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ABSTRACT

The convolution algorithm, the Mean Value Analysis (MVA) algorithm and
the LBANC algorithm are major algorithms for the solution of closed product~
form queueing networks. For fixed-rate service centers, the efficiency of
each algorithm is greatly improved by a recursive solution. We show that
the recursive relations in all three algorithms are closely related so

that each one can be easily derived from any of the others.
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1. INTRODUCTION

Three well-known computational algorithms for the numerical solution of
closed multi~chain product-form queueing networks [1] are the convolution
algorithm [2-4], the Mean Value Analysis (MVA) algorithm [5], and the LBANC
algorithm [6]. The efficiency of each algorithm is greatly improved by a
recursive relation when dealing with fixed-rate service centers. (The
applicable service disciplines at a fixed-rate service center arvre described
in [11.) 1In the next section, we define our notation and introduce the
recursive relations in the three algorithms. A simple derivation of the
recursive relations in the MVA and LBANC algorithms from the convolution

algorithm's recursive relation is shown in Section 3.

Z2. PRELIMINARIES

Consider a network of M service centers and X closed routing chains.
Let Amk be the mean number of visits of chain k customers to center m be-

tween successive visits to center m* (chosen arbitrarily), ka be the mean

service time of chain k customers at center m and define the traffic

intensities

Pk = “mk Tmk

form= 1,2,...;,Mand k = 1,2,...,K. Let Nk be the population size of chain

k, for k = 1,2,...,K. N = (Nl’NZ""’NK) is said to be the population vector
of the network.

Consider a ciosed multi-chain network with population vector N. The

equilibrium probability of the network state (21’22""’2M) is given by the



following product-form solution [1]

)

<N m=1,2,...,M

where 0 is a K-dimensional vector of zeroes, Em is a K-dimensional vector of
nonnegative integers, and G(N) is the normalization constant. Each real-
valued function p_ can be thought of as a K-dimensional array indexed between
0 and N. The normalization constant G(N) is simply an element of

the following array (the element indexed by N)

81,2,...00 ~ P 8y 8 ... Bpy
where & denotes a convolution operation between 2 arrays [3,4]. In general,
if SUBNET = {ml,mz,...,ms} is a set of integers chosen from 1 to M, we

define

8 8 8 ... 8 g, -

8SUBNET ~ &nm
2 s

1

For a network with population vector N, define

Lmk(g) = mean number of chain k customers at center m

ka(§) = throughput of chain k customers at center m
and

Dmk(ﬁ) = mean delay of chain k customers at center m.

The Convolution Algorithm

The convolution algorithm first computes a set of normalization constants
and then computes performance measures in terms of the normalization constants.
Thus, throughputs are given by

GN - 1)

Tac® = A TE@ o



where lk is a unit vector with its kth component equal to one and all

cthers equal to zero, and G(N - ;k) is the normalization constant of a
network with population vector N - lk' The mean queue lengths in a
fixed-rate service center are given by [4]

G N -1

W= 1)

0 (2)

L ™ =0,

where Gm+(§_~ ik) is the normalization constant of a netwerk with population
vector N - ;k and M + 1 centers where the extra center has the same set of
traffic intensities that center m has. By Little's law [7], we have

D™ =T (™ L, (.

by the following

The convolution algorithm obtains the array 8{1.2 M}
procedure
811 T P1
(1,2,...,m} ~ 8{1,2,...,m1} O Py (3)
If center m is a fixed~rate center, then the array g{l 5 } can be computed
9% g s 8 glil

efficiently using the following recursive relation [2,4]

K
Y = o Y 4 .
8,2, m W T8 o gy D Wy Pk 81,2, mp ) ()
for 0 < i <N,
(Note that throughout this paper, we adopt the convention that any quantity,

such as g{1,2,...,m}(i~— }k) above, whose argument has one or more negative

components is equal to zero.)

