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bstracts In a database w«ith several different wviewss we can

s, 4 i e s O T

explicitiy store the incices for the records in a given view or

b

recalculate them each time the wiew s reguesteds. He study the
Q?@ﬁ?ﬁ% of deciding which wieuws should be explicitily stored given that
the space for storing the indices s Limitede. We show that the
problem 15 NP-zompleie 1¢f elther the set of sizes of the wiews or the
relationship between the views Is ®too complex™. e also develop an

algorithms for selecting the wiews to store §f both are not ¥too

complex® and indicate when 1t s truly practical.
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preparing this paper and (in advance!} Umesh Dayal for reviewing a

preliminary versions The baszsic idea of using Lists tc implement the

e

vectors in Section 3 was originated by Larry Daviss
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1e Introduction

Many database systems {such as ZETA [MYLTS1s System R [AST76].
and INGRESS [8T07613) allow the specification of uiewse. This mechanisna
altows a user to restrict hisfher attention and transactions tos 2
timited part of a dmuch} itarger data bases Seey for examples Figure
1.1 where our data base consists of one relation containing
information about studentss and anather containing information about
people who are emploveds Sewveral views of this data base are showun:
for examples one user nmight only be concerned with smployed female
graduate students and arnother only with male studentss The
relationshios betuween wviews can be specified by a directed acyslic
graph {D25) where the view corresponding to node x can be constructed
by performing some operation{s) on wvwieuws corresponding to the set of
nodes {ylthere is an arc from 2 to vls 1.2. u?s immediate SUCLEeSSOTS.
Some nodes have no successcrsg: these are the base relations and cannot

be calculateds

g

Singe a2 given user’s ifransactions are restricted o a glven
subset of the databases we are faced with the unappoealing task of
recomputing this view on ewery titransaction. An  alternative s to

store the indices of the records in that view so that it need not be
recomputed. Thiss of courses fncurs an overhead in storage. Given
enough siorages #e could store all the views enplicitilve However if

this 4g not the cases; ume musit choose uhich views to store and which to
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calculates This is the guestion addressed by this papere
A DISCUSSION OF PRIEVIOUS HORK GUES HERE

He assume the user supplies us with the following infornation:

1 A DAG dndicating wuhich views are needed for the construct ijon
of each vigu.

2« An ggtimate of the cost cilvwl of constructing each wiew gluen
that 1ts sons have already Deen constructed. This cost glwes
the difference in cost f€isees the relative advantage? of
storing the wview explicitly versus calculating it and should
include time reguired to maintain the indigces when and if
updates gecur. {I% updates are very fTrequents the cost could
even be negatives}

3. An estimate of the size siv) of each view.

et e 0 et e o O

. A&n estigate of the probability ply} a aglwven wview will be

e oS R s . A W Wt

reqguired by a transaction.

5 The maximum amount of space (M) available for the storage of
indices for views,

e are then to determine the subset of views that can be stored in the

given amount of space and ninimize the expected coste

In order to state the problem formallys we need to develop sone

notations

Definitian: Given a DAL with wertex set Ve v in ¥ and Y% 2 subset of

o g > e s s i o oy

regchivsV®) = {xjthere s a path from v to x containing no vertices
in ¥y}
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and
tail{wyV?) = Ix|there is a path from x to v containing no vertices
in V'3

The cost of choosing a set Y% can be calculated by examining how
much it costs to construci each node. Node v will be reguested with
probability olvle If w is not in ¥*, 3t must be constructed from its
fmmediate sSuUCLESSOTrSe If any of them §s not in ¥?%; it must be
constructed from 1is immediate successorss and s¢ 0ns Ciearlys the
cost of constructing v is the sum of the cost of constructing all
vertices in reach{ws¥?). (Note that if v is in ¥?s reachiv,¥?) s

emptys and hence v contributes nothing to the cost.} Therefore, we

have

Definition: Given a digraph 6 with vertex set ¥ and functions p and ¢

and ¥?' a subset of ¥

£ c{vid
u in ¥ vy in reachfusy®}

Costdyr) =

7
w
s
o
w
£
=)

The costs of courses also depends on Gs ¥e 0 and ce but we omit this

to simplify notation. He can now formally state the problem.
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Probiem 1

Given

1s A finite directed acyclic graph (DAGY 6 with vertex szt V¥
2¢ A probabitity pnivd) for each v in ¥

3« A construction cost ey} for each w In Ve with civ) =
infinity for legves

4. A size siw) 2 0 for each v in ¥

5 An awmount of storage M 2 §

Find a subset ¥ 0f ¥ such that

I
4

Y
L4

S
M
o o

and COsSTLvey is minimized

Notes on Irgblem 1% Though we could reguire the pivi®s to sum to

In this cases the piv)?s can be thought of as "weights®, There is no
harm in thisy Dbecause the *true® <cost can easily be obtained by
dividing the cost by the sum of the plv)?s. The cost of constructing
a Lteaf is set to infinity to force all leaves to be stored explicitiy.
Where necessarys we define infinity = 0 = 0. ¥Y? wili be the sgst of
views that are stored explicitiy. The first reauireament of ¥7 is that
atl the wviews will fit in the spage provideds and the second
requirement 15 that the expected cost of constructing a view is

minimizeds

Definfition: It ve denotes the subset of wviews which are stored

s e s i e s S Ay
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explticitiys, we catl ¥v¥ a parking of 6. Nodes in V* are called sarked

{or closed) nodes and nodes not in ¥? are called wunmarked d{or open?

nodese
The following reformulation of the cost will be convenient later:

Lepma lels

D S e w e o

£ c{ul = & v}
u in ¥ ¥ in taildusV?)

