DISTRIBUTED STATE EXPLORATION
FOR PROTOCOL VALIDATIOHN

Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR 185 October 1981

ABSTRACT

We discuss a distributed algorithm to validate a protocol lavyer
by generating all reachable states and checking whether or not any of
them 1s an error state, e.g., a deadlock state, an overflow state,
...etc. The algorithm is to be executed by an array of N processes
(N>1) which communicate exclusively by exchanging messages. The
algorithm has a novel termination scheme bésed on a circulating token
between the different processes. We discuss a correctness proof for

the algorithm and its termination schene.

KEYWORDS: Communication protocols, Distributed algorithms,
Protoeol validation, State exploration.

I. INTRODUCTION

State exploration is a constructive technique to validate
communication protocel layers. It is based on generating and checking
all reachable states of a protocol layer starting from a specified
initial state [5] and [6]. State exploration <can be used in
conjunction with other techniques to completely verify communication
protocols [1] and [2]. It can be also used during the synthesis of
such protocols to ensure their correctness [9]. Some automated tools
for state exploration have already been developed (e.g. [3] and [6])

and applied with useful results to real protocols {83,

A potential problem of state exploration is due to the possibly
large number of states of a protocol layer. If the number of states
is large, state exploration becomes slow and expensive to use. To
remedy this, we develop in this paper a distributed algorithm for
state exploration. Implementing such an algorithm on 2 network of
communicating microcomputers can speed up protocol validation while

reducing its cost.

In section II, a simple model of a protocol layer is presented.
For conciseness, we limit the discussiocn to this model even though the
developed algorithm can be applied to more complex models. In section
111, a distributed algorithm for state exploration 1s discussed 1in
detail; then its termination mechanism is discussed in section IV.
Concluding remarks about the algorithm efficiency and applicability

are in section V.

II. A SIMPLE MODEL OF A PROTOCOL LAYER

A protocol layer consists of two processes which communicate by

exchanging messages through two channels. A channel 1is a fixed-
capacity FIFO queue which stores the messages sent by one process
until they are received without errors by the other process; two

1

channels are needed to "transmit” messages in both directions between
two processes. A process is a directed labelled graph where each edge
is labelled send(m) or receive{m) for some m in a finite set of

message NAmMEes. One of the nodes in a process is identified as its

initial node.

Associated with each process 1is a contrxol token which at any

instant resides at one node in the process. Initially, the control
token of a process is at its initial node. If the control token of a
process R is at a node with an output edge e labelled send{(m) and if
the output channel of R is not full, then a message m can be added to
the output channel and the control token of R traverses e in zero time
to the next node in R. If the control token of R is at a node with an
output edge e labelled receive(m) and if the head message in the input
channel of R is m, then m can be removed from the input channel and
the control token of R traverses e in zero time to the next node in

Re

The state of a protocol layer at a time instant t is defined by

(i) the positions of the control tokens of 1ts two processes at t, and

(ii) the contents of its two channels at t. The initial state s 1is

o
when the control token of each process is at 1its initial node, and the

two channels are empty.

Some of the states of a protocol layer are error states. An

error state can either be a deadlock state, an overflow state, or an

unspecified reception state. The exact definitions of these error
ctates are irrelevant to this paper; and so they are not discussed

here. An interested reader can find these definitions in [1] and {9].

Let s and s’ be two states of a protocol layer L. s’ is next to s
if the following two conditions are satisfied: (i) s is not an error
state. {(ii) Starting from state s, 1f exactly one process in 1L sends

or receives exactly one message, then the state of L becomes s’.

A state s’ is reachable from state s if either s=s’ or there are

2

states s ,...,8 such that s=s , s'=g , and s is next to s for
i r i T i+1 i

i=]l,..0,71. A state 8 is reachable if it is reachable from the
initial state s .
0

One of the goals of a protocol layer validation is to check that

no error state is reachable. This can be achieved by generating all

reachable states and checking whether any of them ig an error =state.

This is possible since the two channels in the layer have finite

capacities. This technique is called state exploration.

