TWO RESULTS ON SELF-QRGANIZING
DATA STRUCTURES
James R. Bitner

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-189 January 1982

Abstract: We show that the transposition rule is optimal over all
permutation rules for the class of distributions where all but one
element have the same probability. We also develop an interesting
partial ordering on the costs of "reasonable"™ permutation rules,
assuming the probability of the "odd" element is large. The rule with

the greatest cost for this case is the move to front rule,

1. Introduction

The cost of accessing a key in a data structure depends on the
"position” of the key. For example, accessing the ith key in an
unordered 1list requires i probes. If the elements in the data structure
are not equally likely to be accessed, the expected access time can be
reduced by storing high probability keys in the positions of the data
structure which can be accessed more quickly. In a 1list, the minimal
cost is obtained by storing the keys in order of decreasing probability.
However, suppose the probabilities are not known a priori. The obvious
method of achieving a low cost ordering in a list is to count the number
of accesses to each key and keep the list in order of decreasing counts.
Clearly, this method is optimal but requires a (possibly large) amount
of additional storage for the counters. Schemes using small, bounded
amounts of additional storage have been studied (Gonnet, Munro, and
Suwanda [1] and Bitner [2]) but we will confine our discussion to

heuristics which do not use additional storage.

We also restrict our attention to lists (reordering schemes for
trees have been studied by Bitner [2] and Allen and Munro [31D. A
reordering scheme for a list which does not use additional storage is

called a permutation rule and is defined by a set of n permutations

ﬁﬁ""’t The ith permutation is applied to the 1list when the element

ne
currently in position i is accessed. One popular permutation rule is the

move-to-front rule: If the element in position i is accessed, it 1is

moved to position 1, and the element in positions 1 through i-1 are

moved back one position. A second rule is the transposition rule: If the

element in position i is requested, it is exchanged with the element in

position i-1, unless i=1 in which case nothing is done,

We are primarily interested in the cost of a rule (defined
precisely later) which is the expected number of probes required to
access a randomly selected key after many accesses have been made.
Though the list, of course, does not approach any given ordering, the

probability of each ordering approaches its "steady state™ probability.

This allows us to speak of the (asymptotic) cost of a rule.

Permutation rules have been extensively studied 1, 2, 4-10]. One
kxind of result is to show a given rule is optimal (i.e. has lowest cost
over a given class of rules and a given class of probability
distributions). Rivest [7] has shown the cost of the transposition rule
is less than that of the move to front rule for all non-trivial
distributions and conjectured that the transposition rule is optimal
over all rules and distributions. Simulation results (Rivest [7] and
Tenenbaum [8]) support this claim. A. C. Yao (reported in [101) proved
that there is a probability distribution for which the transposition
rule has lowest cost of all permutation rules. Hence, if there is a
single rule which is optimal for all rules and distributions, it must be
the transposition rule. Tenenbaum and Nemes [11] define for 1<k<n-1 a
rule POS(kK) which behaves as follows: when the ith element in the list
is requested it is moved to position k if 1idk and 1is moved up one
position if i<k. For 2<k<n they define the rule SWITCH(k) which behaves
as follows: when the ith element is requested, it is moved up one
position if i>k and moved to the front if i<k. They show POS(k) has
lower cost than POS(k+1) and SWITCH(k) has lower cost than SWITCH(k+1)
for the class of probability distributions where all but one element
have equal probability. Since POS(1) and SWITCH(2) are the transposition
rule, this result shows it to be optimal over this simple class of rules

and distributions.

Qur first result is of the same nature. We show (in Section 3) that
the transposition rule is optimal for all rules over a restricted class

of distributions where all but one element have the same probability.

A second kind of result is to define a spectrum of rules and prove
a partial (or total) ordering on their costs. Clearly, the results in
Tenenbaum and Nemes [11] are of this nature. Another possibility is to
define Ai to be the rule where the reguested key is moved up 1 positions
(or to the front for keys in position 1 through 1). It is conjectured
{(Bitner [2, 10]) that the rules Al”"’ﬁn form a spectrum of rules where

A. has lower cost than A.

i =T but converges to that cost more slowly.

This conjecture is supported by simulation results (Rivest [7] and

Tenenbaum [8]).

