X.25 PACKET LEVEL COMMUNICATION PROTOCOLS:
AN INTERPRETATION AND PROPOSED
IMPLEMENTATION FROM DTE VIEWPOINT

Bijendra N. Jain¥*
Department of Computer Science
University of Texas at Austin

Austin, Texas 78712

TR 187 November 1981

*The author is on leave from Department of Electrical Engineering, Indian
Institute of Technology, Delhi 110016, India. His work in India was
supported in part by Department of Science and Technology {(Government of
India) Grant No., 13(12)/79-SERC. This report is also available as a
technical report from Department of Electrical Engineering, Indian

Institute of Technology, Delhi, India.

ABSTRACT

This report is an attempt to interpret CCITT X.25 Level 3 (Packet Level)
procedures to be used across the interface between a Data Terminal Equipment
(DTE) and Data Circuit-terminating Equipment (DCE) operating in a packet mode
on public data networks. The procedures enable the establishment and operation
of a number of virtual calls and/or permanent virtual circuits between the DTE
and DCE through the use of logical channels.

The interpretation of the interface description is given in the form of a
set of procedures written in PASCAL that also suggest its implementation on a

DTE.

CHAPTER 1

INTRODUCTION

1.1 X.25 Communication Protocols

The past decade has seen the development of a growing number of public data
networks that support computer communication, either in the form of experimental
or commercial networks based on packet switching (U.S.A. : Telenet, Arpanet,
Canada : Datapac, France : RCP, U.K. : EPSS, Japan : DDX, etc.). In their early
stages each metwork developed its own procedures for data terminals to access
network facilities. 1In an attempt to facilitate connection of the variety of
data terminals (host computers and smart terminals) to message siwtched data
networks, CCITT has over the past few years developed a number of standards
known as 'recommendations'. Recommendation X.25, pertaining to an interface
between a data terminal and a network node, is one of the most widely discussed
and accepted in recent years.

The CCITT recommendations X.25 /1/ attempt to standardize the interchange
of data between a user terminal or a host computer (technically known as Data
Terminal Equipment (DTE)) and the device, known as Data Circuit Terminating
Equipment (DCE), through which the DTE accesses the network. It thus specifies
the functional characteristics presented by the network to a DTE connected to
it, and visa-versa. These are logically divided into three levels (see Figure 1.1):
Level 1: the physical level,

Level 2: the frame level,

Level 3: the packet level.

The physical level interface requires the use of full-duplex, point-to-point
synchronous circuit operating at 1200 bps to 48000 bps in accordance with X.21
or X.21 bis recommendations /1/. This thus provides a two-way simultaneous

path between the DTE and the network node, viz. DCE.

The frame level procedures provide a means of error-free, in-sequence
communication of information or packets generated and interpreted by the
higher packet level interface. The frame level specifies the use of High-
level Data Link Control (HDLC) compatible data link control procedures:

the formats used to enclose level 3 generated packets resulting

in I frames;

the use of supervisory control frames to acknowledge or reject

an incoming I frame, or to indicate the status of the device

as a receiver; and

the control frames - so called Unnumbered frames - used to set up,

disconnect or reset the link.

1.2 ©Packet Level Interface

The packet level interface provides for the simultaneous establishment
and operation of a number of logical communication channels between a DTE and
the DCE. These communication channels are referred to as permanent virtual
circuits or (temporary) virtual calls, depending upon whether the logical con-
nection is established on a permanent basis in agreement with the network ad-
ministration at the time of subscription to service, or on a temporary basis as
and when required. Procedures have been laid down for initializing the
permanent virtual circuits (PVC), establishing, clearing and initializing
virtual calls (VC), and for the transfer of user data on PVCs and VCs. Once
a virtual call has been established, its operation is no different from that
of a PVC.

A PVC or a VC, while providing a logical communication channel between
the (DTE,DCE) pair, in fact provides an independent communication between a
local DTE and some remote DTE specified at the time of subscription to service
(in case of PVCs) or at the time of establishing the call (in case of VCs).
This is achieved by establishing a similar logical pPVC or VC at the remote

DTE-DCE interface. The responsibility of establishing and maintaining a

4

one-to-one corresponding between the local PVC/VC and the remote PVC/VC rests
with the network. Figure 1.2 provides a simple example of how a given DTE
simultaneously communicates with other DTEs through the use of PVCs/VCs.
Figure 1.3 illustrates how one such logical communication between two DTEs is
established by associating a logical channel number

with each of local and remote PVC or VC. The correspondence between the local
and the remote PVC or VC is maintained by the network by, for example, esta-
blishing an intranet PVC or VC with its own logical channel number. Thus, as
in Figure 1.3, user data generated by higher level software at DTEl, and
transmitted over PVC/VC numbered x to DCELl (upon being communicated over the
corresponding intranet PVC/VC numbered a between DCEl and DCE2) would be
delivered by DCEZ to DTE2 on PVC/VC numbered y.

The packet level software has interfaces with the Link level access
software (Level 2) as also the higher level software which issues commands for
setting up (or disconnecting) VCs and for transmission and reception of user
data. The Link level interface provides a reliable (viz., érror—free and in-
sequence) communication link between the DTE and the DCE over which packets
pertaining to all the PVCs and VCs of the packet level interface are communi-

cated as Information frames (see Figure 1.4).

1.3 Report Qutline

This document reports our attempts to understand and interpret the above
packet~level procedures with a view to implement the relevant software on a
data terminal. The interpretations, written in the form of PASCAL procedures,
are based upon the X.25 Recommendation approved by CCITT in March 1976 /i/. The
revisions made in 1977 and 1980 (See /2/, /3/) shall be incorporated in a
subsequent report. The implementation of these procedures from the viewpoint
of the DCE shall have to consider its interface with the intranet protocol
software. This shall be the subject of a report currently under preparation.

In Chapter 2 we discuss, qualitatively, the procedures to set up,

disconnect and operate a VC or a PVC. We also discuss the procedures for
interchange of user data under flow control. Aspects of the procedures that
are secondary to the operation of a PVC or VC have been omitted for simplicity.
Chapter 3 discusses the implementation of these procedures (written in PASCAL
and listed in the Appendix) and their interface with the higher level system

software and with the Link level interface software.

Higher Higher
Sfccan wonmn mwvesst awom e o]

Levels Levels

3. Packet Level 3. Packet Level

s amaony s o s o0

2. Frame Level 2. Frame Level

1. Physical Level 1. Physical Level

DTE DCE

Figure 1.1: X.25 protocol layers

DTE 2

DTE 1

DTE 4

Figure 1.2: A DTE may establish multiple communication circuits/calls
with one or more remote DTEs.

DTE 2

DTE 1

Correspondence maintained by Network

DCE 1: ({(DCE2,a) = f(DTEl,x)

(DTE1l,x) = g(DCE2,a)
DCE 2: (DCEl,a) = f£(DTE2,y)
(CTE2,y) = g(DCEl,a)

Figure 1.3: Illustration of a logical communication channel between
two DTEs.

Frame Format

HDLC Flag

HDLC Address

Packet Format: HDLC Control

GFI Logical

Channel no.

Control c/D . HDLC ~
Information
Field

Additional

Packer

Header

and/or

User Data

HDLC

FCS

HDLC Flag

GFI1: General Format Identifier
C/D: Control/Data

Figure 1.4: X.25 Level 2 frame and Level 3 Packet formats.

10
CHAPTER 2

PACKET LEVEL PROCEDURES

This chapter discusses the packet level procedures pertaining to the
reinitilization of all permanent virtual circuits (PVCs) and virtual calls
(VCs), i.e., the restart mechanism, the establishment and disconnection of
VCs, viz, call set up and call clearing phases, the mechanism to reset a PVC
or a VC, the transfer of interrupt data over a PVC or a VC, and the interchange

of user data. But first we discuss the numbering of PVCs and V(s.

2.1 Logical Channel Number

As mentioned earlier in the last chapter, a PVC or a VC while establishing

a circuit or a call between a DTE and the local DCE, in fact provides an
independent channel between this DTE and some remote DTE. 1In other words
packets pertaining to the DTE pair

local DTE, remote DTE
are communicated over a corresponding PVC or a VC which exists between

local DTE, local DCE
as also over the corresponding PVC/VC between

remote DCE, remote DTE
at the other end. The network protoccls are responsible for communication
between

local DCE, remote DCE
Each PVC or a VC has associated to it a Logical Channel Number (LCN). This
number, instead of the address of the local and remote DTEs, is used to
identify packets on the local interface and similarly at the remote DTE-DCE
interface. An LCN is assigned to a VC at the time of requesting its establishment
from amongst those available. Towards this, the range and number of LCNs that
can be used by a DTE are pre-specified, just as are the LCNs for permanent VCs.