IITI. DISTRIBUTED STATE EXPLORATION

Let L be a protocol layer which consists of two processes R and S
and two finite channels of <capacities m and n. We describe a
distributed program which wuses R, S8, m, and n to generate all
reachable states of L and determines whether or not any of them is an
error state. The program uses an array of N processes P[i=0..N-1]
which communicate exclusively through messages. An "interface"
. process P[N] starts the computation then recelves the final result

‘error’ or ‘noerror’ when the computation terminates.

The following assumptions are made about the processes P[1:0..N]:
(i) Fach process can send messages to any other process and to
itself. Messages are transmitted without errors. (ii) Each process
has one unbounded input channel to hold all incoming messages until
they are received by the process. {(iii) ©Each process has a complete
knowledge about K, S, m, and n. This restriction can be relaxed

somewhat; see section V.

The basic idea of the distributed program 1s to partition the

nodes of one process, say R, 1n L into N disjoint partitions A ,
1
A ,...,A . This also partitions the state space of L into N disjoint
2 N
partitions. Assign each process 1in the process array to explore one

of the partitions of the state gpace. So, if s 1s a state where the
control token of R is at a node in partition A , then s is to be

i
handled by process P[i], i=0..N-1. This partitioning and process

assignment can be defined by a function PRS(s) which returns the index
value i for the process P[i] assigned to handle state s. We assume

that each process in the process array knows the functicen PRS{s).

The basic construct in the code of P[i=0..N-1] is as follows:

receiveloop [new(st): EXPLORE
[] err(st): stop
] endloop

Thus, each process P[i] is always walting to receive a message. If it
receives a "new(st)" message, it explores the state "st" wusing the
code bloék "EXPLORE" then waits to receive the next message. If it
receives an "err{(st)" message, it stops. The computation starts by the
interface process P[N] sending the initial state s to P{PRS(s }].
0 0
Bloeck "EXPLORE" uses a permanent data structure which consists of

the following three variables:

et is the current state being examined by P[i].
"nxtst” is a set of all states next to the current state "st'.
“oldst™ is a set of all previously generated states whose next

states have already been generated by P[1].

Block "EXPLORE" also uses the following two functions:

"ERROR(st,R,S,m,n)"
uses the definitions of R, §, m, and ©n to return a
true value if the —current state "st" is an error
state; otherwise it returns a false value.

"NEXT(st,R,S,m,n)"
: returns the set of all states next to the current
state "st'.

The code for block "EXPLORE" is as follows:

EXPLORE::begin
f ERROR(st,R,S,m,n)

then for j=0..N do send err{st) to P{j]
elsif not (st in oldst)
then oldst oldst + Istl;
nxtst := NEXT(st,R,S,m,n);

for st in nxtst do
send new({st) to PIPRS(st)]
endif

endif

end

Correctness of the above progranm 1s established by the following

theorems. (Proofs are in the Appendix.)

Theorem 1l: Each generated state in the process array is a
reachable state in the protocol layer.

Theorem 2: If no error state is reachable in the protocol
layer, then all reachable states are generated in the process
array.

Theorem 3: If an error state is reachable in the protocol
layer, then an error state is generated in the process array
and all the processes in the array stop in a finite time.

I1V. TERMINATIOR

So far, processes In the process array will stop only 1if an error
state 1&g reachable. 1f no error state is reachable, then each of the
processes will reach an indefinite waiting state for 'mew(st)"
messages that mnever arrive. If this global wailting state can be
detected, then the interface process P{N] can conclude that mno error

state is reachable in the protocol layer being wvalidated.