In Section 4 we prove an extension of this result for the
distributions we are studying assuming the probability of the "odd"
element is large. We define a large class of rules (called reasonable
rules) and show that if the number of permutations t; that move the
requested element to position 1 using a reasonable rule R exceeds the
number for another reasonable rule Q, then rule R has higher cost than
rule Q. This establishes a partial ordering on the costs of reasonable
rules. A corollary of this result is that for such distributions the

move to front rule has the highest cost of all reasonable rules.

2., Basic Definitions and Lemmas

In this section we give some basic definitions and notation and

prove some lemmas about the cost of a permutation rule.

Notation: Throughout this paper, n denotes the number of elements in the
list. The permutations for a given rule will be ©,4,...,t,. Let the n-1
normal elements have probability p and the one odd element have
probability q. We assume g>p. (Similar results hold if g<p). Finally,

let r=q/p.

To analyze the cost of a given rule, we define a corresponding
Markov chain and calculate its steady state cost. The chain consists of
n states with state i corresponding to the arrangement with the odd

element in position i. The transitions are defined as follows:

1. If tr(r) = i add a transition with probability q from state r
to state i. (i.e. the odd element was in position r, was
requested and moved to position i).

2. If tr(i) = j (for i £ r) add a transition with probability p
from state i to state j. (i.e. a normal element in position r
was requested and this caused the odd element to move from
pesition i1 to position j.)

This defines the Markov chain and 1its corresponding transition
diagram, which is a directed multigraph with labeled edges. Note that
there may be several transitions from one given state to another. Though
their probabilities must be summed when defining the Markov chain, each

is represented by a separate edge in the transition diagram.

Remark: Note that since each t; is a permutation, the corresponding
edges in the transition diagram form one or more cycles. One edge of

this set of n edges has probability q and the others probability p.

It will also be important to reconstruct the permutation rule from
the transition diagram (or, at least, to show there is some rule

corresponding to this diagram).

Lemma 2.1: A transition diagram corresponds to a
permutation rule if

1. The diagram has n edges labeled g, with no two having the
same initial vertex and

2. The edges can be decomposed into n sets of n edges such
that

(a) each set has exactly one edge labeled g and
(b) no two edges have the same initial vertexX and
(c) no two edges have the same final vertex

Proof: We construct the permutation rule corresponding to
this diagram. The set with the edge labeled g emanating from
state k will construct permutation . (By condition 1 there is
exactly one such edge for each k.) We choose tk(i) as the final
state number of the edge whose initial state is 1. Note that by
conditions 2b and 2¢, t, is a permutation. By condition 2a, the
transition tk(k) will have probability g and the rest
probability p. The algorithm for constructing the diagram can
now be used to show this permutation rule corresponds to this
diagram. [l

Definition: The steady state probability of a permutation
rule R being in state i is denoted by Sj(R). When it is clear
what rule is being discussed, we will simply write S5;. We assume
that, initially, every state is equally probable.

For most Markov chains, the steady state probabilities are
independent of the initial distribution, but for some (called reducible
or non-ergodic) it does. Specifying the initial distribution makes the

Si's defined for all chains,

The cost of a state is the expected number of probes required to

n
access a randomly chosen element. The cost of rule R (COST(R)) is i§18l

* cost of state i. The following lemma computes COST(R).

n
Lemma 2.2: COST(R) = n?(n+1)p/2 + (q-p) ;1 S,

Proof: Consider state 1i. Since the element in position J

(if j#i) is accessed with probability p and requires j probes

and the element in position 1 is accessed with probability g and
requires 1 probes, the cost of state i is

z . .
(541 P*J) + g * 1
= n{n+1)p/2 + (g-pii

Multiplying by S; and summing over 1 gives the total cost.

L]

n

Clearly, i=1i Si determines the cost for a given g. We give an

explicit name to this quantity (the first moment) since it is easier to
work with than the cost.

n
Definition: MOM(R) = i§1 i Si (R)

Lemma 2.3: Given two rules Q and R, COST(Q) < COST(R) iff
MOM(Q) < MOM(R)

Next we give two lemmas for comparing the costs of two rules.

