside
each edge gives the number of edges in that direction
between the given vertices. lach number 1s + 0 (n).

1

L := FIRST;
R LAST;

i

WHILE (L <= ML) UR (MR <= K) DU BEGIN

wHILE A[L] < U DU L := L + 1;
WHILE B[R] > V DO K := K - 1;
ALY <==> AlWj; [swap albL] and af{r]

IF A[L] < U

advance™ L}
FOoL o> ML THEN ML = ML + 1;
: Lo+ 1;

i

¥

PLSE { almost never execu

ja

[

ol
[—

IF A[R] > V
THEN
BrGLN
{ Padvance® R}

I K < MR ThbnN MR

R o= R - 1;
almost never executed }

END;

Figure 4.1
A preliminary version of the algorithm

e
=
.

ry }

e

FIRST;

LAST;

-
|

e
n

WHILE (L <= ML) OR (MK <= R) DU BLGLN

k)

\

{ loop invariant : 1 and ML+l <= MR-Z

[

WH AlL] < U DO L = L + 1

Lk ;
WHILE a[R] > V DU R = & - L;

ALY <==> A[R]; { swap nalb] and A[R]

BEGIN
oL

IV L <= mL THBEN BpGid
all} <==> ainml];
ML = ML - 1;

LE r o>= pm TroN bbb
MR] <==> A[R]

Ror= MR o+ 1

END;

Flgure 4.2
A complete version
The assertlons are

I, 11, and 12 are delined 1n the text

&

g;ven on the next page The predicatos

smedlum!

i
A

i

-

B L

v

{

R

ismedlun

Gdind

)

Ml
P ~2

Al
<= 1

{
\

iswedium

ML+ 1
issmall(

not

and

o

i

and

= 12

Z

P

.

p.

smedilt

o f
i kY

3
A

!,
=
x
)
P
e
< e
A
A~

I8

Ml

>
issme

f
L

and
and

(

o

A
!
i

and
and

i}
o

vdd

i

al

tnued)

e 4

b

{con

L := FIRST;

DU BBEGLN

WHILE A[L
WHILE A (R

I a{L] < U
THERN
Lo L+ 1;

ELSL

it

I AIR] >V
THEN
R o:= K - 1l;
LLoE
IV R >= MR THbEN bBbBGLN
AlMR] <==>]
MK = MR+ 1

END;

3

Figure 4.3
The final version of the algorithu

ragye

CENC D

it

I VTR I, H
LRpelled

R. Floyd and K. Rivest,
CACM 18 (1luy7by, 165-173.

A Disclpline ot

I
1

J. pitner, "An Asymptotically uUptimal
Hational Plag pProblem”, i

C. A. k. toare, "Algorithm
(QUICKSORY), and Algorithm 05

M. Blum, R. w, Ployd, V. Pratt, K. Rivest, Ho Yargan, B!
tion™) {

pounds tor Selec » JCBo 7 (1U73), 48E-461.

Prentlco—tal

£

e