One way to detect this global waiting state 1is to have a
"token(k:integer)" message circulating ia a fixed order bhetween the
processes 1n the process array [4]. When a process P[i] receives
"token(k)" and recognizes that it has received a "new{st)" message
after it has received "token(k)" last, it resets k to zero and passes
"token(k)" on to P[i+l mod N}. On the other hand, 1f PIi]l recognizes
that it has not received any "new(st)'" messages since the last time it
has received "token{(k)", it increments k and sends "roken(k)" to Pli+l]

mod N]. A global waiting state for the process array ig detected when

k=N.
The correctness of the above scheme is based on the following
assumption concerning message traunsmission delavy. The fecllowing 1is

true for any i ,...,1i in {0,...,N-1} where v > 2. 1If a process pli |

1 T 1
sends a message m to P[i] then sends a message m to P{i] which on
1 r 2 2
receiving m sends m to P[i] which on receiving m sends m to Pii]
2 3 3 3 4 4

and so on until finally m 1is sent to P[i], then m reaches the 1nput
T T 1

channel of Pii] before m . Notice that if r=2, the assumption
r r
becomes as follows. If p[i] sends two messages m then m to P[i]
1 1 2 2
then m reaches the input channel of P[i] before m . Later, this
1 2 1

transmission delay assumption is used to verify the above termination
scheme. Now, we characterize this scheme more formally by defining

process P[i] as follows:

process Pli=0.,.8-11];
msg new, err, noerror, tokeny
type state = ...;
var st : state;
oldst, unxtst : setof state;

more : boolean;

i, k :+ 0..N;

begin
cldst := [1;
more := true;
receiveloop [mew(st) : more := Lrue;
EXPLORE
{] err(st) : stop
[] token(k) : if more
then more := false; k := O;
send token(k) to P[i+l mod N1
elsif k < N-1;
then k := k+l;
send token(k) to Pli+]l mod N]
else for j = 0..N do
send noerror to P[j]
endif
endif
[] noerror : stop
] endloop
end.

When P[i] receives a "token(k)'" message and recognizes that it
has not received any ‘'new(st)" messages since the last time it has
received a "token(k)" message, then it sends a 'noerror" message to

211 the processes in the array and to the interface process P{H]. The

10

computation starts by P[N] sending "new(s)" and "token(0)" messages
0
to P[PRS(s)] where s 1is the initial state of the given protocol
0 0
layer. P[N] can be defined as follows:

rocess P{NJ];
process s
msg new, e€rr, noerrecr, token;

tzge state = ...

var st : state;
begin
st := INITST(R,S);

send new(st) to PIPRS(st)];
send token(0) to P{PRS(st)];
receive [err(st) : ...
‘ {1 noerror : ...

]

1]
=}
u

To verify the above termination scheme, we need to prove that a
global waiting state is reached in the process array pli:0..N=-1] 1ff a
global waiting state is detected wusing the circulating 'token(k)"
mechanism. The proof is based on the following three lemmas. (Proofs

are in the Appendix.)

Lemma 1: If a global waiting state is reached in the
process array, then a global waiting state will be detected
using the circulating "token(k)" scheme.

Lemma 2: A global waiting state 1s detected in the
process array iff the ‘“token(k)" message makes a complete
cycle during which each process 1in the array recognizes that
it has received the "token(k)" message two successive times
without receiving any '"new(st)" messages in between.

Lemma 3: If a global waiting state is detected using the
circulating "token(k)" scheme, then a global walting state has
been reached in the process array.

11

The proof of Lemma 3, in the Appendix, is based on Lemma 2. Fron
Lemmas | and 3, the following theorem is immediate.
Theorem 4: A global waiting state is detected using the

circulating "token(k}" scheme 1ff a global waiting state has
been reached in the process array.

12

V. CONCLUDING REMARKS

To wuniformally distribute the work load over the N processes in
the process array, the state space of L should be equally partitioned.
Since the partitioning of the state space of L is achieved by
partitioning the nodes in one process R in L, each of the partitions
of R should have the same number of nodes as a first approximation.
- Also, it is preferable that the nodes in any partition in R be
"adjacent™. This is to decrease the number of mwmessages between
ﬁifferent‘ processes in the process array while increasing the number
of messages from each process to itself. Notice that messages fronm
one process to itself can be avoided completely on the expense of
making the code of P[i] little more complicated. A "good"
partitioning of the nodes in R can cause a speed—-up by a factor of Nj

finding such a good partitioning is a point for further research.