The LCN appears in every packet, and is coded as 12 binary bits.

11

2.2 Call Establishment and Call Clearing

The establishment of a virtual call is initiated primarily by a DTE -
either a local DTE or a remote DTE. In the latter case the local DCE acts
on behalf of the remote DTE. The DTE initiating the process is called the
"calling DTE', while the other DTE is referred to as the 'called DTE'. If a
logical channel number (LCN) is available (or equivalently if a VC is in a
gtate of being 'Ready'), then it is assigned to the VC being established. The
DTE transmits a Call Request to the local DCE, with the LCN and the DTE
addresses specifically mentioned, and awaits a response from the local DCE.

The network, in fact the remote DCE to which the remote DTE is connected then
transmits to the remote DTE an Incoming Call with an available LCN relevant

to the remote DCE - remote DTE interface. TIf the call is accepted by the

remote DTE then it reéponds with a Call Accepted packet (with the LCN of the
remote interface), thereby establishing a VC at the remote interface. The local
DCE on receiving an intimation from the remote DCE then responds with a Call
Connected packet this time mentioning, therein, the LCN of the local interface
(see Figure 2.1). During this end-to-end VC establishment the network establishes
the correspondence (may be indirectly through an intranmet VC established

hetween the local DCE and the remote DCE) between the local VC LCN and the

LCN of the VC at the remote end., Subsequently, when user data or other control
packets are to be communicated these are identified by the LCN of the VC relevant
to the interface alone.

Figure 2.2 gives the state transitioms during Call set-up as interpretted
by/for a DTE. There are two differences between this and those given in /1,
Figure 15(a)/. The first pertains to the Call Collision state (p5). The LCNs
available for establishing VCs on a particular DCE/DTE interface are shared
between the DTE and the DCE. Thus, it is gquite likely that due to communication
delays both the DTE and the DCE use the same available LCN in their Call Request

and Incoming Call packets. This leads to collision (see Figure 2.3). The

12

recommendations stipulate that the DTIE shall, in effect, ignore any such
Incoming Call packet, while the DCE cancels its earlier Incoming Call packet
and retransmits it, with a new LCN, if available. Thus, the DTE never enters
the Call Collision state, as shewn in Figure 2.2.

The second difference is in the manner in which the DTE accepts an
Incoming Call. As shown in Figure 2.2 the DTE responds with a Call Accepted
packet every time it receives an Incoming Call. 1If, however, the call is not
acceptable then a call clearing phase is initiated. (It must be mentioned
that the state diagrams given in Figure 15-17 in /1/ are from the DCE view-
point while we are concerned with their implementation on a DTE).

Given the above scheme, it is transparent to the network DCEs whether there
is, in fact, a VC set up between a given DTE pair. Thus, it is possible to
have multiple connections being set up between a given (local DTE, remote DTE)
pair. These multiple connections shall, however, use distinct VCs on each of
the local and remote DTE/DCE interfaces.

At the time of end-to~end call set-up there is provision for the DTE to
request (and possible negotiate with) either the local DCE or the remote DTE
certain available facilities or parameters thereof. The recommendstion on
this are incomplete and are for further study by the CCITT group. For this
reason their interpretation and implementation is being deferred. For the
moment every Call Request and Incoming Call packets shall have a Facility
Length of 0. Call User Data, as indicated in the Call Request Packet shall
transparently be communicated to the remote DTE via the Incoming Call on the
remote interface. The maximum length of such data is 16 bytes.

For any of the many reasons listed in Table 7/X.25 of the recommendation
/1/ a virtual call can be cleared. This procedure, again, has an end-to-end
relevance, in that the clearing of the VC on the local interface is incomplete
ti1l the corresponding intranet VC (between the local DCE and remote DCE) as

also the VC on the remote interface are cleared. This is illustrated in Figure 2.4.

i3

Figure 2.5 illustrates how clearling takes place when the two DTEs (more or
less) simultaneously initiate the clear procedure - more or less in the sense
that each of the devices is unaware of the other having initiated the process.
(Note that, in contrast, when two DTEs initiate a call set up procedure, more
or less, simultaneously then two distinct end-to-end calls would be set up).
Figure 2.6 gives the state transition diagram pertaining to the implementation
of the clear procedure from the DTE viewpoint. Here again it is assumed that
the DTE shall positively respond with a Clear Confirmation packet whenever it

receives a Clear Indication from the corresponding DCE.

2.3 The Restart Procedure

The restart procedure is used to simultaneously initialize the PVCs and
VCs, that is to clear all virtual calls, and to reset all permanent virtual
circuits. This may primarily be invoked when the DTE or the DCE detects a
local procedural error. The DTE may transmit a DTE Restart Request to the
corresponding DCE, and enters the state {(rl) where it awaits either a Restart
Confirmation or a similar request (DCE Restart Indication) from the local DCE.
The local DCE would then attempt to clear (or reset) all the intranet calls
(or circuits) that pertain to the PVCs and VCs on the DTE-DCE interface. If
successful, it would have thereby selectively cleared {(or reset) the VCs
(or PVCs) at remote interfaces that correspond to the VCs (and PVCs) being
restarted. Thereupon, the DCE confirms the restart of all VCs and PVCs by
transmitting to the DTE (which initiated the process) a DCE Restart Confirmation
packet. The DTE (as also the DCE) is then ready to establish new VCs or to
transfer Data and Interrupt packets on permanent VCs, i.e. the logical channels
are in the state of being "Ready" or in the case of PVCs, "Flow Control
Ready'. Figure 2.7 illustrates the restart procedure, while Figure 2.8 gives
the corresponding state transition diagram from the viewpoint of a DTE. Also

shown in these figures is the restarting of PVCs and VCs by a DCE.

14

It must be emphasized that the Restart procedure is local to the DTE~DCE
interface. However, when a particular DTE~DCE interface is restarted, the other
interfaces are effected but only to the extent that a few selected VCs (or PVCs)

are cleared {(or reset),

2.4 The Reset Procedure

This procedure is equally applicable to VCs and PVCs, and is used to
reinitialize a VC or a PVC for data transfer. It is invoked whenever procedural
errors are detected while transferring user Data or Interrupt packets over a
channel, already in the data transfer state. The procedure is end-to-end,
in that, 1f a VC is reset on an interface then the corresponding intranet
VC between the local DCE and remote DCE and the VC at the remote interface
are also reset. Further, the VC or the PVC is reset in both directions
simultaneously.

Figure 2.9 gives the DTE state transitions during a reset operation.

Figure 2.10 illustrates the resetting of a PVC or a VC by either a DTE or a DCE.

2.5 Data Transfer

User data generated by a higher user-level software is transmitted across
the DTE~DCE interface as a Data packet on the appropriate PVC/VC. It becomes
the responsibility of the network to transport it across to the appropriate
remote DCE, and to deliver it to the destination DTE on the relevant PVC/VC.
The rate of flow of data packet on each of the PVC or VC is controlled by an
acknowledgement process existing across the DTE-DCE interface. For every data
packet transmitted by a DTE or a DCE across the interface, an acknowledgement
is expected. This acknowledgement may specifically have to be generated by the
receiving device or may be implied in some data or control packet transmitted
in the reverse direction. For this purpose data packets are sequentially
numbered 0 to 7 (modulo 8). This number is referred to as the packet send

sequences number, P(§).

15

The flow control of data packets in a given direction is achieved by
prohibiting a device from transmitting a data packet if already there ére W
number of unacknowledged data packets. (W is referred to as the size of the
window, and its value, common to all PVCs and VCs, is determined at the time
of subscription to the network services, but in no case can it exceed 7). 1In
other words the first data packet not authorized to cross the interface would
have a P(8) = P(S) of the data packet last acknowledged + W + 1 (modulo 8).

In order to acknowledge an incoming data packet the receiving device
transmits across the interface a number P(R), referred to as the packet

receive sequence number. This number, P(R), conveys information on the status

of the device as a receiver of data packets. A P(R), when received, is inter-
pretted as an acknowledgement of data pacéets sequentially numbered upto but
not including P(R). But before acknowledging the receipt of an incoming data
packet the receiving device must determine whether the data packet is acceptable
and, if so, whether an acknowledgement can be initiated. A data packet is valid
and acceptable provided the receiver is 'nmot busy' and its P(S) is within the
range (read this modulc 8)

last transmitted P(R) < P(S) < last transmitted P(R) + W.
It is important to note that the receiver does not expect the sequentially
numbered data packets to arrive in the same sequence. (The motivation for
providing this flexibility is not understandable, especially in view of the
assumed, in fact, implied reliability of the Level 2 interface). If earlier a
data packet with the same number had been received but not acknowledged then
the current reception of the data packet is treated as being redundant. An
acknowledgement can then be initiated provided the received data packet has a
P(S) equal to the last trasmitted P(R). In other words, if the received data
packet has a P(S) other than the one anticipated then it cannot be acknowledged

until all data packets expected to arrive earlier (and sequentially numbered

accordingly) have been received correctly. As an example let the last

16

transmitted P(R)=2, and W=4. A P(S) is valid provided 2 < P(S) < 5.
If a data packet with P(S) = 3 arrives then it is accepted, but an acknowledgment
cannot be initiated. Subsequently, if again a data packet with P(S) = 3 arrives
then it is treated as being redundant. If a P(S8) = 2 arrives then an scknowl-
edgement for data packets numbered 2 and 3 is initiated in the form of a P(R) = 4.