Proof: 4e Look at how often each node must be constructeds A node v
must be constructed each time an ancestor of v is requesteds provided
that there is 2 path from the ancestor to v consisting solely of nodes
not in Vi. iNote that if v 3tself iz eyplicitily storedy then it will
never have to be constructed and contributes nothing to the
totat.) Therefore the contribution of a node to the total cost 1is the

cost of the node wmultiolied by +the oprobability of any node in

ratiliv.¥®} being reguesteds L[]

As stated befores wWe will study éhe probles of minimizing
COSTLV )= We show thats in generals this is a very hard problem i1
either the set of sizes or the DAG is ®"too complex®. In Section 2, we
show that if the sirzres are arbitrary integerss the problems is
NP-completes even if the DAG is only a tree. {(Though the sizes mays
of courses Dhe reals the prablem 43 QANP-complete even If they are
restricted to beiny integers.) In Section 45 we show that if the DAG

3¢ unrestricteds the problem §s NP-complete even if every node is
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egually likely and aill costs and sizes eqgual 1. Though the problen
where the DAS is consitrained to be a tree 18 in generals intractable,
Wwe develop a dynamic programming algerithe to solve this oproblen and

indicate some cases where 1t s truly practicals
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2. Section 2
In this sections we show Probiem 1 s NP-complete when the cosis
and sizes are arbitrary integers even if %the graph is extremely

simples He Tirst reformulate Problem 1 as a decisfon problem:

Problem 2¢ Given Gs ¥s ps ¢s 5 and M as in Problem 1 and F > 3 where
¢ and 3 are integer functionse iz there a subselt ¥ of ¥ such that:
{13 £ siwd < M and
# in V¥

(23 COST(Y®) € F2

¥e show Problem 2 iz ANP-complete by reducing the Partition
Proplem to its This problem was proven AP~complete in LKAR 723 and is
stated as folliows:
Partition Problem: Given positive integers a ssse3a3 summing to Sy is
there a subselt P of {isees9n} such that ' i

£ 5 = 37272
i in P

We prove that Problem 2 isg NP-goumplete for a variety of simple classes
of graphsSe Thuss Probles 2 for a general graph must also pe

MP-completes

Theorem 212 Problem 2 is NP-complete sven 1f the graph s of the

S s T R T o o S

form shoun in Figure Zele

Proof: Problenm 2 is obviously in NP since We can

non~deterministicalliy gelect a subseti Yy of ¥ and check the tuwo

conditions in polynomial times



Page 10

e now reduce the Partitioning Problem to Problem 2. Given an

instance of the Partitioning Problems define an instance of Problem 2

where ¥V = {v 9 see2 ¥ v H 3 s2s9 ¥ + and for all {1 there 14s an edge
i i 1 ]
from v fto W e« Let M = S/2¢ F = 572 and
3 3
ciy 3} = a siwv 3 = a piv ¥ = 1
L 3 3 3 3
ciw ¥} = 7 sfw ¥ = (O nis ¥ = 1
i 3 i

He show this Instamce of the Partition Problem has a solution 1§f this

instance of Probiew 2 has a solutione

Suppose P iz a3 sglution to this fdnstance of the Partition

Problems, Define V&8 = {y | 4 not in P} U {u 9 ses2 W }e To calcoulate
i i 1

COSTLV®*)Y note that reachi(v) is empty unless v 9s not in Y?¥ in which

case reachi{v) = {v}l. Hence
COSTéevey = £ clxdspdixl = £ a = [ a = 552
3 3
2 not in ve {1ty not in ¥} i in P
3

and the size reqguired to store VY?' is

£ s{xd = £ 2 = £ 2 = § = 572 = SF2

3 i

x in ¥* {ijy  in ¥} i not in P

i
Therefore ¥% meetis both the cost and space reguirements and iz &

solution to this instance of Problen 2.

Supposes on the other hands that y©@ is a solution to this

instance of Problem 2. et P = L1 1 v not in ¥%}s HNote that w »
g i

eene W must be in ¥?# or elige the cost would be infinite. tet
n

SIZELY®Y be the space reqguiresent of Vi, Then CO8T4YY) & SIZEC(V?Y
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= £ cixd) = pix) = £ six}
x not in y® 2 in Y9-u
= E a + £ a
i i
{ilv not in ¥} {ijvw  In ¥V7-W}
i §
= 5
where 4 = {4 3 sse02 ¥ + tan be disregarded in the second sum begause
1 n
sl ¥} = (e Sinee ¥* meets the space reguirements SIZELY®Y ¢ 5/2.

3
Since COSTIVER + SIZELWTY = S, wWwe have COST(W') > 5/2. Since ¥? nmeets
the space reguirement uwe have CO0STIVE) £ 5/2. Hence COSTIY?) = 5/2.

This gives

872 = COSTLY*y =

]
W
i
™
W

{ily not in ¥°': a in P

proving P is a solution to this instance of the Partitioning Zroblem.