Each process P[i] uses the definition of B only in evaluating the

two functions ERROR{(st,R,S,m,n) and NEXT{st,R,S8,m,n}. In either case,

1A i1

st

]

is a state which is to be handled by p{i], di.e., PRS(st)
i. Therefore, P[i1] does not need to know all R; 1t only needs to know

the following: (i) the nodes in one partition A of R (see section
i
I11); (ii) any node which can be reached by a directed edge in R fron

a node in A ; and (iii) all the edges in R which start from nodes in
i
A .
i

13

To decrease the number of "token(k)" exchanges in the system, each
process P{k] should not receive the "eoken{k)" message from its input
channel wuntil there are no ‘'new(st)" messages in thisg channel.
Similarly, to speed wup termination whenever an error state 1s
detected, each P[1] should not receive any "new(st)" or any “token(k)"
messages from its input channel if there is an "err{st)" message in
this channel. The "err(st)" message should be received first causing

P{i] to stop.

The above distributed algorithm can be applied to more complex
models of protocol layers. For instance it can be extended easily to
the case where the layer has more than two communicating processes.
Similarly, it can be extended to the case where the comnunication
medium exhibits some transmission errors, €.g-., message 108s OF
corruption. This is done by modelling the nonideal communication
medium as an additiomnal process which may lose or corrupt received

messages before resending them as described in [0].

ACKNOWLEDGEMENTS

The author is thankful to Mr. Yao-Tin Yu for helpful discussions.

He is also thankful to K. F., Carbone for her careful tvping.

14

REFERENCES

[1] G. V. Bochmann, "Finite state description of communication
protocols,”" Computer Networks, Vol. Z, 1978, pp. 361~
372.

[2] G. B. Bochmann and J. Gecsel, YA unified model for the
specification and verification of protocols," Proc.
iIFIP Congress, 1977, pp. 229-234,

[3] J. Hajek, "Automatically verified data transfer protocols,” Proc.

[6]

(8]

(91

Int. Comp. Conf., 1978, pp. 749-756.

Leland, ‘"Distributed systems -~ towards a formal approach,”
Proc. IFIP Congress, 1977, pp. 155-160.

A. Sunshine, "Interprocess communication protocols for computer
networks," Ph.D. dissertation, Dept. of Comp. Sci.
Stanford Univ., Stanford, CA, 1975.

A. Sunshine, "Formal modeling of communication protocols,”
ysc/Information Sciences Institute Tech. Report 81-89,
March 1981.

H. West, "An automated technique of communications protocol

validation," IEEE Trans. Commn., Vol. COMN-26, pp-
1271~1275, Aug. 1978.

H. West and P. Zafiropulo, "Automated validation of a
communications protocol: The CCITTX.21
recommendation,” IBM J. Res. Develop., vol. 22, pp.
60-71, Jan. 1978.

Zafiropule et. al., "Towards analyzing and synthesizing

protocols,” IEEE Trans. on Comm., Vol. COM-28, No. 4,

April 1980, pp. 651-661.

15
APPENDIX: PROOFS OF THEOREMS AND LEMMAS

Proof of Theorem 1: ©States are generated in the process array as
follows. First, the initial state s 1is generated at P[N] and sent to
O
P{PRS(s)]. Then, other states are generated wusing the function
0

"NEXT(st,R,S,m,n)" where state "o+ has already been generated. Thus,

for every generated state s, there exist states s , 8 ,...,8 of the

0 1 T
protocol layer such that s 1is the initial state, & =8, and s is
0 T i+l
next to s for i=0,...,r-1. Therefore, s is a reachable state of the

i
given protocol layer. [

Proof of Theorem 2: Assume that no error state 1is reachable 1in the
protocol layer. From Theorem 1, no error state is generated in the
process array; i.e., for any generated state "st" in the process array
ERROR(st,R,S,m,n) is false. From the code of EXPLORE, no process P[i]
sends any "err(st)” messages. Thus no process p{i]l ever stops; and

each of them continues to receive and process "new(st)" messages sent

to it

Let s be a reachable state in the protocol layer; i.e., there are

states 8§ ,...,5 of the protocol layer such that s ig the initial
0 e 0

state, s =g, and s is next to s for i=0,...,vr-1. 8 1s generated
b i+1 i 0

at the interface process P[N] and is sent to PIPRS(s }]. Then, s is

0 1
generated at P[PRS(s)] and 1is sent to P[PRS(s)], and so on until
0 i

finally s (i.e., s) 1is generated at P[PRS(s Y. 1]