Acknowledgements are generally piggybacked onto an outgoing data packet in
the form of a P(R) written into the control byte, viz. the»packet type identifier.
Alternatively, 1f no such transmission if pending or possible then a flow con-
trol DTE/DCE Receive Ready packet is transmitted. This packet can also be used
to clear a busy condition of the device as a receiver, if it exists. An
indicatiqn of the device becoming busy can be given by transmitting across the
interface a DTE/DCE Receive Not Ready packet which also carries the packet
receive sequence number P(R).

If a data packet with an invalid P(S) is received then the VC or PVC is
reset.

The format for a data packet identifies two special bits, known as the
Data Qualifier bit, Q, and the More Data bit, M. The Q bit may be used to
multiplex data packets pertaining to two distinct streams onto one logical VC
or PVC, or alternatively to identify a string of data packets belonging to omne
complete sequence or as being logically related to each other. The more data
bit, M has a similar interpretation, except that it indicates that the packet
with the M bit set to 1 and the one following it are part of the same message.
1t, thereby, implies that a packet with the M Bit set to 1 may be recombined
with the packet sequentially numbered next. This provision enables varying
limits on the length of the data field. That is, two DTEs may have different
allowable data field lengths, and the allowable length at the interfaces may

differ from that permissible within the network.

17

2.6 Interrupt Packets

Independent of the facility to transfer user data on each of the VCs
or PVCs, there is provision to transfer in each direction short Interrupt
packets that contains a user generated data byte. The receipt of each Interrupt
packet is acknowledged by the receiver transmitting in the reverse direction a
DTE/DCE Interrupt Confirmation packet. The number of Interrupt packets for
which an acknowledgement is outstanding at any time is at most 1. Thus if an
Interrupt packet is received by a device while it is processing an Interrupt
received earlier then is construed as a procedural error and the VC/PVC is
reset in both directions. TFurther, if a device were to receive an Interrupt
Confirmation packet when no such Interrupt packet is pending acknowledgement
then again the VC/PVC is reset.

It is particularly relevant to note at this point that if a packet
pertaining to the interrupt facility were to be duplicated, for example, by the
level 2 1ink level procedures then either there is loss of synchronization

between the DTE and the DCE or the relevant VC/PVC is reset.

2.7 Optional Facilities

At the packet level interface many optional facilities exist. These may
or may not be built into the network. Additionally, even if these have been
built in as part of network characteristics, their availability to a particular
DTE is determined either at the time of subscription of (even) at the time of
establishment of a VC. These include:

Reverse Charging

Flow Control Parameters Selection

One-way Logical Channel

Packet Retransmission

Tn view of the fact that the recommendation on these are incomplete, discussion

on these optional facilities, and their implementation is being deferred.

18

The more recent revisions to these recommendations envisage a mechanism
for requesting and transmitting an end-to-end acknowledgement of user data
packets (see /2/). Towards this purpose one of bits of the general format
identifier is set to request an end-to-end acknowledgement for the particular
data packet. This bit is referred as the D bit. (It may be pointed out that
the handling of the D bit is more of a problem of the DCE than of DTE.)

These revisions also now include two new capabilities suited to communi-
cation of small amount of data. The first provides a datagram service to
independent messages, while the other, referred to as the fast-select, provides
for transfer of 128 bytes of user data at the time of VC establishment. These
revigions shall be taken up when more details on these new services become
available.

The Appendix provides a listing of the PASCAL procedures using which the
procedures for initializing, setting up, clearing, data transfer, or resetting
a VC or a PVC as described in Sections 2.2 ~ 2.6 may be implemented. In the

next chapter we discuss these procedures briefly.

Intranet Communication

19

4 @ N
DTE 1 DCE 1 DCE 2 DT
Call Request |~ Intranet Call Request
(LCN x; ~—
DTE 1,DTE 2) T~ — Incoming Call
- (LCN v
T DTE 1,DTE 2)
T
-4 Call Accepted
— (LCN v)
/
™
o
i
P
/
’/””"”’,,ef Intranet Call Confirmation
Call Connected
(LCN x)

Figure 2.1: End-to-End Call Set-up.

DTE: Call

Request

DCE:

DCE: (DTE:

Incoming —¥~ ¢
Call .L

DCE:

Call
Connected

Figure 2.2:

Incoming Call
Call Accepted)

i

DTE State transitions during Call Set-up.

20

DTEL DCE1L DGE2 DTE2

-\~\‘\\\\\~ . Incoming

Call \EEFranet Call Call
Request ~s Request (LCNy1) Call Request

~ (LONy1)
™ /

Intranet Réfuest -
(Corresp. to \\\\Nk“\<f:
LCNy1)

1 Call
A Accepted

/
Call - (LCNy2)

Connecteg Intranet Call
Confirmation
Figure 2.3: Call Set up with Collision.

\\;I;;;\\“xlntranet Clear

Request T Request
\
T

Clear
~tIndication

‘*~\\‘\\\\\\

Clear
_a— - Confirm.

Clear -~
Confirm.

Intranet Clear
Confirm.

DTEL DCElL DCE2 DTEZ2

Figure 2.4: End-to-End Clearing of a VC.

DCE: Call
Connected |

Figure 2.5:

Clear
equest
Clear
Request Clear
~ Indlga— Clear
B tion Request
~
\é<
7 —
e 9 Clear
- Indica~-
Clear _flear Clear tion
Confi : Request
/////jyk Confirm.
(a)
Clear
Clear Reques
Clear Request
Request Py
o,
PSS
g
L~
Clear
//,A///’ equest
Clear
Clear Confirm
Confirm
(e)

S~

Clear
Request

-~
A

\\
Clear
Confirm.

21

Clear

Clear

(b)

Clearing of a VC initiated by both DTEs simultaneously.

Confirm.
or Clear
Indicatior

DCE:

Clear Indication
r,f;(CTE: Clear Confirmation)

Figure 2.6: DTE State transitions during Clearing of a VC.

Remote Remote
DTE] DCE1 DCEs DTEs
\ Clear/Reset
Restart \\\?equest(s)
Requegt
q :::I:::: ~ Clear/Reset
fT = Indication(s
: s~ ndication(s
o, : °
T — & \
— ;
- ’
P ~ L
:::"7’ : 7 Clear/Reset
. . . ;
- Confirm(s).
Restart | -
Confirm. Clear/Reset
/ Confirm(s).
(a) DTE Initiated
Remote Remote
DTEL DCE1 DCEs DTEs
Res?art. Clear/Reset Clear/Reset
Indication o e .
h\:’:}equesﬂ;(s) Indication(s)
— N -
. ~ - \\
est?rt ~
Confirm.
/ \
A /
&
/ /
L Clear/Reset
o A . .
- Confirm{s).
/
Clear/Reset
Confirm(s).

(b) DCE Initiated

Figure 2.7:

The Restart Procedure Illustrated.

22

23

\ DCE: Restart Indication

DTE: Restart (DTE: Restart Confirmation)

Request

DCE: Restart Indication or
Restart Confirmation

DTE: Restart
Request

Figure 2,8: DTE State transitions during Restart.

DCE: Reset Indication
(DTE: Reset Confirmation)

DCE: Reset Indication or

Reset Confirmation

DTE: Reset
Request |

Figure 2.9: DTE State transitions during Reset.

DTEL DCE1 DCE2 DTE2

] ~—.. Request
Request ~a_
T Reset
™~ Indication
_~~ Reset
A Confirm.
" -
Reset
’//’/f‘/”/” Confirm.
Reset
Confirm.
(a) DTE Initiated
DTE1 DCE1L DCE2 DTE2
Resget Reset
Indication ., Request
e
N Reset

™ Indication

/

Confirm.

= Reset
S Confirm.
—
"
Reset
Confirm.

{(b) DCE Initiated

Figure 2.10: The Reset Procedure.