L1

Theorem Ze2: Problem 2 is HNP-conplete even 1f the graph 9s a tree of

ot o, s e S, e o o

hefight 2 or a3 binary tree.

Proof: Adding aencther node to the construction in Theoresm 2.1 with

size > ¥ as the father of all v shows the case of a tree of height 2
i

is NP-gomplete. Adding Log n levyels of nodes with size > ®  and
identical cost proves the other cases HBoth proofs are simsilar to

Theprem Zels £
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Section 3: A Dynapic Brograsming 2

In this sections we restrict the DAG describing the relationship
hetween the wiews to be a tres and the size of 2ach node to be an

integer. Stated formallys

Probtem J
Given Gs ¥e ps Cy 53 and My as in Problem 1. If 6 s a trees and sdvi
is integer wvalued for each v in ¥y find a subset V¥ of V satisfying
the conditisns of Problens 1

In Section 3s1 wWwe dewelop a high=ievel algorithm to solve Problem
3s In Section 3.2 we use the idea of a "convolut jon® of vectors to

refine the high level algorithm into a PASCAL-like implementatione. We

g 2 2
analyze this algorithm and find it takes time 0(n M ) and space Oln M)

in the worst cases Section 3.3 discusses a specific method of
representing vectors using Listss and Section 3.4 analvzes the savings
that occur using this representation instead of a straightforward one.
Though the algorithm 1is not practical for all cases, Section J.%
indicates and analyzes some cases swhere it is tfai? praciicals
Section 3.5 extends the algorithm to the case of jggﬁiigg irees

{1.e, a tree with the direction of each edge reverseds? Finallys

Section 3.6 gilves some sample execution statistics for the programe
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de will choose te use the vreformulation of the cost fFunction
given by Lemma ls1 to galculate the cost since the tail of a2 node in 2
tree 13 especially simples. The cbvious way of determining the minisun
cost of the subtree rooted at node xs given m units of storage. is to
first assume 2 will be gloseds split the remaining m-s{x) units among
node xt's subtrees, recuyrsively calculate the minimal c2ost for each
subtree with Its given allocation: and minimize ogver all partiticns of
m=s{xde Then seconds (o repeat the procedures assuming x is open and
split m units among x%s subtreess Howevers this simple method does
not qguite worke as we cannot calculate a nodefs cost unless we know

its tatil. Therefore uwe repeat the above procedure a3t each step

assuming & tail ot Length #tien? for tlen = Ussessdepthinlde.

This recursive gsolution is inefficient Dbecause the c¢cost of a
suhtrsé will be galculated many timess To avoid this wasted efforts
we will use dynanmic orograsming. That igs wWwe will find optimal
marking for all of a node?s subtrees and then merge these solutions
together in a Dbottom-up manner {i.e. starting with the Leaves)
obtaining solutions to Llarger and Llarger subtrees until we have a
solution for the entire tree, The savings come from the fact that
once the cost for a2 glven subtree is computeds 1t s stored in an
array and suybseguentiy c¢an be simply Looked up dnstead of completely

recomputed.
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4 high=ievel algorithm i3z given in Figure 3.l. To simplify the
programs wWe assume the sum of the sizes of the Leaves has been
subtracted from M and that all the leaves have been deleted. This 1is
done because the iLeaves must be storeds. Alsoes the details of
recording the set of closed nodes for achieving a given <cost are
cmitted, This 4s easily done L{at least in the final wersion of the

algorithel.

In this algorithes we sequence through the nodes in postorders
4% each node xe we first calculate the wector minclosed: where
minclosediaml gives the sinimum cost for the subitree rooted at ¥ using
m wunits of storages To caleulate thiss we distribute m-sixd units
among x%s subtree in all possible ways. MNote that each son will have
a tail of size { since x 45 closeds To calculate the vector minopens
we assume x is open and has a tail of Length tlen. He distribute our
m units in all possible mays amonyg x¥s subtrees. 1In this case each
san of x  will have a tail of Length tlenel, Finallys
mincostixstiensml 15 determined by taking the minimum of minclosediml

and minopeninle
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Section 3.2: A PASCAL Algorithm and its A:

Clearlys the dominant cost in the algorithm is computing

k&
MIN E wmincostly 2 Cs m 1
i i
m des®m Tmesix} =i
i k
and
k
e{x} = tailprob + MIN £ mincostly 3 tliensis o 3
i i
W Faedm Tm izi
1 k

& subprogram common to these two caleculations iss: Given %k wectors

A ss209h ¢ caloculate the wsctor 0 defined by:?

k
D3l = min E A [m 1

i 3

bt
i
j—

B Yeatm Z}
1 k

This operation can be neatly defined in terms of convoly
Given two vectors A and B define the convolution of A and B to be the

i o s s i o s o sy o

vector C defined by

Cikd = min {€A031 » BLk-§12
0<igk

We write C = A & H, This is the standard convolution goperation with
"+® replacing ®2% and ®xin® replacing ¥+¥, The wvector D gan easily be

expressed In terms of convolutions as A #4 #asaenh {note that = i3

i 2 k

associatives.

