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ABSTRACT

Consider nonterminating finite state machines which communicate
exclusively by exchanging messages. We discuss a technique to verify
that the communication between a given pair of such machines will
progress indefinitely; this implies that their communication is free
of deadlocks and unspecified receptions. The technique is based on
finding a set of global states for the communicating pair such that
the following two conditions are satisfied: (i) the initial global
state is in that set; and (ii) starting from any global state in that
set, an "acyclic version'" of the communicating pair must reach a
global state in that set. We call such a set a closed cover; and prove
that the existence of a closed cover for a communicating pair is
sufficient to guarantee indefinite communication progress.
Keywords: Communicating finite state machines, communication

progress, communication protocols, verification
techniques.



I. INTRODUCTION

The model of communicating finite state machines 1is an
abstraction of processes which communicate exclusively by exchanging
messages. The abstraction is achieved by ignoring the internal data
structures and internal operations of communicating processes and
representing each process by its external behaviour; i.e., by all
possible sequences of its sending and receiving operations with other
processes. This abstract representation of a process 1is called a

communicating finite state machine.

Communicating finite state machines are ugseful in the
specification [3], [8], analysis [1], [2], and design (4], (6], [10]
of communication protocols. So far, however, state exploration [7],
[9] is the only available technique to verify progress properties for
these machines. This technique has two apparent shortcomings. First,
the number of generated global states 1s usually "large” making it
difficult to use for practical protocols. Second, state exploration
can be used only for bounded communications, i.e., when the channels

between communicating finite state machines have finite capacities.

In this paper, we propose another technique to verify progress
for two communicating finite state machines and show that the two
shortcomings of state exploration are remedied to some degree by this

new technique.



II. COMMUNICATING FINITE STATE MACHINES

A communicating finite state machine P is a directed labelled

graph where each edge is labelled either "send(m)" or "receive(m)" for
some message m from a finite set M. An edge labelled "send(m)" is

called a sending edge; otherwise, it is called a recelving edge. One

of the nodes in P is identified as its initial node; and all the nodes
in P are reachable by directed paths from the initial node. P is
assumed to be "nonterminating'; i.e., each node in P must have at

least one output edge.

Let p be a direct path, in P, which starts from node i, ends at
node j, and consists of the directed edges €1,€9; 000,80 And let node
k and its input edge e, and its output edge e 41 be in p. Then pli,k]
denotes the directed path which consists of the edges €1,€9,-0,€
while plk,j] denotes the path which consists of the edges e ;y,.-.,¢€
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Therefore, path p can be denoted as pl[i,jl.

The sequence of sent messages along a directed path p whose edges

are ep,...,e, in P is defined as §1+89c +s¢ oS

v v

where . is the usual string concatenation operator, and

S: = m .eoif e; is labelled "'send{(m)"

= E (the empty string) ...otherwise.
(Notice that x.E.y = xX.vy).

Similarly, the sequence of received messages along a directed

path p whose edges are €1yeeesly in P is defined as Fpeloe cee oL,



where r; = m ...if e, is labelled 'receive{m)"

i
E {(the empty string) ...otherwise.

i

il

Let P and Q be two communicating finite state machines with the same

set M of messages. A global state s of P and Q is an ordered tuple

with four components: s={i,j,x,y] where i and j are two nodes in P and
O respectively, and x and y are two (possibly empty) strings over the
set M. Informally, [i,j,x,y] defines a global state at which the
execution of P has reached node i, the execution of Q has reached node
i, and the contents of the input channels of P and Q are x and y
respectively.

The initial global state s; of P and Q is of the form

<

SO={iO,jO,E,E] where io and jo are the 1initial nodes of P and @

respectively and E is the empty string.