25
CHAPTER 3

A PROPOSED IMPLEMENTATION

In this chapter we discuss an implementation of the X.25 Packet Level
procedures. The attempt here is to give a more definite interpretation to
these recommendations rather than to write a code that is directly implement-
able. PASCAL as a programming language is not well suited for real time
programming. But because of its structured constructs it makes specification
of an algorithm simple, readable, and easy to modify. The actual implement-
ation would be in some real-time programming language or in an assembly
language, capable of handling interrupts. In the Appendix we give a collection
of procedures written in PASCAL that are invoked as it becomes necessary. No
attempt is made, therein, to show the nesting of these procedures. There is a
large set of global variables that are accessed/modified by the various
procedures. Further, a number of procedures pertaining to the lower frame
level X.25 recommendations are assumed to be available. Additionally, certain
basic procedures/functions that pertain to queue/stack handling, or to accessing

specified bits of packet are assumed.

3.1 Elementary Procedures

In the following we list the elementary procedures that are assumed to be
available.

Given a buffer address the following functions provide the specific
components of a packet contained in the buffer:

Compute Packet type (k : Buffer Address) : byte;

Compute Channel no. (k : Buffer Address) ¢ Channel no;

Compute Calling DTE Address (k : Buffer Address) : DTE Address;

Compute Called DTE Address (k : Buffer Address) : DTE Address;

Compute Q(k : Buffer Address) : bit;

Compute M(k : Buffer Address) : bit;

Compute User Data (k : Buffer Address) : Data string;

26

Compute Interrupt Data (k : Buffer Address) : byte;

Compute PR(k : Buffer Address) : 0..7;

Compute PS(k : Buffer Address) : 0..7.

Similarly, the following procedures write the corresponding packet components
into a buffer:

Write GFI(k : Buffer Address);

Write Packet type (k : Buffer Address ; t : byte):

Write Channel no (k : Buffer Address ; x : Channel no);

Write Calling DTE Address (k : Buffer Address ; 1 : DTE Address);

Write Called DTE Address (k : Buffer Address ; j : DTE Address);

Write Q(k : Buffer Address ; Q : bit);

Write M(k : Buffer Address ; M : bit);

Write Use Data (k : Buffer Address ; User Data : Data string);

Write Interrupt Data (k : Buffer Address ; Interrupt data : byte);

Write PR(k : Buffer Address ; PR : 0..7):

Write PS{(k : Buffer Address ; PS : 0..7).

Write Clearing Cause (k : Buffer Address ; y : byte);

Write Resetting Cause (k : Buffer Address ; y : byte):

Write Diagnostic Code (k : Buffer Address : y : byte):

rite Restarting Code (k : Buffer Address ; y : byte).

A list of all available logical channels needs to be maintained. This
list is dnitialized to include all numbers ranging from Max Perm VC no + 1 to
MaxVC no by invoking procedure Initialize Available Channels.

Further the

procedure Get Channel (X§£ x : Channel no):

procedure Return Channel (x : Channel no) are used to obtain the number
of an available logical channel, and to return to the list a logical channel
number as soon as the corresponding VC becomes 'Ready’. Since the X.25 Recom-

mendations do not suggest the order im which the logical channels are to be used

27

(as far as a DTE is concerned) the list could be implemented in any manner.
(in the above MaxPerm VCno and Max no are the largest numbers corresponding
to a PVYC or a VC, respectively.)

The following functions/procedures enable specific operations to be per-—
formed on a given queue:
function Head of (Q : Queue Pointer) : Buffer Address;
function Tail of (Q : Queue Pointer) : Buffer Address;
function Is Empty (Q : Queue Pointer) : Boolean;
function Length (Q : Queue Pointer) : integer;
procedure Add First (frame : Buffer Address ; Q : Queue Pointer);
procedure Add Last (frame : Buffer Address ; Q : Queue Pointer);
procedure Behead (Q : Queue Pointer);
procedure BeTail (Q : Queue Pointer);
procedure Merge (Ql, Q2 : Queue Pointer);
procedure Initialize Q (Q : Queue Pointer),
While the operations of these routines are obvious, it needs to be mentioned
that the Merge procedure achieves:

while length (Ql) > 0O
do begin Add First (Tail of (Q1) , Q2);

BeTail (Q1)
end

A statement used often in the procedures listed in the Appendix is
Incase €l :81 ;¢C2:823; ... 3 Cn : Sn ; end
or
Incase Cl : 81 ;€ :823; ... ;C: Sn ; else SO end.
This statement is not available in PASCAL, and differs substantially from its

case statement. Its meaning is

if C1 then S1 else if C2 then S2 else ... if Cn then Sn;

if C1 then S1 else if C2 then S2 else ... if Cn then Sn else 50,

respectively, where Ci is a Boolean valued expression and Si is any statement.

The Incase statement has been introduced to improve readability.

28

3.2 Level 3 - Level 2 Interface

The Level 2 software may monitor the following variables which define
the state of Level 2:
var Level 2 Enabled,

Link Setup In Progress,

Data Tx In Progress,

Link Disc In Progress : Boolean
and may issue commands to bring the level 2 into the active channel state,
to initiate Link Setup or Link Disconnection procedures, or to transmit or
receive a packet. It does so by activating one of the following:
procedure Enable Level 2
proceéute Enable Packet Interchange
procedure Disable Packet Interchange
procedure Transmit Packet (k : Buffer Address)
procedure Receive Packet

The level 2 in turn responds on executing the command (irrespective of the
outcome) by activating the appropriate
procedure Return Enable Level 2
procedure Return Enable Packet Interchange
procedure Return DisablebPacket Interchange
procedure Packet Transmitted (k : Buffer Address)
procedure Packet Received (k : Buffer Address)
procedure Packet Not Transmitted (k : Buffer Address)
procedure Packet Not Received,

In order to bring the link into the active channel state
procedure Enable Level 2
is activated which initiates the sequence of initializing the level 2 software
at both the ends of the X.25 interface. Normally, a non-zero finite, though

random, amount of time clapses before the attempt is complete. It may not be

29

successful 4if the physical level interface cannot be established. 1In either
case the level 2 activates

procedure Return Enable Level 2

with the outcome of the attempt recorded in

var Level 2 Enabled : Boolean

An one consequence of enabling Level 2 software, the pool of available buffers
is initialized. These buffers are used to recelve incoming frames and to
store outgoing frames. These are also shared by the Level 3 software through
simple routines to obtain a free buffer or to return a buffer:

procedure Get Pkt Buffer (var k : Buffer Address);

procedure Return Pkt Buffer (k : Buffer Address).

As stated earlier, the level 2 software at the other end of the interface
is also initialized. It implies that the local level2 may be enabled as a
consequence of a similar command executed at the other end. In which case, again
Level 2 Enabled := true
and the procedure Return Enable Level 2 is activated.

Once level 2 has been enabled level 3 software may issue commands for
setting up of disconnecting the link (asynchronous response mode) by invoking
the appropriate
procedure Enable Packet Interchange;
procedure Disable Packet Interchange.

(0f course, the link may be set up or disconnected at the behest of the device
at the other end of the iﬂterface.) Substantial time may elapse before the link
is set up or disconnected, and again the attempt may not succeed. In either
case the appropriate

procedure Return Enable Packet Interchange;

procedure Return Disable Packet Interchange

is activated with the outcome of the attempt available in

var Data Tx In Progress : Boolean.

The relevant Return procedure is also executed in case packet interchange is

30

enabled/disabled by the device at the other end of the interface.

Once information transfer phase has been established Level 3 can use
the packet communication capability provided by level 2 by invoking either of
procedure Transmit Packet (k : Buffer Address),
procedure Receive Packet,

It may be quite some time before the indicated packet is transmitted, and
similarly before a packet is received.

Transmit Packet dis used to instruct the level 2 to transmit at the earliest
opportunity the packet contained in the buffer identified by the argument. It
is assumed that the packet contents are uniquely determinable by the buffer
address. When an acknowledgement to a packet, transmitted earlier as an I
frame, is received the level 2 software activates
procedure Packet Transmitted (k : Buffer Address)
defined and maintained by level 3. It must be noted that level 2 does not move
packet data from one buffer to another while handling its transmission or while
awaiting acknowledgement.

Through activation of the procedure Receive Packet the level 3 software
authorizes level Z to receive and accept an additional packet (as an I frame).
Whenever an I frame is accepted the level 2 passes it on to level 3 by activating
the level 3
procedure Packet Received (k : Buffer Address).

All unacknowledged packets, as also excess receive authorizations are
returned to level 3 as soon as the link is disconnected through the repeated
activation of level 3
procedure Packet Not Transmitted (k : Buffer Address);
procedure Packet Not Received;
but before the procedure Return Disable Packet Interchange procedure is called.