Modifying the progranm to use convoluticns is straightforuwards and

the result is given in Figure 32.2. To prove it ic correct we need to
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show two rebations. {Define for 3 = lsssssks ¥ Imd = mincostly s0sm]
i 3

and 7 [ml = mincositly stlen+tlismled Firsts that the vector minclosed

i 3

can be expressed as [ *Y #*,,,%Y where C s a vector such that C [j1]

F | k i 1
= = for § < six) and € L33 = 0 for § 2 sixde. Seconds that the wvector
1
minopen can be expressed as C #7 *.0.0.%42 where C is a wector such
2 1 k 2
that € [i1 = «cixd « tailorob for all §. Hoth relations are easily

2

verified and their proofs are osifteds

We now analyze the algorithme The space requirement is

2
M o+ Eldepthivd + 11 = O4n ¥)
v
nec ause each node w requires depthivd + 1 weciorse To analyze the
time reqguirement note that [depth(w) + 11 » [degreel{vl] convolutions

are done at node vs The obvious way of performing a convolution

2
reguires time O(M 3. The total cost for the algorithm is then

2
Eldepthiv) + 11 = degreel(vw} = (M }
y
3 2
This can be trivially bounded by Oin ® 3, The actual boundy of

courses depends on the tree; for examples a complete binary tree has a

2
bound of 0(M n Log nite. A surorisingly bad case is a ®linear® tree

where each node has one son {(except for the cne leaf)s It has a bound

2 2
of 0(n ¥ ). Howevers this is due to the fact that we {for simplicity?

perform two convoelutions {using the ®C ® and =C " wvectors Just
i 2

describedl where simpler and faster operations could be  done. {For
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L examples a convolutions reguiring time  0(H s fs not reguired to




i

simply add a constant to every component of a wvector!) We Hill see
tater that these degenerates convolutions can be perfeormed wvery
quickly}; howevery it would be unfortunate for the worst case behavior
to be determined by this degenerate case which <could easily be

recoved.

Therefores We assume the tuwo trivial convelutions are replaced by

a2 more efficient operation. The cost drops to
5

FLdepthiw) + 1] » [max{degreel{y) = 1lg 0) + 0O(M ) +« 0O(M)]
¥

since deqgree{v) - 1 conwoslutions are required unless degreedv) = 1 in

which case we perform an 004} gperation on the vectors

The foilowing theorem shows a bound of Cin ¥ 3 is st ILL

achievable.

Theorem J.12 f(7) = Eldepthi{v) + 11 » max{degreelv) - 1, 03J
v

is maximized by the tree shown in Figure 3.3. For that trees (7T} =

Proof: de begin by showing that if a trees Ty has a node x» wh ich has
a non=-Leaf v and ansther node z among its sons then thers exists
another tree with the same number of nodes giving a larger value of f,
Cons ider the trees T's where z has been removed as a son of x and been

made a son of ys HowWw has this change affected §£? Every node in 2°'s

subtree has had its depth increased by ones This will not decrease f.
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Furthers ¥y has had its degree increased by one. Since vy had at least
one son originallys the contribution it makes has been increased by
depthivis Similariys the zontribution x makes has been decreased by

depthizle Since depthivyd) > depihixls 473 < (773,

This means the tree must have the form shoun In Figure 3.5 where
k satisfies 0Lk<ns The only node making a3 non-zero contribution to f
is node xe Clearlys the wvalue of f is k # ({n-k} which is wmaximized

2
when kxn/2s giwing a value of n /4 for ., L[]

Section 3-.3: Using a List to Represent

it A =

iw
fa
e
fey
fee
fo
[

The performance of the algorithm 3s not very acceptable due to

™o

the M term in the time reqguirement.s This is especially unfortunate
pecause most of the wectors contain very few distinect alements. This
forms the ddea for an dsmportant faprovement. Instead of storing the
entire vector A explicitly we represent 3t as a sequenge of ordered

nairs {a sb Jesesesfa s ¥ where the palr {(a b ) means that

I 1 kK k 001
ALxl = 7 dfor 8 £ % < a3
1
alxd = b for a2 £ =z € 3 for ¥ T lesk=1
i i i+1
Azl = b for a £ %
& &
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{Sees Figure 3.6 Tor an exanmples) In the worst cases the List will be M
etements Longe angd we have gained nothing. Howeversy it takes a while
for the Length of the Lists to bhuiid upes and until 1t does (4 1t eyer

doests we enjoy enormous savings of space and time {(see below.

We now discuss how to fTorm the convolution C of the wectors 4 and

B using thig Llist representations Firsts rewrite the definition of C

Chkl = min (AL 33 + BL Iy
D4tiejgk

which is clearly eguivalent to the original definition because A and B
are monotonically mon=increasing. 1This is easily seeni allowing more

storage cannot increase the costae?