Lemma 2.4: Given two rules, Q and R, if there is a k such
that

5,(Q) > 5, (R) for 1<i<k and

Si(Q) S_Si(R) for k+1<i<n

then COST(Q) < COST(R)

Proof:

COST(Q) - COST(R)

n
i (8,(Q) - 5.(R))
. i i

i=1
k jsd
= T1i(.(@Q -SSR+ ¥ i (5,(Q -5,®R)
i=1 * * i=k+l T *
k : n
<k I (5.(Q -S.®R))+k I (8,(Q -5s,®R)
B * i=k+l T *
n 0
=k (I S.(Q - & S,(R) =20 [
i=1 * i=1 *

Lemma 2.4 can also be found in Tenenbaum and Nemes [11]. We use it
to prove the following, more useful lemma.
Lemma 2.5¢: Given 2 rules, Q and R, if

5,(Q)/5,,(Q > 5, RY/S,; ®)

for all i, then COST(Q) < COST(R)

Proof: Let k be the smallest integer such that Si(Q) <

S;{(R). Such a k must exist. If not, $;(Q) > Si(R) for all i and
at least one of the sets of probabilities would not sum to one.
Therefore we have:

S;(Q) > S;(R) for a1l 1 < k
and
$;(Q) < S;(R) for all i > k
The second inequality is due to the fact that once 5;(Q) < S;(R)

for some i, $;(Q) < S:(R) for all j>i. This is easily shown from
the "ratio property" in the condition of the lemma.

L]

3. The Optimality of the Transposition Rule

In this section we prove the transposition rule is optimal over the
set of all permutation rules for the class of probability distributions
where all but one element have the same probability. We assume no
restrictions on the permutation rules we study; all rules, nc matter how

bizarre or unreasonable, are considered.

We begin by deriving n-1 steady state equations for a given Markov
chain. For any i<n consider the set of states 1 through i, Clearly, at
steady state, the probability of a transition out of this set must equal
the probability of a transition into this set. We have a transition into
the set for all pairs (j,k) with j>i such that tk(j) < i {i.e. a
transition occurs from state j to some state with number at most i.) If
k=j this transition has probability q, else probability p. Similarly,
there is a trahsition out of the set for every pair (j,k) with j<i and
tk(j)>i with probability g only if k=j. Therefore, we define the

following multisets:

J1Q(i) = {k | j=k, 3>i and t,(J) < i}
JIP(1) = {k | j#k, j>i and t, (J) < i}
JoQ(i) = {k | j=k, j<i and £, () > i}
JOP(1) = {k | j#k, j<i and £, (J) > i}

The names stand for Jump In (or Qut) to the set of states 1 through
i with probability P (or Q. In JIP(i) and JOP(i) there 1is one
occurrence of k for every pair (j,k) satisfying the conditions. This

gives us the steady state equations. For i=z1,...,n-1,

10

T 7
95 1n J101) 55 TP 3 in JIP(D) S, 7
% %
+
9 1n JoQ() 55 TP 5 in JoP(1) (3.1
Before proceeding we note

PJIQ(L) o+ 1 JIP(L) o= 1 JOQ(L) i o+ 1 JOP(L) 1. (3.2)

This is because the edges created by each tk can be partiticned into one
or more cycles and the number of times a cycle leaves a set must equal

the number of times 1f enters.

For most Markov chains these equations, plus the fact that the
probabilities sum to one, determine the steady state probabilities, and
we are guaranteed that the probability the chain is in a given state
approaches that state's steady state probability. However if there are
two sets of states and neither can reach the other (see Figures 3.1 and
3.2) the steady state probability depends on the initial distribution,
and some of the n-1 steady state equations are redundant., To calculate
the steady state probabilities, we solve the system of equations
consisting of the steady state equations for each such set (there will
be k-1 equations if there are k states in the set) and an equation
stating that the sum of the steady state probabilities for the states
equals the probability of the chain reaching some state in the set for
the given initial distribution. In our case, this probability equals

k/n, the probability of starting in this component,

Though it will be relatively simple to handle the case where some
of the steady state equations are redundant, 1t is difficult if one

disappears altogether (i.e. becomes 0=0). This motivates the following

definition.

11

Definition: A Markov chain 1s separable iff for some i,
JIP(i) = JIQ(i) = ©. (Note this holds iff JOP(i) = JOQ(i) = 9
by equation (3.2).) Such an i is called a separation point.
Suppose i},...,ik are the separation points of a chain and let
ion and ik+?=n. Then for any j, the set of states ij+1 through
ij+1 is called an inseparable component,

Remark: The steady state equations for each separable component form a

separate and independent system of equations.

We now define a property which, intuitively, a good rule must have:

Definition: A rule R is monotonic iff Si(R) > Si+1(R) for
all i.