For greater details on the interface and the implementation of Level 2 see

the report /4/. (Therein certain modifications will have to be made in view of

31

the fact that Level 2 and Level 3 software share the same Buffer Pool. As
one example the procedure named Receive Packet will have to be rewritten,

and all occurrences of the procedure named Packet Not Received medified.)

3.3 Level 3 ~ Higher Level Interface

The software utilizing the communication capability provided by X.25
level 3 software shall be referred to as the transport level software. It
can monitor the following variables defined and maintained by Level 3:
var Level 3 Enabled : Boolean;

State of VCs : (rl, r3):

Prev State : array tl..Max VC nol] of (pl, p2, p4, pb)

State: array [1..Max VC no] of record p:(pl, p2, p4, p6);

d:(dl, d2)
end

Interrupt Out Buffer Full,

Interrupt in Buffer Full : array [1..Max VC no] of Boolean.

These variables define the state of the packet level software or that of the
individual PVC/VC. TFurther, the transport level software may issue commands to
.initialize level 3 software,

.restart all PVCs and VCs,

.establish a VC between itself and another DTE,

.clear a VC,

.transmit user data on a PVC/VC,

.transmit interrupt data byte on a PVC/VC,

.authorize the reception of user data on a VC/PVC, or to

.accept an incoming interrupt data byte on a VC/PVC.

This it does by invoking, respectively, the following Level 3 procedures.
(Indicated within parenthesis are the conditions to be satisfied before the

particular procedure can be activated.)

procedure

procedure

procedure
{Level 3

procedure
{Level 3

procedure
{Level 3

procedure

{Level 3

32

Enable Level 3 {not Level 3 Enabled};
Restart VCs {Level 3 Enabled and State of VCs = r3};

Establish VC (var x : Channel no ; i, j, : DTE Address)

Enabled and (State of VCs = r3)};
Clear VC (x : Channel no)
Enabled and (State of VCGs = r3)}:

Transmit Data Message (x : Channel no; Q, M : bit; User Data : Data String)
Enabled and (State of VCs = r3) and (State [x].p = p4)};
Transmit Interrupt Message (x : Channel no ; Interrupt Data : byte)

Enabled and (State of VCs = r3) and

(State [x].p = p4) and not Interrupt Out Buffer Full [x]1};

procedure

{Level 3

Receive Data Message (x : Channel no)

Enabled and (State of VCs = r3) and

(State [x].p = p4)};

The packet level software,on completing the attempt to execute these commands

responds by
one of the
procedure
procedure

procedure

procedure

procedure

procedure

procedure

procedure

procedure

setting the above mentioned variables appropriately, and by invoking
following transport level procedures:
Return Enable Level 3;
V(s Restarted;
VC Established (x : Channel no ; i, j, : DTE Address);
VC Cleared (x : Channel no);
Data Message Transmitted (x : Channel no ; Q. M : bit ;
User Data : Data String);

Data Message Not Transmitted {(x : Channel no ; Q, M : bit;

User Date : Data String);
Interrupt Message Transmitted (x : Channel no; Interrupt Data : byte);

Interrupt Message Not Transmitted (x : Channel no; Interrupt Data : byte);

Data Message Received (x : Channel no ; Q, M : bit ; User Data : Data String) ;

33

When the packet level software receives an Interrupt message then it
invokes the transport level
procedure Interrupt Message Received (x : Channel no ; Interrupt Data : byte)
to which the transport level software responds by activating
procedure Interrupt Message Accepted (x : Channel no)
provided it accepted the Interrupt data.
A description of the action's taken by the packet level software upon
executing the above commands (successfully or otherwise) follows.
Provided the Level 3 is not enabled activation of the
procedure Enable Level 3
results in initializing the level 3 software. This is done by first ensuring
that Level 2 is enabled and that interchange of Level 3 generated packets is
possible via Level 2 (i.e. Level 2 is in Information transfer phase). Among
the actions taken:
.the queue of incoming packets, Pkt In Q, which are yet to be processed
is made empty:
.the number of packets Level 2 is authorized to receive is initialized to,
say, 8;
.all PVCs are moved to the data transfer state, viz. (p4, d1);
.all VCs are in a state of being Ready (pl); and
.the restart of all PV(s/VCs is not in progress,
i.e., State of VCs = r3 - a newly defined state.
Once Level 3 is enabled the transport level
procedure Return Enable Level 3
is activated with
Level 3 Enabled := true.
Alternatively, if Level 3 cannot be enabled then, too, the Return Enable

Level 3 is activated but with Level 3 Enabled = false.

34

If the local DCE were to initiate the enabling of Level 3, then,
irrespective of the outcome, the procedure Return Enable Level 3 would be

activated with the variable Level 3 Enabled appropriately set.

Restarting PVCs/VCs

The procedure Restart VCs when activated, initiates the process of
restarting all VCs and PVCs. Provided the attempt is successful the transport
level procedure named VCs Restarted is activated. It leaves all PV(Cs in the
'data transfer state' and all the VCs 'Ready'. 1In effect, all PVCs are reset
while all VCs are cleared. The variable State of V(s is again set to 3.
Similarly, when the DCE attempts to restart all the PV(Cs and VCs, the DTE responds
with a confirmation, thereof, and informs the transport level by activating

the procedure V(s Restarted.

Establishing a VC

While requiring to establish (may be redundantly) a VC between the DTE
and some remote DTE, the transport level software activates the procedure named
* Establish VC with the local DTE address, remote DTE address specified
as its argument. Level 3 immediately assigns a logical VC number and provides
it in x(which, note, is variable (address) substituted). Subsequently, when
the VC is end~to-end established the level 3 activates the transport level
procedure VC Established (x: Channel no, i, j : DTE Address).

It is relevant to note here that correspondance between the VC channel
number and the local and remote DTE addresses is maintained by the transport-
level software, but is 'read-only' accessible to the level 3 software. This
correspondence may be maintained by defining, for example,
var Local DTE, remote DTE : array[l..MaxVCno] of DTE Address.

If the VC cannot be established then it is expected that DCE would clear
the VC, and in that case the procedure VC Cleared would be activated.

If a remote DTE, or on its behalf the local DCE, were to attempt establishing

a call then this DTE (level 3) always responds positively, and the Level 3

35

software activates the VC Established procedure with the VC channel number,
local DTE address, and remote DTE address as its arguments, as before. If the
transport level does not favor this establishment of a VC, it could instruct the

packet Level 3 to clear the VC.

Clearing a VC

The transport level software may attempt the clearing of a VC by simply
activating
procedure Clear VC (x : Channel no).
The packet level software, upon receiving a confirmation to the that effect
from the remote DTE (in fact, the local DCE acting on behalf of the remote DTE),
informs the transport level by activating
procedure VC Cleared (x : Channel no)
The logical channel so cleared is put in a state of 'ready'. If a request to
clear a VC is received from the remote DTE through a DCE initiated Clear
Indication packet this DTE packet level software always responds with a confirma-
tion to it and informs the transport level, as before. But before the clear
operation is put into effect the packet layer returns all untransmitted user-
data and interrupt messages by repeatedly (if necessary) activating
procedure Data Message Not Transmitted (x : Channel no : Q, M : bit:

User Data ; Data String):

procedure Interrupt Message Not Transmitted (x : Channel no; Interrupt Data ; byte);

Transmitting Interrupt Data

The packet layer may be instructed to transmit a user interrupt message,
provided the relevant logical channel has been established and there is no out-
standing interrupt message. This can be done by activating the
procedure Transmit Interrupt Message (x : Channel no ; Interrupt Data : byte).

The packet level software transmits the Interrupt data at the earliest opportunity.

Upon receiving a confirmation from the remote DTE the packet level activates:

36

procedure Interrupt Message Transmitted (x : Channel no)

thereby indicating that it is now ready to transmit yet another Interrupt message.

Receiving Interrupt Data

Upon receiving an interrupt message from the remote DTE (local DCE) the
packet level software informs the transport level software of its receipt, and
awaits its acceptance. The transport level accepts the incoming Interrupt
message by activating the packet level
procedure Interrupt Message Accepted (x : Channel no)

The receipt of the Interrupt is now confirmed with the packet level trans-

mitting a DTE Interrupt Confirmation packet to the local DCE.

Transmitting User Data

The transmission of a user data packet can be initiated by activating
procedure Transmit Data Message (x : Channel no ; Q, M : bit ; User Data : Data String) .
This is so, provided the relevant logical channel has been established. The
packet level software then transmits the data packet at the earliest opportunity.
This happens as soon as the VC is not being reset, corresponding to the VC
the DCE is known to be not busy, and the number of outstanding data packets is
less than the number of allowable unacknowledged packets.