Definiticon: 1 is a critical point of a vector A ¥ff ACLI] < ALI=-11 or

de now show that to detersine CLkI it suffices to tak the

5]

minimum of AL41 <+ BL1]1 where 1 i3 a critical point of A& and § iz a

critical point of He. 1T 1 and § are not both critical pointse Let A

and j* be the first critical points Less than or egual te 1 and i
respectivelye Singce AL1T + BLID = al423 + BLi*] 3t does not hurt to
discard the pair {(i1:13 when we take the minimum because the pair
witl be considered, Therefore to find CLk] we wminimize over
AL%] + BLi1 where 3 + 1 4 k and 1 and 1 are critical points of A and B

respect fvely.
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To find the snitire £ wvectors we gensrate A

i

i1 +» BLI3 for all 1
and § which are critical points of A and B respectively. CIk3 35 the
minimum of those with ¥ + § { ke If we sort the values AL¥] + BLil on
i+js C could be found by seguencing through this List and keeping
track of the minimun so far. Howewvers we do not want Cs oniy its

critical points. These can be found as follows {this dg iLlustrated

in Figure 3a613:2

Finding the Critical Points of C

[N At R A A E S sl A . R R R W T T W S i

bai
P
1%

vy

{Let & and B be represented by the List of pairs {{a 2% 3} and
3 i

{{b sy 1} respectively.}
i 4 .

L2}

Generate all pairs (a #b sx ¢y ) such that a +b <M.

LN B R P

bt

Sgrt the pairs

(%)
o
[ ie]

t]
i

B

step 3t Sequence through the pairss eliminating (¢ sz ) if there is a
i 01
pair (¢ sz ) Wwith e £ ¢ and z £z
i i j i ]
Tso possibilities sugaest themselwes for the sorting? some Oin

tog ny scorits or a bucket sorts de choose to use the former because it
does not require an array of sire ¥ which would be excessive in  space
and time {(the time would be especially excessive for a very short
Listls Thus we can fTorm the convolution of two Llists of Length a and

5 dn time COiab Log abl.
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section 3.4: Analysi

L i o i e e

W
Jody
fe
by
b
o
feom
§
i
[
jon

This method of forming the convolution does not fmprove the worst
case performance since We may have azbrMy but in practice 1t resulis
§n substantial savings. Hefore discussing sowme cases wshere fhis

e

methoc is practigal, we weed a lemma to bound the growih of these

temma 3e1: Given a tree with n nodes with sizes S 9s22353 3 let k Dbe
1 f

the number of distinct walues that can be produced by summing the

elements 0f 2 subset of the multiset {S sss233 F» The Length of the
1 n

List for the root is bounded by

Progof: Clearly the List for a tLeaft has Llength 2. Since the
convolution of twoe Lists uwith lengiths a and b has length at most a=bs

3
the 2 bound foliows by inductions The second bound follows from the

fact that 4 critical opsint corresponds to an actual marking of the
tree (which will have size uhich is egual to the sum of the eslements

of {5 s2ss25 }ios The third iz a corollary of the seconds and the
i I

faourth is obviouss L]

The following theorem uses Legma 3.1 to analyze the complexity of

some tractable cases:

Thegrem J322: L&t ¢ be a constant then
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{al On a complete binary tree whose node sizes are all multdislss of

=

2
M/c the algoriths requires storage oicn Log nd and time o0ic lopg ¢ » n

& Ltog n)

o {by On a complete bLinary itree whose node sizes are altl Ltess than or

2 2 2
egquat to ¢ the algorithm reguires storage ofcen ¥} and time oin ¢ L[log ¢

+ Log nll

W

Proof: In case 4ay all lists have size at most cs In case {blds the

L

P

st for a k node subbtree has length at most ck. The time Dounds

i follow from the fact that the cost eguals

3
Fldepthiv) & 11 ¢« [maxidegreely) - 1e¢ B3 & 048 ) +n{M} ]
k@'

The space bounds follow on the assumption that we release all the
i niocks in a List once it s usede. {Note that once a List is

convoluted with anocthers it 35 no Longer neededsd [ 3

s Ay A o s e R e i N s (RO N S o T e S o S A o S o o 1o

The algorithm can be extended to handle inverted 1ireecs. An

e s s e o e R S =

inverted tree is a tree with the direction of each arc reverseds

Suppose we are given an instance of Problem 1 with 6 as an inverted

tree and ©s ss and p as the costs size and probability functions. Let

o,
o

o COSTEV® ) denote the cost of a marking VT for thiszs problems and

reachfusVia6) the funcition reachi{us¥®) for the graph G- de have by

definition
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COSTIVT 5} = £ piul = e cdv’
u in ¥ w in reach{us¥¥:061}

e define a second instance of Problem 1 whose DAG ds 67 which s
5 with the direstion ot each edge reversed and gost size and
probabil ity functions c¢%s s and p*. Let COSTL(Y?:6%) be the cost of

marking ¥ in this second problem and taitfus¥®sG%) be the function

tadidus¥?) for G%s By Lemma L.l we hawve

COSTIVE,5%) = £ c¥i{y)y = £ pi{w}
u o in ¥ ¥ in taitldus¥eseG)

and since reachi{us¥¥4:063F = taildusV?eG%)

COSTLY® G731 = £ cTiuyd = £ n¥iv}
u o in ¥ v in reachiue¥?:0)
Tf we choose ¢94w) = pivie p?lw) = civi and s¥4v) = si{v) we will  have

COSTIVIL0) = COSTi¥e,5673,. That iss to fTind the cost for an inverted
trees we merely rewverse the direction of each edge and interchange the
¢ and p functions. Using the algorithm to solve this problen agives us

the cost for the original inwverted trees

The algorithm was implemented in PASCAL on a DEC-10 and was timed
an two non~trivial test casess The ygraph shown in Figure 3.7 reauired
1.446 seconds and required 214 blocks of 5 words for storing the Lists