A global state {iz,jz,xz,yz} is reachable from a global state

[il’jl’xl’yl} over the two paths pl[i;,i,] and qljy,3p] in P and Q

respectively iff the following two conditions Rl and R2 are satisfied:

Rl: xl.s’ = TeXy, and

y1.8 = r.y9

where s and s’ are the two sequences of sent messages along
p and q respectively; and r and v’ are the two sequences of
received messages along p and q respectively.

R2: There are no two nodes i and j with receiving output edges
on the two paths p and q respectively such that

xy.u’ = v, and

.

ylou = v



where u and u’ are the two sequences of sent messages along
plij,i] and q{jy,j] respectively, and v and v’ are the two

sequences of received messages along plij,i] and q[jq,j]

respectively.
Notation: [il,jl,xl,yl}~~~p,q—->{i2,j2,xz,y2]
denotes that the global state [iz,jz,xz,yz} is reachable from the

global state [il,jl,xl,yl} over the two paths p{il,izl and q[j,,j,] in

P and Q respectively. 11

A proof for the following lemma is in the Appendix.
Lemma 1: Let P and Q be two communicating finite state machines:; and

let pliy,iy] and ql[j;,jp] be any two paths in P and Q respectively.
££_ (i> [ilajl)X1)Y1]—"—p9q~_>{12)jZ)XZaYZ]) and

(ii) nodes i and } are any two nodes in paths p and g
respectively, and

(iii) {ii,jj,xl:Yl}”“”P»Q”">{i,j>X:Y]

theg (iv) {i,j,X,Y]“"‘P,Q”*>[iz,jz,xng2]- [}

A global state s, is reachable from a global state s; iff there

are two directed paths p and g in P and (Q respectively such that

S177"P,qTT28 .

A global state is reachable iff it is reachable from the initial

global state.



A global state s={i,3i,x,y] is called a blocking state for P (or

for Q) 1ff any reachable state from s is of the form [i,k,w,z] (or
[k,j,w,z] respectively). Informally, a blocking state for P is one in
which no further execution, or progress, of P is possible. A blocking
state for P (or Q) can either be a deadlock state or an unspecified
reception state for P {or Q). The exact definitions of these states

are irrelevant to this paper; but they can be found in [4].

The communication between two communicating finite state machines

P and Q will progress indefinitely if no reachable global state is a

blocking state for P or for Q. In this paper, we propose a new
technique to verify that the communication between two given finite
state machines will progress indefinitely. The technique is based on

the concept of closed covers discussed next.

ITI. CLOSED COVERS

Let C be a set of global states of two communicating finite state
machines P and Q. A node i in P (or node j in Q) is said to be covered
by C iff C has a global state of the form {i,k,x,v] (or [k,i,%,v]
respectively). Set C is called a cover for P and Q iff every directed

cycle in P or Q has at least one node covered by C.

Let C be a cover for P and Q. Define AP to be the directed
labelled graph constructed from P by partitioning every node 1,
covered by C, into two nodes i, and i, where i has all the output
edges of node 1 and i, has all the input edges of i. Node il in AP is

called the input version of node i in P; and 12 is called the output

version of 1i. Also, define AQ to be the directed labelled graph



constructed from © in a similar way. Since C is a cover for P and O,
both AP and AQ are acyclic; hence AP and AQ are called the acyclic

versions of P and Q with respect to C.

Except for being acyclic and for their lack of initial nodes, AP
and AQ are two communicating finite state machines with the same set M
of messages as P and Q. A global state of AP and AQ is of the form
(i,j,%x,y] where i and j are nodes in AP and AQ respectively, and x and
y are two (possibly empty) strings over M. Let p and q be two directed
paths in AP and AQ respectively; and let s,y and s, be two global
states of AP and AQ. Then S9 is reachable from s} over p and g,
denoted sl-~—p,q——>sz, iff the above two rteachability conditions RI1
and R2 are satisfied for S15 89, P and q. Also, s, is reachable from
s1 iff there are two paths p and q in AP and AQ respectively such that

§1=="P,4"">Sy-

Let C be a cover for P and OQ; and let AP and AQ be the acyelic

versions of P and Q with respect to C. A global state s={1i,3,x,y] in C
is called closed iff the following condition is satisfied: Let i, and
jy be the input versions of nodes i and j respectively; and let

p{il,kz} and Q[j1>12} be two directed paths in AP and AQ respectively.