An acknowledgement to an earlier transmitted data packet is received in the
form of a PR. Whenever one or more data packets are so acknowledged the packet
level informs the transport level by repeatedly (if necessarily) activating
procedure Data Message Transmitted (x : Channel no 3 Q, M : bit ;

User Data : Data String).

Receiving Data Messages

The transport level software may authorize the packet level to receive
an additional user-data packet by activating
procedure Receive Data Message {(x : Channel no)

When a data packet is received from the local DCE then, privided it is a fresh

37

data packet and its P(S) is within the permissible window, this data packet
is made available to the transport level through the activation of
procedure Data Message Received (x : Channel no ; Q, M : bit ;
User Data : Data String).

The number of authorization to receive data packets on the particular PVC/VC
is reduced by 1.

From the procedures listed in Appendix it may be noted that the condition
of the DTE being busy on a particular logical channel is tied up to the number of
data packets it is authorized to receive. As soon as this number falls to

zero the DTE is said to become busy.

38
CHAPTER 4

CONCLUSIONS AND ADDITIONAL COMMENTS

4.1 Some Comments

We have presented here an interpretation of the X.25 Packet level protocols
in the form of typical histories, state transition diagrams, and finally as a
collection of PASCAL procedures. While these procedures would be greatly
helpful in carrying out an implementation of the packet level software, these
do not constitute an implementation.

To keep the presentation simple, we have avoided discussion of optional
facilities. Discussion on the recent X.25 revisions pertaining to the end-to-
end acknowledgement (the D bit) and on the datagram/fast select services has
been postponed to a subsequent report. Furthermore, whenever a reset, clear
or a restart operation is initiated the transmitted control message does not
include the reasons why such a procedure is being initiated. WNor does the
receiver interpret any of the fields pertaining to the restart/clear/reset
cause or code.

It is important to emphasize again that the interpretation of the packet
level procedure is given from the DTE viewpoint. The interpretation for the
DCE's viewpoint is similar. However, its implementation on a DCE would be
somewhat more complex, in that its interface with other packet level softwares

relevant to other DTE's and DCE's would have to be considered, simultaneously.

4.2 Duplication of Packets

The Link Access Procedures (level 2) provide the basic support for the
packet level software to be able to establish (or clear) wvirtual circuits or
to transfer user interrupt and data messages over a PVC or a VC. In considering
the effectiveness of the packet level software to provide these services one would
have to consider the support service provided by Level 2. The primary function
of Level 2 is to provide error-free insequence communication of packets.

However, in attempting to do so it may deliver (or receive) redundant copies of

39

packets. This duplication of packets may occur whenever the link level com-
munication is reset. For then, the trasmitter of Information (I) frames 1is
unaware of the status of the receiver; and upon the link being reset it

resumes transmission with the first unacknowledged I frame. Level 2 receiver
has no way of determining whether this frame contains a fresh packet of one
that was already received and passed over to the packet layer. It is for the
packet layer to determine, if it can, whether a received packet is a duplicate
copy or a fresh one. From the viewpoint of the transmit mechanism in a packet
layer, it cannot be sure if duplicate copies of its packets are being delivered
by the link level transmitter.

The way packet level protocols is defined/designed, the corresponding
receive software does not attempt to detect duplication of packets, except in
certain obvious cases.

We shall take up the duplication of control messages pertaining to packet
level protocol, first. But, it is pertinent to immediately point out that due
to procedural errors at the other end, a DTE (or DCE) may receive unexpected
control messages. The primary concern of the designers of packets level
protocol has been to handle such unwarranted transmissions. It, therefore,
recommends initiation of corrective action (aimed at achieving synchronism)
whenever an unexpected control message arrives. The receiver software does not
attempt to determine whether an unanticipated control message is a consequence
of some procedural error (at the transmitter) or that it, in fact, is a duplicate
copy of a message received earlier. It would have been more efficient if such
a determination were possible. Thus, in all cases unintended duplications (by
the level 2) when received are interpretted as a consequence of proecdural
errors at the packet level transmitter end. (The protocol does not allow for
purposeful retransmission of a CALL REQUEST whereas a CLEAR REQUEST (as also DTE
initiated Reset and Restart requests) may be retransmitted and re-received.)

Consider now the communication of Interrupt packets on a logical channel

40

and the associated packets. From the DTE's viewpoint, it expects only one

DCE Interrupt at a time. If two copies of the samé DCE Interrupt packet are
received then the link is reset. Similarly the DTE expects only one DCE
Interrupt Confirmation in response to its DTE Interrupt packet. As before, if

a DCE Interrupt Confirmation were to be redundantly received, then the VC or

PVC is reset, as the receipt of the second confirmation packet would be treated
as a procedural error. This situation can be remedied by sequentially numbering
the Interrupt and the corresponding Confirmation packets using, for example, a
modulo 2 numbering scheme. But notice what may happen when the window size at
the link level is large (this implies that the length of the sequence of messages
redundantly received may be large). If the confirmation packets to Interrupt
packets numbered 0 and 1 are duplicated then they may be erromneously interpretted
as acknowledgements to subsequently transmitted fresh interrupt packets numbered
0 and 1.

Note that the maximum number of outstanding (unacknowledged) Information (I)
frames at the link level is finite, and that duplication of packet is somewhat
orderly. For example, two packets numbered Pl and P2 may be received redundantly as

Pl, P2

Pi, P1, P2

Pi, P2, P2
or P1, P2, P1, P2,
but certainly not as, for example

Pl1, P2, P2, P1, P2.
Thus, it does seem that it should be possible to design a protocol that would
enable detection of duplicate Interrupt packets. The maximum number of outstanding
Interrupt packets, kp, the maximum number of outstanding information frames, ki, at
the link level, and the (modulo n) sequential numbering scheme for Interrupt

scheme would have to satisfy certain constraints. It appears that if

41

and confirmation packets are initiated for every Interrupt packet then
duplication of Interrupt and confirmation packets by the link level can be
detected.

A similar scheme for detecting duplicate User Data packets and the
corresponding acknowledgement packets can be devised. The constraints are
likely to be different as the acknowledgement scheme here is different: An
acknowledgement to a User data packet may be delayed, and an acknowledgement
numbered 1 acknowledges User Data packets numbered i-1, i-~2, and so on. It
appears that the constraints on kl’ w, and n would be much stiffer.

The above discussion should not be taken to mean that packet level provides
a totally duplication-free PVC or VC. For, even at the packet level there is
a mechanism to reset a PVC or VC; and user packets may be redundantly delivered
to the transport layer at the other end. Further, when a VC is cleared there
is no way for the transmitter of user data or interrupt packets to determine
the state of receiver in respect of user messages received. It shall be the
responsibility of tramsport layer to detect duplicate user messages that
originate in the packet layer, just as the packet layer could detect duplication

of packets by the link layer.

42
APPENDIX

PASCAL PROCEDURES FOR INTERPRETATION

procedure Enable Level 3;
begin if not Level 2 Enabled
then Enable Level 2

else Return Enable Level 2

end

procedure Return Enable Level 2;
begin if Level 2 Enabled
then Incase
Data Tx In Progress : Return Enable Packet Interchange;
Link Setup In Progress :;
Link Disc In Progress : Return Enable Level 3;
else : Enable Packet Interchange
end
elgse Return Enable Level 3
end

procedure Return Enable Packet Interchange;
var 1 : integer ; k : Buffer Address;
begin if Data Tx In Progress
then begin
Initialize Q(Pkt In Q)
Pkt Proc Is On := false;
for i :=1 to 8
do Receive Packet;
for x := 0 to Max Perm VC no
do Rx Call Connected (x);
Initialize Available Channels;
State of VCs := 13;
Level 3 Enabled := true;
Return Enable Level 3
end
else Return Enable Level 3
end

procedure Packet Received (k : Buffer Address);
begin if Level 3 Enabled
then begin

Receive Packet:

Add Last (k,Pkt In Q)

while Length (Pkt In Q)>0

do begin k := Head of (Pkt In Q);
Behead (Pkt In Q);
Rx DCE Packet (k)
end

end
end

procedure Packet Not Received;
begin end;

procedure Packet Transmitted (k : Buffer Address);
begin end;

procedure Packet Not Transmitted (k : Buffer Address);
begin end;

procedure Rx DCE Packet (k : Buffer Address) ;
var t : Packet type;
begin Pkt Proc 1Is On := true;
t := Compute Packet type (k);
case State of VCs of
rl : case t of
Restart Indication,
DCE Restart Confirmation : Rx DCE Restart Confirmation
end;
r3 : Incase
t = Restart Indication : Rx Restart Indication;
t = DCE Restart Confirmation : Restart VCs;
t > DCE Restart Confirmation : Rx Pkt In 13
end

end;