{i.2. about 1¥ wordsis This is the maximum number of blocks in use at

any time; the program is wery careful to return blocks which are no
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tonger in use to the pool of free storages For the graph shown in
Figure 3.8 3,109 seconds and 404 blocks (i1.e. about 25  Hords) swere

requireds

For purposes of cosparisons a3 progras  using 2 backtrack
branch~and~bound type search was described by Davis and Roussopoulos
in LROU 793, It uwas implemented on a COC 6600 {a faster machine than
the DFCY and reguired 38.5 seconds and 666e% seconds to process

s

e tines

Figures 3.7 and 38 respectively. Our algorithm is 30 to 2
faster and reguires very sodest amounts of space. {The compar ison is
sgmeshat unfair because their algorithe handles the general ¢case where
the [DAG 48 not nnecessarily a treesd For these examples {with

“ranndom® sizes and costsd the algorithm is very practical in both its

time and space reguirementse.

Another nice properiy of the algorithm 3s that to calculate the
gcost of 2 tree for some ¥y swe autocmatically calculate the cost for all
smaller storage alioccationsse thus making the nature o0f the timefspace
tradeocff wvery clear. This information can guide the user in deciding

how much space Lo allocate for the storing of indices.
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Section 4.

Tn this sections we show Problem 2 ig NP-~complete, even 1f  the
cost and size of ewvery node is one and all nodes are equally probable.

Te show MP-completenesss we uill reduce Boolean Satisfiabiiity {proven

NP=complete in [CO0 71133 to the following simplification of Problem 2.

1. A& fTinite directed acyciic graph with wertex set U
2. Size of marking s2t # > 4
3. LCost F > 1§

ig there a subset ¥9 of 4 such that

1s fH?] = H
2. F > number of pairs of vertices us v in W (uwith ufv)
for whnich there is a3 path from u to v which doss not pass
through any vertex in H® 2
(Note that the cost is defined in a siightly different manner from
Problem 23 this will sipplify matters later.} To ses the

correspondence between the two problemss we show how to map each

15
#

ingtance of Problem 4 into an instance of Problen : Take Hs add one
node xs and add an edge from every other vertex to x. This forms the
graph for Problem 2. Let clx} = Ty s{x) = 1y pix?} = 1ls For all other
nodes Let ciwd) = sé€wi = piwdl = 1 and Let the size bound be M + 1.

Finaillys Let the target cost be F o+ [d} - M (since Problem 2 counts

ane unit cost for each of the (Wl - M unmarked nodes and Problem 4
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does notel

Since this new problem can be reduced to Problen 25 se must  show

that Boolean Satisfiability can be reduced to Problenm 4.

Aoolean Satisfiapiiity: Given a boolean expression B in  conjunctive
normal forms with & clauses and n distinet Lliteralss is there a set of

truth values which satisfy B?

At this points we define three guantities and some terminoclogy

that will become lmportant in the following step of the proof.

Definition: The number of pairs of distinct vertices usy v in W that

has a path that does not go through H? will be referred to as the CCOST
of marking ¥W's which we will write as COST(W'). We witl also  use

ST(W?sXsY)s for W's X» Y all subsets of Wy to denote the number of
pairs of distinct wertices us vy with u iIn Xs and v in Y such that

there is & path from u to w not containing any vertex In H®.
de now define a reduction from Boolean Satisfiability to Problem 4.
Set k& to be some number such that

2 o >
k1

4kmn o+ kmn + 4kmn (n=13) + mnin=-13/2 £ k -1

Clesrtys k can be chosen so that it is bounded by a polynomial in m

and ne Define the coste F Dy



N
fa

2
F =z 2k =1 = kmn -~ 4kagn {(n~-13% ¢« T7/72 » nin=-13%k »

Fidnatlys set My the number of nodes we can marks to m * 0

Given a boolean expression By we construct a graph that has a2

marking with 2low® cost prowvided that B is satisfiables He will then

]
[N
[N
-
o}
L
14
&
-
=3
A4
e
@i %
-
o

insure that a2 wmarking of the graph that is of

iow cost gorresponds to o set of variables that satisfies B.

Our inttial graph consists of a 20 2 wm matrixe with one column
for each clause and one rouw for each variable and one rouw for each
complements. Arcs only connect vertices in the same columne. There i3
an are from the row corresponding to variable a in column § to the row
corresponding to variable b in column § iff clause 1 of the boolean
expression B is o0f the form (% a ¢ b %ecods He assume no glause has
the same Literal occurring twice or has both a Literal and its

comp lement . Thuss each clause has at most n variables.

Mexts We add a set of k nodes {called the A-nodes? to the top of
the «garaphs For each clauses there is an arc from each of the A-nodes
tn5 the yertex corresponding to the first variable of the zlausz in the

column that corresponds to the clauses. Finallye we add at the botiom

©

0f the araph another set of k nodese talled the B-nodes. For each
clauses there d4s an arc . fros the vertex in the row corresponding to
the iast variable of the clauses and in the column corresponding to

the gclauses to each of the HBenodes. {5ee Figure 2.1 for an examples?
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Thuse if B is satisfiables we can mark all the wveriices in  the
rows corresponding to wariables uhich are trues. There will be no path
from any A-node to any B-nodes and so the cost of the marking will be
Plow"e If there 43 a path from an A-node to a Be-nodes then there 1z 2

2

path from all A-nodes to all B-nodes and the c¢ost is at least k 3

which will be "high¥.