To prove our main result, we first rule out non-monotonic rules,
then show inseparable monotonic rules have higher <cost than the

transposition rule, and finally deal with separable monotonic rules,

Theorem 3.1: If R is not a monotonic rule, there exists a monotonic rule

Q with COST(Q) < COST(R).

2,...,in be a permutation of 1,2,...,n such

that Si Z_Si Z"'E~Si . Redraw the transition diagram for R
1 2 n
by renumbering each state k as 1

Proof: Let il’i

K This new transition diagram

satisfies the conditions of Lemma 2.1. Hence it corresponds to a

permutation rule which, by our renumbering of the states, is
n

monotonic. COST(Q) < COST(R) because I i Si is minimized over
i=1 +them

all permutations of some set of fixed Si%;by permutingﬁ into

decreasing order.]

Theorem 3.2: If R is an inseparable monotonic rule then Si(R)/Si+1(R)§;

12

Proof: Since the rule is monotonic, we have

T %
9 5 in JIQ(i) S5 * P j in JIP(i) Sj

% T
L9 5 in J1Q(i) Sis+1 * P j in JIP(i) Sis1
< S5,q (@i JIQU) T+ p i JIP(DDY) (1)
and

z S z S
9 3 in JoQ(i) 23 * P j in JOP(i) °j

T %

248 3 in J0oQ(i) Si +*+ P j in JOP(i) Si
>8; (g1 J0Q(i) |+ p | JOP(i)}]) (2)

From (3.1), (1) and (2) we have

Sy (g 1 JIQ(D)

4+ p
£ 85,1 (a i J0Q(1) | +

i JIP(AY)

p 1 JOP(i)!)

Note that {JOQ{(i)} + 1JOP(i)} # O because the chain is
inseparable.

Therefore

Sy q!JIQ(L) j+plJIP(i)!

8141 q1JOQ(1) 1+p!JOP (1)}

Qi JIQLiL) t+qiJIP(i)] since q > p
piJOQ(i) i+piJOP(i)}

A

g/p by (3.2) [

"

Theorem 3.3: Let T be the transposition rule,

then Sl(T)/Sl+1(T) =T

13

Proof: For the transposition rule, JIP(i) = {i+1}, JOP={i},
and JIP(i) = JOQ(i) = B. The steady state equations reduce to
(for i = 1,...,0) 9 S5,¢4 =P S5.]

Clearly, the result of the two previous theorems is the following.

Theorem 3.8: Let T be the transposition rule and R be any inseparable,
monotonic rule, then COST(T) < COST(R).

Proof: Immediate from Theorem 3.2, Theorem 3.3 and Lemma
2.5 L]

Now we prove the most difficult theorem,

Theorem 3.5: If R is a separable monotonic rule and T 1is the

transposition rule then COST(T) < COST(R).

Proof: Given a separable, monotonic rule R, we construct another

monotonic rule, R such that COST(R) > COST(R and R3 has fewer

3’ 3)v
separation points. This process can be repeated until an inseparable
monotonic rule is created. At this point Theorem 3.4 can be applied to

show COST(T) < COST(R3), proving the theorem,

Let k be the smallest integer such that JIP(k) = JIQ(k) = @, and let m
be the second smallest such number (or n if no such number exists).
Define a rule R1 which wuses the +transposition rule if element
ToeosoK,K+2,...,m 15 accessed, does nothing if element k+1 is accessed
and behaves the same as R for the other positions. R1 has the same
inseparable components as R. The contribution to the total cost by the
first and second components is less for R1. (Since we can calculate the
cost for each component separately, we can apply Theorem 3.4 to these
components in isolation). Further the contribution of the other

components will be the same. Hence COST(R,) < COST(R).

1

We now define another rule, Roy to be the same as R4 except that
when element k+1 1s accessed it is transposed with element k. Note that
R2 has one fewer separation point than Rq. We have the following

relations from the steady state equations (3.1):

S; (Ry)

r S;,1 (Ry) for i in {1,00.,m}={k} (H
3; (Rp)

r Si.1 (R2) for i in {1,...,m} (2)

it

Since states 1 through k and k+1 through m are separable components

for R1, we have

k
i§1 Si <R1) = k/n (3)
and
m
z
i=k+1si (R1) = (m-K)/n (4)

Since states m+1 through n are separable and identical components for
both rules,

S; (Ry) =8y (Rz) for all i > m (5)
From (1), (2) and (5) we have

Si(RT)/Si+1(R1) < Si(R2)/Si+1(R2) for all i in {1,...,n}={k} (6)
and i1f we can prove

Sk(R1)/Sk+1(R1) gvsk(R2)/Sk+}(R2) 7

Then we can apply Lemma 2.5 to prove CGST(Rl) z_COST(R2).