Return Pkt Buffer (k);

Pkt Proc Is On := false
end

procedure Rx Pkt In r3 3 {t, k are global}
var x : Channel no;
begin x := Compute Channel no (k);
case State [x].p of
pl : Incase
t = Incoming Call : Rx Incoming Call (x,k);
t = Clear Indication : Tx DTE Clear Confirmation;
else Clear VC(x)
end;
p2 : Incase
t = Incoming Call : ;
£ = Call Connected : Rx Call Connected (x);

£ = Clear Indication : Rx Clear Indication (x);
else : Clear VC (x)
end;
p4 : Incase
t = Clear Indication : Rx Clear Indication (x);
t = Incoming Call : Clear VC (x);
£ = Call Connected : Clear VC (x);
t = DCE Clear Confirmation : Clear VC (x);

else Rx Pkt In pd
end;
p6 : case t of
Incoming Call : Clear VC (x);
Clear Indication,
DCE Clear Confirmation : Rx DCE Clear Confirmation (x);
Call Connected : if Prev State [x] <> p2 then Clear Ve
end;

end

end

43

(x)

44

procedure Rx Pkt In p4; {t, k, x are global}
begin case State [x].d of
dl : Incase
t = Reset Indication : Rx Reset Indication (x);
t DCE Reset Confirmation : Reset VC (x);
t > DCE Reset Confirmation : Rx Pkt In dl
end;
dZ : case t of
Reset Indication,
DCE Reset Confirmation : Rx DCE Reset Confirmation (x)
end

il

end

end

procedure Rx Pkt In dl; {t, k, x are global}
begin case t of

DCE Data : Rx DCE Data (x,k):

DCE RR : Rx DCE RR (x,k);

DCE RNR : Rx DCE RNR (x,k);

DCE Interrupt : Rx DCE Interrupt (x,k);

DCE Interrupt Confirmation : Rx DCE Interrupt Confirmation (x)
end

end

procedure Restart VCs; {Level 3 Enabled and (State of VCs = r3)}
begin State of VCs := rl;
Tx Restart Request (00000000)
end

procedure Rx DCE Restart Confirmation;
begin Initialize Channels upon Restart;
State of V(s := r3;
VCs Restarted
end

procedure Rx Restart Indication:
begin Initialize Channels upon Restart;
State of V(s := r3;
Tx DTE Restart Confirmation;
V(s Restarted
end

procedure Initialize Channels upon Restart;
begin for x := 0 to Max Perm VC no
do Rx DCE Reset Confirmation (x);
for x := Max Perm VC no + 1 to Max VC no
do Rx DCE Clear Confirmation (x)
end

45

procedure Establish VC (var x : Channel no;
i,j : DTIE Address);
{Level 3 Enabled and (State of VCs = r3)}
begin Get Channel (x); o
State [xl.p := p2;
Tx Call Request (x,1,3)
end

procedure Rx Call Connected (x : Channel no);
var i,j : DTE Address
begin State [x].p := p4;
Initialize Vars upon Connect (x);
i Local DTE (x);
i Remote DTE (x);
VC established (x,1,3)

[

end

procedure Rx Incoming Call (x : Channel no ; k : Buffer Address);
var 1i,j : DTE Address;
begin i := Compute Calling DTE Address (k)
j := Compute Called DTE Address (k)
State [x].p := pé;
Initialize Vars upon Connect (x);
Tx Call Accepted (x);
VC Established (x,j,1)

il

end

procedure Initialize Vars upon Connect (x : Channel no);
begin State [x].d := d1l3
No of Messages to Receive [x] := 03
Tnitialize Q(Q Un Ack Pkt [x]);
Initialize Q(Q Un Tx Pkt [x]);
Interrupt In Buffer Full [x] := false;
Interrupt Out Buffer Full [x] := false;
Tnitialize Vars upon Reset (%)
end

procedure Initialize Vars upon Reset (x : Channel no)
begin DTE Pkt Level Busy [x] := false;

DCE Pkt Level Busy [x] := false;
Tx State Var [x] := 0;

f.ast Recd PR [x] := 0;

Rx State Var [x] := 03

Rx PR Set [x] := [0..W-1]

end

procedure Clear VC {x : Channel no);
{Level 3 Initialized and (State of VCs = r3)}
begin case State [x].p of

pl : VC Cleared (x);

p2,p4: begin Prev State [x] := State [x].p;
State [xl.p := pb6;
Tx Clear Request (x,00000000)

end

end

46

procedure Rx DCE Clear Confirmation (x : Channel no);
begin Return Un Tx Data and Interrupt Messages (x);
VC Cleared (x);
State [x].p := pl;
Return Channel (x)
end

procedure Rx Clear Indication (x : Channel no);
begin Return Un Tx Data and Interrupt Messages (x);
Tx DTE Clear Confirmation (x):
VC Cleared (%)
State [x}.p := pl;
Return Channel (x)
end

procedure Return Un Tx Data and Interrupt Messages
{(x : Channel no);
var k : Buffer Address ; Q,M:bit ; User Data : Data String;
begin Merge(Q Un Ack Pkt [x], Q Un Tx Pkt [x])
while not Is Empty (Q Un Tx Pkt [x])
do begin k := Tail of (Q Un Tx Pkt [x])
Q := Compute Q(k):
M := Compute M(k):
User Data := Compute User Data (k);
Data Message Not Transmitted (x,Q,M,User Data);
Betail (Q Un Tx Pkt [x])

i

end;
if Interrupt Out Buffer Full [x]
then Interrupt Message Not Transmitted (x,Interrupt Out Buffer [x])
end

procedure Reset VC (x : Channel no);
{Level 3 Initialized and (State of V(s = r3)
and (State [x].p = p&4)}
begin if State [x].d = dl1
then begin State [x].d := d2;
Tx Reset Request (x,00000000, 00000000)
end

end

procedure Rx DCE Reset Confirmation (x : Channel no);
begin State [x].d := dl;
Initialize Vars upon Reset (x):
VC Reset (x)
end

47

procedure Rx Reset Indication (x : Channel no) ;
begin State {x].d4 := dl;
Initialize Vars upon Reset (x);
Tx DTE Reset Confirmation (x);
VC Reset (x)
end

procedure VC Reset (x : Channel no);
begin if Interrupt Out Buffer Full [x]
then Tx DTE Interrupt (X);
Resume DTE Data Tx (%)

end

procedure Transmit Interrupt Message {x : Channel no;
Interrupt Data : byte);
{Level 3 Initialized and (State of VCs = r3) and
State [x].p = p4) and not Interrupt Out Buffer Full [x]1}
begin Interrupt Out Buffer Full [x] := true;
Interrupt Out Buffer [x] := Interrupt Data;
if State [x].d = dl
" then Tx DTE Interrupt (x)
end

procedure Rx DCE Interrupt Confirmation (x : Channel no)s
begin if Interrupt Out Buffer Full [x]
then begin Interrupt Out Buffer Full [x] := false;
Interrupt Message Transmitted (x)

end
else Reset VC(x)
end
procedure Rx DCE Interrupt (x : Channel no ; k : Buffer Address)

var Interrupt Data : byte;
begin if not Interrupt In Buffer Full [x]

then begin Interrupt In Buffer Full [x] := true;
Interrupt Data := Compute Interrupt Data (k)
Interrupt Message Received (x, Interrupt Data)

end
else Reset VC(x)

end

procedure Interrupt Message Accepted (x : Channel no);
{Level 3 Enabled and (State of VCs = r3) and
(State [x].p = p4 and Interrupt In Buffer Full (%]}
begin Interrupt In Buffer [x] := false;
if State [x].d = dl
then Tx DTE Interrupt Confirmation (x)

end

procedure Transmit Data Message (x : Channel no; Q,M : bit;
User Data : Data String);
{Level 3 Initialized and (State of VCs = r3) and
(State [x].p = p&)} =~ T
var k : Buffer Address ;
begin Get Pkt Buffer (k);
Write Q(k,Q)
Write M(k,M)
Write User Data (k, User Data)
Add Last (k, Q Un Tx Pkt [x])
Resume DTE Data Tx (%)
end

procedure Resume DTE Data Tx (x : Channel no);
var k : Buffer Address;
begin if (State [x].d = d1) and not DCE Pkt Level Busy [x]
then while (Tx State Var [x] < Last Recd PR{x] + W)
and (Length (Q Un Tx Pkt [x])>0)
do begin k := Head of (Q Un Tx Pkt [x]);
Tx DTE Data (k,x)
Tx State Var [x] := Tx State Var [x] + 1;
Behead (Q Un Tx Pkt [x])
Add Last (k, Q Un Ack Pkt [x])
end
end