Definition: A marking which plecks all paths from the A-npdes to the

o e i o s <R T P o T R

B-nodes is called blozking.

[ Al A A

The abowe i1s not sufficients we might be able to achieve a low
cost by marking only part of a row or marking nodes in one ros and in
a row which corresponds to the complement of the Literal corresponding
to the first row. We must guarantee a marking of Low cost corresponds

to a choice 0f trueffalse values for the Literals.

Definitiop: A marking is called proper iff

1s A& row is entirely marked or entirely unmarkeds and
2. For each varlable x» elither the row corresponding to
x or not x s markeds but not boths

To insure that only proper markings have a Low coste we adds for
each pair of rows {except for the case when the rows correspond tc a
variable and its complement) k nodes to the left of the graphe. There
is an arc from each of these k nodes to each of the vertices in both
rows. In additions we add a set of k¥ nodes, called the D-nodess to
the right of the graphs and add an are from each node of the matrix to

egach of the U-nodes {see Figure 4.2}, The set of all the nodes on the
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teft ds called the C-ngdess There are 2knin-1) of thems: since for
gach of the nin-1342 pairs of distinct variabless there are &% sets of

£k nodese

A proper marking cannot block alil the sets of C~nodes from

reaching the D=-nodes. HoWevers it does block nin=-13/72 and uwe will
2
define the resulting cost af 3k ndn=13172 to Dbe Plowv, An dmproper
2

marking will dncur an additional cost of k ¢ which we g4ill define to

he ¥high®,

Finallye we will add an arc from e2ach of the A=-nodes to each of
the D-nodess and an  arc from each of the C-nodes to each of the
B=nodese This wWways ®We are sure syery A-node c¢an reach euyery D-=nodes
and ewvery LC=node can reach every B-node independenily of how the

matrix is marked. Schematicallys the graph now loosks as shoun in

Figure 4.3

Nowse we are ready to prove the theorem?

-

he graph constructed above has 2 marking Hi, 8] = m +* ns with

COSTe(W®Y € F #ff the boolean expression 8 is satisfiable.

Clearlye we have already established the follouwing Lemnmas

iz There is a proper blocking marking H® for the graph 1ff B

I¥ we can prove that a marking W' has cost € F §ff it is proper and



- blockings then we have established the theorem. This 43 done in the

following four Lemmase

Lemma 4e2: COST{W®*sCsD) 2 372 + k nin=-13}

Procf{: The Lemma %s clearly true if W 3¢ propere and further this is

the mininum wvalue of C0ST{E*:C303. 1T we don?it have a proper markings

then at most dnin=-13/2 - 11 pairs of non~-complementary rows are
blockeds Howevers #e can block at most Znin=llkmn arcs by marking =n

™

OD-nodess. Thuss for any non~blocking markings

e 2
COSTEWT 20303 2 d2ndn-1) - nin=13/2 + 13k - Znin-llkmn

2 2 2
{2nén=~1} - nin-137/2)k + &k - 2kmn {n-1}.

il

7 2

TSinces k » Zkan (n~-1}s the cost of a blocking marking s minimnunm. L]

T
i
B
E
L
[
is
[
LR
bt
by
@
abs
(‘f‘l

s proper and blockings COSTCu®) £ Fe.

Proof: de will calcuilate an upper bound on the zost of a marking H?s

by examining the components of the <cost for each sections of the

graph: s=nodess HBenodess C-nodess D=nodess and the nodes of the

mabtrix which swe will call ¥Mu-nodess Then for some of these conmponent

costss we will take the upper bound to be the number of pairs of

ronnected nodes assuming no marking at alls Note COST(HTA:A4) = (,

COSTLWE? 388 = 09 gtece Thuss

3]
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COSTEHTY = COSTLHY gA 38 + DOSTIHT AMu) + COST{H®*:A,03 =+
COSTUWH*3CeMxd ¢+ COSTLW?,CeD) + COST{W®sCsBY +
COSTCHT sMueMud + COSTIHT3Mu B + COSTIW? ¢MxsD}

Looking at these costs in details we have:

COST(H *sAsMx) £ kmns In a given columns an A=-node can only connect to
nodessy since there are n Literals per clause.

o]

&
COSTUW® 3A3D) € k¥ » The k A-nodes and the k D-nodes are all cross-
connected.

COSTUHT s CoMxIL dkmnin=13. Lach of the 2knin-1) C-nodes connects to 2
FroWs: OF Z2m Nnodes.

2
COSTLHP3CeB) £ 2k #*nin~-1}. Zach of the 2knin-1) C-nodes connects to
each-o0f the k B-pnodese.

COSTUWY sMusMx) € mnin=13/2. In each of the m columnss the nodes of the
clause gre connected together and there are at most n variables 4n
the clauses

2

COSTH{H Y g8} € kK - Same as COSTLHTsAsMulds

COSTOH s¥x30) £ 2kmn. ELach of the nodes of the matrix is connected to

each of the D=nodes.