15

First, we have
Sk(RZ)/SkH(RZ) =1 (8)
from (2). We use (1) and (3) to solve for Sk(Rl)'

k K

k~1
'E Si(Rl) .Z r Sk(Rl) Sk(Rl)
i=1 i=1

rk—l
r-1

=Rt
]

and hence

_ ko, or-1
sk(Rl) =2 e (9
r -1

Similarly, we use (1) and (4) to obtain

m-k~1 m-k r-1
= E *
S (Rp) = 7 n | mk

(10)

Then (7) is equivalent to

k(™ Eo1)

k) Koy

which is equivalent to

m-k

KGEVED) < @) T @R

which is equivalent to

™ E - (k) £ - k<0 (11)

Now consider any fixed m and k (m>k). We show (11) holds for all r>1.
. . m—k m ’

Define the function g(r) = mr - (m-k) r - k. Clearly g(l)=0. 1If we

show g'(r) < 0 for all r>1, g will be monotonically mnon-increasing from

zero for r>l. Since

k-1 -1

-~ m{m-k) -

i

g'(r) = m(m-k) "

m—k-1 m~1
-]

it

m(m-k) [r <0

(7) is established, proving COST(RZ)‘i COST(RI).

16

Finally, we define R3 to be the result of permuting the states of
R2 as described in Theorem 3.1. Since the first component of R2 is
monoctonic as is the rest, the effect will be to take some states from
the first component of Ro and insert them (while maintaining their
relative order) between the states of the rest of Ro. This cannot
increase the number of inseparable components. Hence R3 is monotonic,
has fewer inseparable components than R, and COST(R3) < COST(R) as

desired. L]
We now prove the main result.

Theorem 3.6: The transposition rule is optimal over all permutation

rules for all distributions having n-1 elements with equal probability.

Proof: Let T be the transposition rule. From Theorem 3.4
and Theorem 3.5 we have COST(T) < COST(R) for any monotonic rule
R. For any non-monotonic rule, R4 there is a monoctonic rule R!
such that COST(R') < COST(R) by Theorem 3.1. From the above,
COST(R') < COST(T) and the theorem is proved. L]

17
4, A Partial Ordering over Reasonable Rules

In this section, we define a class of rules called "reasonable
rules" and develop an interesting partial ordering on the costs of these
rules, assuming r is large. The partial ordering divides the rules into
classes with class i containing all rules which have i permutations that
move the requested element to the front of the list. We show that all
rules in class i have lower cost than all rules in class i+1 for large r

(i.e. the more conservative a rule is the better).

This result is intuitive; if r is large the odd element will spend
nearly all its time in the first position. Occasionally (with
probability [JOP(1)!%#p) a normal element will temporarily displace the
odd element, which will then (almost certainly) return to first position
on the next access. Thus |JOP(1)! will be the dominant factor in
determining the cost.

Definition: For rule R, let ONES(R) be the number of i's

such that ti(i):1 and TWOS(R) be the number of i's such that
t.(i)=2.
i

Definition: A rule is reasconable if it satisfies for all

k> 1
tk(k) < k
£, (1) = i+1 for £ (k) < i <K
tk(i) = 1 otherwise

and (for k=1)
t1(i) = i for all i

In other words, the requested element is moved up in the list
(except if it is in the first position), and all elements it
passes over are moved back one position. No other element 1is
moved,

18

Intuitively, reasonable rules are reasonable because the only way
we "remember" our estimate of the probability of each element is by its
position in the list. When an element is accessed it should be moved up
to indicate that our estimate of its probability has increased. The
relative order of the other elements should be left unchanged, since our
estimate of their probabilities relative to each other remains

unchanged.,

The steady state equations also simplify considerably if we

restrict ourselves to reasonable rules since JOQ(i) = JIP(i) = @ for any

reasonable rule. Hence by (3.2) 1JIQ(i)! = 1JOP(i)} and (3.1) simplifies

to

S. = r z S./1JIQi) (4.1)
i ® " 3 in JIqiy "3 ‘ .

It will be convenient %o deal with unnormalized probabilities

defined by u;(R) = S;(R)/Sy(R). Clearly,

1

u,(R)