procedure Rx DCE RR (x : Channel noj; k : Buifer Address) ;
var PR : 0..7; PR Check :(Valid, Invalid);
begin DCE Pkt Level Busy [x] := false;
PR := Compute PR (k);
Process PR (x, PR, PR Check);
if PR Check = Valid
then Resume DTE Data Tx (x)
end
procedure Rx DCE RNR (x : Channel no: k : Buffer Address);
var PR : 0..7; PR Check : (Valid, Invalid);
begin DCE Pkt Level Busy [x] := true;
PR := Compute PR(k):
Process PR (x, PR, PR Check):
if PR Check = Valid
then begin Merge (Q Un Ack Pkt, Q Un Tx Pkt);
Tx State Var [x] := Last Recd PR[x]
end

end

49

procedure Process PR (x : Channel no; PR : 0..7;
var PR Check : (Valid, Invalid);
var k : Buffer Address
begin PR Check := Compute PR Check {(x,PR);
éﬁ_PRvCheck = Invalid
then Reset VC (x)
else begin for i := Last Recd PR [x] to PR - 1
do begin k := Head of (Q Un Ack Pkt [x])
Q := Compute Q(k)
M := Compute M(k)
User Data := Compute User Data (k)
Data Message Transmitted (x, Q, M, User Data)
Behead (Q Un Ack Pkt [x])
Return Pkt Buffer (k)

end;
Last Recd PR[x] := PR
end
end

function Compute PR Check (x := Channel no; PR : 0..7) : (Valid, Invalid);
begin if (PR > Last Recd PR [x]) and (PR < Tx State var [x])
then Compute PR Check := Valid
else Compute PR Check := Invalid

i

end

procedure Recelve Data Message (x : Channel no);
{Level 3 Initialized and(State of VCs = r3)
and (State [x].p = p4)}
begin No of Messages to Receive [x] := No of Messages to Receilve [x] +1:
if DTE Pkt Level Busy [x] and not State [x].d = 41
then DTE Pkt Level Becomes Not Busy (x)
end

procedure Rx DCE Data (x : Channel no; k : Buffer Address);
var i, PS, PR : 0..7; Q, M : bit; User Data : Data String;
" pg Check : (Fresh, Duplicate, Invalid);
PR Check : (Valid, Invalid);
begin PR := Compute PR (k)
Process PR (x, PR, PR Check);
if PR Check = Valid
then begin Resume DTE Data Tx (x);
PS := Compute PS (k)
PS Check := Compute PS Check (x,PS);
if PS Check = Invalid
then Reset VC (x)}
if (PR Check = Valid) and (PS Check = Fresh)
and not DTE Pkt Level Busy [x]
then begin Rx PS Set [x] := Rx PS Set [x] - [PS];
if PS = Rx State Var [x]
then begin i := Rx State Var [x];
while not i in Rx PS Set [x]
do i = i+ 1;
Rx State Var [x] := i
Tx Acknowledge (x)
end;
0 := Compute O (k):

50

M := Compute M (k);
User Data := Compute User Data (k);
Data Message Received (x, Q, M, User Data);
No of Messages to Receive [x] :=
No of Messages to Receive [x] - 1
if No of Messages to Receive [x] =0
then DTE Pkt Level Becomes Busy (x)
end
_ond

end

function Computer PS Check (x : Channel no; PS : 0..7)
(Fresh, Duplicate, Invalid);
begin if (PS > Rx State Var [x]) and (PS < Rx State Var Ix] + W)
then 1f PS in Rx PS Set [x]
then Compute PS Check := Fresh
else Compute PS Check := Duplicate
else Compute PS Check := Invalid

end

procedure Tx Acknowledge (x : Channel no);
begin if not (Tx State Var [x] < Last Recd PR [x] + W)
or not (Length{Q Un Tx Pkt [x]}> 0)

then Tx DTE RR (x)

end

procedure DTE Pkt Level Becomes Busy (x : Chanmel 1n0) 3
begin DTE Pkt Level Busy [x] := true;
Tx DTE RNR (x)
end

procedure DTE Pkt Level Becomes Not Busy {x : Channel no);
begin DTE Pkt Level Busy [x] := false;
Tx DTE RR (x)
end

procedure Tx Call Request (x : Channel no; i,j : DIE Address);
var k : Buffer Address;
begin CGet Pkt Buffer (k);
Write GFI (k);
Write Channel no (k, x);
Write Packet type (k, 00001011);
Write Calling DTE Address (k, 1);
Write Called DTE Address (k, j);
Transmit Packet (k)
end

procedure Tx Call Accepted (x : Channel no);
var k : Buffer Address;
‘Eggin Get Pkt Buffer (k);
Write GFI (k)
Write Channel no (k, x);
Write Packet type (k, 00001111);
Transmit Packet (k)

procedure Tx Clear Request (x : Channel no; y : byte);
var k : Buffer Address;
begin Get Pkt Buffer (k);
Write GFI (k)
Write Channel no (k, x):
Write Packet type (k, 00010011);
Write Clearing Cause (k, y);
Transmit Packet (k)
end

procedure Tx DTE Clear Confirmation {(x : Channel no);
var k : Buffer Address;
begin Get Pkt Buffer (k);
Write GFI (k);
Write Channel no (k, x);
Write Packet type (k, 00010111);
Transmit Packet (k)
end

procedure Tx DTE Data (k : Buffer Address; x : Channel no);
begin Write GFI (Kk);
Write Channel no (k, x)3;
Write Packet type (k, 00000000);
Write PS (k, Tx State Var [x]);
Write PR (k, Rx State Var [x]):
Transmit Packet (k)
end

procedure Tx DTE Interrupt (x : Channel no);

var k : Buffer Address;

begin Get Pkt Buffer (k);
Write GFI (k)
Write Packet type (k, 00100011);
Write Interrupt Data (k, Interrupt Out Buffer [x]);
Transmit Packet (k)

end

procedure Tx DTE Interrupt Confirmation (x : Channel no);
var k : Buffer Address; ‘
begin Get Pkt Buffer (k)
Write GFI (k);
Write Channel no (k, x);
Write Packet type (k, 00100111);
Transmit Packet (k)
end

procedure Tx DTERR (x : Channel no);

var k : Buffer Address;

begin Get Pkt Buffer (k)
Write GFI (k)
Write Channel no (k, x);
Write Packet type (k, 00000001):
Write PR (k, Rx State Var [x]):
Transmit Packet (k)

end

procedure Tx DTE RNR (x : Channel no);

var k : Buffer Address;

begin Get Pkt Buffer (k);
Write GFI (k)
Write Channel no (k, %)
Write Packet type (k, 00000101);
Write PR (k, Rx State Var [x]);
Transmit Packet (k)

end

procedure Tx Reset Request (x : Channel noj; r, d : byte);
var k : Buffer Address;
begin Get Pkt Buffer (k)
Write GFI (k)
Write Channel no (k, x);
Write Packet type (k, 00011011);
Write Resetting Cause (k, r);
Write Diagnostic Code (k, d);
Transmit Packet (k)
end

procedure Tx DTE Reset Confirmation (x : Channel no);
var k : Buffer Address;
begin Get Pkt Buffer (k)
Write GFI (k)
Write Channel no (k, x);
Write Packet type (k, 00011111)
Transmit Packet (k)
end

procedure Tx Restart Request (r : byte);

var k : Buffer Address;

begin Get Pkt Buffer (k):
Write GFI (k)
Write Packet type (k, 11111011);
Write Restarting Code (k, 1);
Transmit Packet (k)

end

procedure Tx DTE Restart Confirmation;
var k : Buffer Address;
begin Get Pkt Buffer (k);
Write GFI (k)
Write Packet type (k, 11111111);
Transmit Packet (k)

end

53

2.

54

REFERENCES

CCITT, "Public Data Networks', Recommendations of Sixth Plenary
Assembly, Orange Book, vol. VIII.Z, Internat. Telecom. Union,
Geneva, 1977, pp. 70-108.

A. Rybczynski, "X.25 Interface and End-to-End Virtual Circuit
Service Characteristics', IEEE Trans. Comm., Vol. Com-28, no. 4,
1980, pp. 500-510.

H. C. Folts, "X.25 Transaction-Oriented Features-Datagram and Fast
Select', IEEE Trans. Comm., Vol. Com-28, no. &4, 1980, pp. 496-500.

B. N. Jain, "X.25 Level 2 Communication Protocols: An interpretation
and Proposed Implementation', Tech. Rep. No. 8109, Dept. of Electr.
Engg., Indian Institute of Technology, Delhi, June 1981.