Thuss

2

COSTLd®; COSTUH¥ A8} + kun + k  + Skmnin=13 + COST{U?,C;D)
o
£

i

2k ranin=-13} + manin-1:/2 + kmn + Z2kan

]
Pl

3

2
K + 4ksn ¢ 2k #nin-1} + mnin-=-13}/2
+ COST4HT 38,81 + [O0ST4W2,C,00

i

:

Tf Wt is roper and blockings then
Y]

t

COSTLH® A58}
2 2
COSTEH® a0 = {2nin=-1F = nin=131/2%1k = 3/2+k #nin=11t.

o
-
s
D

e Lat

fiaed

er guantity comes from the fact that we block nin=-1)/2 pairs

of non-complementary rous.

The total cost for 2 proper blocking marking i3

2 2 2z
COST(d®} = k + 4kan * 72+ #pnin-13% * mnin-13742
Yiv 2 2 2
2k = 1 = kmn = 4kmn {n-13 # T/2+k 2nin=-13 = ¥F. [

i
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Lemma 4.41 TF W® iz not blocking then CO0ST4H®} > Fa

Proof: If the markings H%s i3 not blockings then

COSTCHT sAsBY 2 kxik - mnds

{since there is a path from the &f~nodes to the B-nodess:s but we can
z
block mnk paths by marking mn B-nodess} Hence
COSTEH? ) 2 COSTLUFeAB) + COST{H"3C:00 +» COSTIHT A0 » COSTIWY 5C+8)
2 2
2 k = kmn + 3nin-1)k /2 + (k - mn)k + Zni{n-1lks{k-mn}
2 2 2 2 2

=k = Pkmn ¢ 5722k xpin=13 ¢ k 2+ 2k xnin-=-13 - Z2kmn 2{n-1}

2 2 2
= 2k = 2kan + {/2xk xnin=-1} - 2kmn #{in-1}

2 2 2
2k = kmnn + T/2+«k #*pin-1} = 4kmn {(n=13 > Fo.

(1%

The lower bounds on COSTILH?3A4.,0) and COSTIHY sCs8B3 are achiswved by

using the mn nodes to mark nodes in the smaller of the ftws sets. [

temma 452 11 W® 33 not proper then COSTLWTY 2 Fo

Proof: If W* partially blocks one rows or W' Dblocks two rous
corresponding  to a wvariable and its complements then at most nin-13/2
+ 1 pairs of non-gaemplementary rows can be blocked, s0

2 2 2
COSTLH® 3CsD) 2 3/2%k #=nin=-13 + k = Zkmn (n=-1j.
Thus s
COSTiW®} > COSTLHTRCD) + COSTLUWFsA40) + COSTIHY LB

2 2 2
= 3/72«k apin-13% % k - Z2kmn in=13 + kik~-mn? + 2nin-1tks{k-mnl

> Foa L1

By all of the precedings we have?
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- Theorem 4.12 Problem ¢4 is NP-completes
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A DAG describing the relationship between different views of a database.
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FIGURE 2.1

An especially simple class of graphs
for which Problem 2 ig NP-complete
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For all x in ¥s traversing G in postorders do begin

et the sons of 2 be ¥ se2e9y

1 k

do
then minclosedial 2=z
else minclosediam]l 3=z

s,
PN
W e
o
L4

i 2=z 1 to k do

Page 37

minclosed = convolutelminclosedsmincostly 207333

e
tailiprob iz pix}:s

For tlen 2= 0 to depthix} do begin

for m 2= 0 to H do
minopenial Iz cdx) + taliprob;

for 1 Iz 1 to k do

convolutelminopensmincostly stlensl 133

3

for m := 0 to M do

mincosilxstlenenm] = mini{minclosedimleminopenin

if anc <> rooit then begin

anc = fatherdianch;

taflprob Iz tailprob +» plancs
end

Figure 3.2

A PASCAL implementation of the

algorithm,.
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E%i > n/2 nodes

Figure 3.3

A worst~case tree,.

LE TR Z v >

Figure 3.4

A transformation that increases f.
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N
2 (\r k nodes

S
DA 9?:) ;}~ n~k nodes

Figure 3.5

The form of a tree whose cost cannot be increased by the transformation.
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convolution
(0,20) 20
(2,16) “;gm
C50) 16
¥ 16
(5,10 16

$>26)) 10 :
) 10
& 6

(7, 6)

FIGURE 3.6
Forming a convolution using lists.
The convolution process is illustrated on two lists with M = 7. The pairs

in the result which are crossed out are generated and then eliminated. For
reference the vector corresponding to esach list is shown.
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An dnput DAG to the algorithm.

The first number within each node gives that view's size. The
second gives its cost. The dotted node is a leaf and has been
deleted, All nodes hawve equal probabildity.
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:
)

v

- = — B nodes

Figure 4.1

The connections between the A-ncde, B-nodes and matrix for the expression

{xl + %, + %S}{?l + X, + xa}(ﬁi + ?é + Eé). Fach small circle corresponds

to one vertex in the matrix. Each large circle corresponds to k vertices.

Figure 4,2

"he connections between one group of the C-nodes and the D-nodes. Two vows
f the matrix are shown. They do not correspond to a wvariable and its com~

plement,

o
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Figure 4.3

A schematic view of the entire graph.
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