U (R) = 5 Iy g1(a) Y3(R/19IQMD)

We can view each ui(R) as a polynomial in r that can be easily
calculated from the uj(R)'s with j>i. It is simply r times the average
of the probability of the states in JIQ(i). (Note all elements of JIQ(i)

are greater than i.) We also have
n n

MOM(R) = ;2,1 uy(R)/;Z 0 (R

19

We need only calculate the 1leading coefficient of these

polynomials,

Thecorem 4.1: If R is a reasonable rule,
n—-1

R AR E CIE PR TC b
Proof: We use induction for i=n,n-1,...,1. The theorem is

trivially true for i=n, so suppose the theorem holds for all
k>i. By (4.1) we have

By induction ukzo(rn'i'z) for k>i+1;
therefore since i+1 is in JIQ(1)

us = r ¥ (ug g+ O(r"T172)) /1010 !

and substituting inductively for uj, q proves the theorem. [l

Given the leading coefficients we can easily calculate MOM(R) .

Theorem 4.2: If R 18 a reasonable rule

MOM(R) = 1 + 1JIQ(T)! * r=1 & 0(r~2)

Proof: By Theorem 4.1, uy is an n-—ith degree polynomial, so

let
u, = pri=1 4 orl=2 4 o(r?=3)
u, = arP=2 4 o(r-3)

and u; = 0(r®3) for i>2. Then

20

pri=1 4 orP-2 2drn‘2 + O(rn“3)

MOM(R)

- brn“1 -+ crn_2 + drn_z + O(rn—3)
= 1 +(db) * r-l + O(r_z)
By Theorem 4,1, d/b = }{JIQ(1)}, which completes the proof. L]

Theorem 4.3: For any n, there exists an ry such that for all r>rg, and

any two reasonable rules R and Q

if ONES(R) < ONES(Q) then COST(R) < COST(Q)

Proof: Since ONES(R) = jJIQ{1)} + 1 the result follows from
Theorem 4.2 and Lemma 2.3. £1

Remark: Theorem 4.3 can be extended to show that for any two reasonable

rules R and Q, if ONES(R) = ONES(Q) but TWOS(R) < TWOS(Q) that COST(R) <

COST(Q) for large r. The proof uses techniques similar to those used in

Theorem 4.2, however the proof is much longer because we must consider
n-1 n-2

the r s T and rn'3 terms. This requires extending Theorem 4.1 to

calculate the second and third coefficients of the polynomial,

21

tl = (1 2 3 4)
t2=(1234)
t3=(3214)
t4 = (1 4 3 2)

Figure 3.1
A permutation rule and its corresponding Markov chain.

NOTE: All transitions from a state to itself are not shown.

q q t1=(1234)
P D t3=(1234)
t& = (12 4 3)

Figure 3.2

A separable Markov chain.

10.

11.

22

REFERENCES

G. H. Gonnett, J. I. Munro, H. Suwanda, Exegesis of Self
Organizing Linear Search, SIAM J. Comput. 10 (1981) 613-637.

J. R. Bitner, Heuristics that Dynamically Organize Data
Structures, SIAM J. Comput. 8 (1979) 82-110.

B. Allen and J. I. Munro, Self Organizing Search Trees, JACM
25 (1978) 526-535.

. J. Hendricks, An Account of Self Organizing Systems, SIAM
. Comput. 5 (1976) 715-723.

. =

D. E. Knuth, The Art of Computer Programming Vol. 3 Addison-

Wesley, Don Mills Ont, 1973.

J. McCabe, On Serial Files with Relocatable Records,
Operations Res. 12 (1965) 609-618.

R. Rivest, On Self-Organizing Sequential Search Heuristics,
CACM 19 (1976) 63-67.

A. M. Tenenbaum, Simulations of Dynamic Sequential Search
Algorithms, CACM 21 (1978) 790-791.

P. J. Burville and J. F. C. Kingman, On a Model for Storage
and Search, J. Appl. Prob. 10 (1973) 697-701.

J. R. Bitner, Heuristics that Dynamically Alter Data
Structures to Decrease their Access Time, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, TR UIUCSDCS=R-75-
818. July 1976.

A. M. Tenenbaum and R. M. Nemes, Two Spectra of Self-
Organizing Sequential Search Algorithms, SIAM 4. Comput., to
appear,