'y r-1

i6

Proof of Theorem 3: Let s be a reachable error state of the protocol

iayer; i.e., there exist states s ,...,8 of the proteocol layer such

0 T
that s is the initial state, g =g, and s is next to s for
0 T i+l i
i=0,4..,r~1. There are two cases; either each s is generted at
3
P[PRS (s y] for j=l,...,r or there exists k in {1,...,r-1} such that
j=1
when s 1s generated and sent to process P[PRS(s)] to generate 1its
k k

next states, this process has already stopped after recelving an
carlier err{st) message. In the first case, the error state s {or s)
T

is generated; in the second case, another error state 'st" is

generated.

Assume that an error state s is generated in the process array
and is sent to P[PRS(s)] for processing. From the <code of EXPLORE,
P[PRS(s)} detects that s is an error state (i.e., ERROR(s,R,3,m,n) is
EEEE) and sends err(s) messages to all the processes in the arravy.

Thus all processes stop in a finite time. 1]

Proof of Lemma 1: Assume that a global waiting state is reached in the
process array; 1.e. no more "new(st)" messages are exchanged between
the processes P{1i:0..N-1]. Thus, only the message "roken{k)" is
circulated between the processes. Tn a finite time, each P[i]
recognizes that it has received “roken(k)" two successive times
without receiving any new(st) messages in between and increments k in
token(k). When k=N a global waiting state 1s detected in the process

array. I

17

Proof of Lemma 2:

If Part: Assume that "roken(k)" makes a complete cycle during which
each process recognizes that it has recelved "token{k)" two successive
times without rveceiving "new{(st)" messages in between. During this
cycle each P{1:0..N-1] increments k; thus k=N at the end of this cvcle
and a global waiting state is detected.

Only If Part: Assume that a global waiting state is détected; i.e.,
k=N in the circulating "token(k)" message in the process array. Since
each process either increments "k'" or sets 1t to zero, 2ll the

processes must increment k during one complete cycle for k to reach

the value N. []

Proof of Lemma 3: Assume that a global waiting state 1s detected 1in

the process array. From Lemma 2, "token(k)" has finished a complete
cycle during which each process has recognized that it has Treceived
"token(k)" two successive times without receiving any '"new(st)"

messages in between. Call this cycle the critical cyecle. If all the

processes in the process array do not receive any "new(st)" messages
after receiving "token(k)" during its critical cycle, then Lemma 3 is
true. Otherwise, let P{u] be the first process to receive a "new(st)"
message after receiving "token(k)" im its critical cycle. Assume that
this '"new(st)'" message 1is sent to it by process Piv}. Pl{v] cannot
send this message after it has recelved "token(k)" in dits critical
cycle otherwise P[v] (and not P[u]) is the first process to receive a
"new(st)'" message after it has received token{k) in dits critical

cycle. Thus, P{v] must send this "new(st)'" before receiving token{(k)

18

in its critical cycle. Because of thig critical cycle definition,
P{v] must send this "new(st)" message before receiving "token{k)" two
successive times with no ‘'new(st)" messages in between. In other

words, P[v] sends a "new(st)" message to P[u] followed by a "token(k)"
message to P[v+l mod N] which eventually reach P{u] before the
"token(k)" message. This contradicts the transmission delay
~assumption. Thus, no Plu] can receive a '"new(st)" message after
receiving the "token(k)" message in its critical cycle and Lemma 3 is

rrue. "