The MVA Algorithm

The MVA algorithm skips the normalization constants and solves for the

performance measures directly using the following recursive relation given



that center m is a fixed-rate center [5]

K

Dmk(}\i) = ka{l + hil Lmh@ - _l_k)] (5)

N

_ k
T, = — (6)

mzl Dmk(ﬁ) %mk
and

Lp@® =24 T DM <)

where Tk(ﬁ) is the throughput of chain k customers at center m*., Both
equations (6) and (7) are based upon Little's law. Eq. (5) is the key
relation in the MVA algorithm and is related to the Arrival Theorem [8,9].

The initial condition for the MVA recursion is:

Lmk(g) = 0 . form=1,2,.,..,Mand k = 1,2,...,K.
The LBAﬁC Algorithm .

Define the unnormalized mean queue lengths

qu(g) = G(N) Lmk(g} for all m and k (8)

For center m begin a fixed-rate center, the LBANC algorithm uses the following
recursion to obtain the unnormalized mean queue lengths and normalization

constants [6]:
K
@ = o [GE - L)+ T g (- 1)) (9)
and M
mil 95 (M)
— (10)
N

c() =



This last equation is a consequence of the observation

=

1 Lmk(ﬁ) =N for any k.

i o

m
The initial condition for the LBANC recursion is:

G(0) = 1 and qu(g) = for all m and k.

For the sske of completeness, we note that the recursive solutions
described above for the MVA and LBANC algorithms are still applicable if
the network consists of both fixed-rate centers and infinite-servers (IS)
centers [5,6]. If center m is an IS center, then Eq. (5) in the MVA
algorithm is simply replaced by

Dmk(ﬁ) = ka for all k
and Eq. (9) in the LBANC algorithm is simply replaced by

9o = o5 GO - L) for all k.

3. THE DERIVATION

We next proceed to derive Eq. (5) for the MVA recursion starting with

the convolution algorithm's recursive relation in Eq. (4). We note that

Corr @ =50 =8 5 MU {m) B LY
By Eq. (4), we have
K
e = L) = 00 - 1)+ T oy G (-1 - L

Divide both sides by G(N), multiply by Pk and applying Eq. (2), we get



G(N - 1 K G (N-1, -1
L,.(N) =p {gfi;__:gz.+ I p m+<- X "h)
mk = mk L G(W) o1  mh 65))
G(N - K G - -
= Tok *mk (—X\IG(N_?() S mi%N -% ) =
. = h=1 ™ =7 %
K
=T, T (0 [1+ hil L= 1]

where Eq. (1) has been applied. Dividing both sides by ka(ﬁ) and applying
Little’s law, Eq. (5) is obtained. Conversely, it should be obvious. that
starting from Eq. (5) in the MVA algorithm, the recursive relation Eq. (4)
in the convolution algorithm can be derived.

To derive Eq. (9) that is the key of the LBANC recursion, we again

consider
K

R PASL I FLINCES R

based upon the convolution algorithm's recursion. Multiply both sides of

the above equation by pmk, we get

K
GN - 1,) + I
w4

®-1 -

L - L)

pmk Gm+(§-~ lk} - pmk

pmh Gm+
which becomes Eg. (2) in the LBANC recursion by observing from Egs. (2) and
(8) that

qu(gi) = P Gm@ - _1_k)

for all k and center m being a fixed-rate center.

It is interesting to note that the LBANC recursion is an intermediate
step in the sequeuce of steps that transform the convolution recursion into
the MVA recursion. The LBANC recursion involves both normalization constants
and mean values, while the convolution recursion involves only normalization

constants and the MVA recursion involves only mean values.



4. CONCLUSIONS

The convolution, MVA and LBANC algorithms provide recursive solutions
for product-form queueing networks consisting of fixed-rate and infinite-
servers centers. We have shown that the recursive relations in all three
algorithms are closely related so that each one can be easily derived

from any of the others.
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