;ﬂg (l) {il»j1,Xa}’]"““‘Paqm">[k2v»12>W,Z}, and

(ii) no other global state of AP and AQ is reachable from
(kz,lZ,W,Z]

then (iii) ky is the output version of some node k in P, and
(iv) 1, is the output version of some node 1 in Q, and

(v) [k,1,w,z] is in C.



A cover set C of P and Q is called a closed cover 1iff it
satisfies the following two conditions: (i) the initial ¢lobal state

of P and Q is in C; (ii) each global state in C 1s closed.

Next, we show that the existence of a closed cover for two
communicating finite state machines is sufficient to guarantee that
their communication will progress indefinitely. In what follows, let C
be a closed cover for two communicating finite state machines P and
Q. Also, let p and q be two directed paths which start from the
initial nodes iy and Jp and end at some nodes i and j in P and O
respectively. The proofs of the following lemmas and theorem are 1n
the Appendix.

Lemma 2:
}_f_ (l) [i(),jQ,E,E]"‘"P;Q‘“>{i,j,XsY], and

(ii) nodes r and s are the Kth nodes covered
by C in paths p and q respectively

then (iii) there exists a global state [r,s,w,z] in C, and

(1V) {iOajOaE)E}_—“‘paq-->[rssawaz]' []
Lemma 3:
,I.f (i) [ioszaE’E]“"'P,Q*"ﬂi,j,?{,ﬂ, and

(ii) path p has K nodes covered by C, and
path ¢ has L nodes covered by C such
that X > L

then path g can be extended to some node s in Q such that the
extended path q° satisfies the following two conditions:

(iii) {iO,jO,E,E]~~~p,q——>[i,s,w,z], and

(iv) path q’ has K nodes covered by C. 1]



Lemma 3 is also true if the roles of paths p and q are reversed.
It is straightforward to re-state Lemma 3 in this reversed form and to
prove it using a similar proof to that of Lemma 3. From Lemmas 1, 2,
and 3, the following theorem can be proved; the proof is in the
Appendix.

Theorem 1: The communication between P and § is guaranteed to progress

indefinitely. [1

IV. A METHODOLOGY TO VERIFY PROGRESS

From Theorem 1, to verify that the communication between two
communicating finite state machines P and O will ©progress
indefinitely, it is sufficient to construct a set C of global states
of P and Q then verify that C is a closed cover as follows:

(i) Show that the initial global state of P and Q is in C.

(ii) Then, show that each directed cycle in P or Q has at least
one node covered by C.

(iii) Finally show that each global state [i,j,x,y] in C is

closed as follows:

a. Construct the two acyclic versions AP and AQ of P and Q
with respect to C; and let i; and j; be the input versions

of nodes i and j in P and § respectively.

b. Construct the set S[i;,J;,x,y] of all global states of AP
and AQ reachable from state [i;,j;,x,y]. This step 1is

discussed later in detail.

c. Check that if a state [k9,lp,w,z] is in S8[i;,3;,%,y] and if
no other state in S{iy,J;,x,y] 1is reachable from
[kp,15,w,z] then ky and 1, are the output versions of some

nodes k and 1 in P and Q respectively such that [k,1,w,z]
is in C.



To construct the set S[il,ji,x,y} of all glebal states reachable
from [il,jl,x,y] in AP and AQ, usual state exploration techniques [9]

can be used as follows:

a. [il,ji,x,y] is in S[il,jl,x,y},

b. If [k,l,w,z] is in S[il,jl,x,y] and if there is an edge,

labelled "send(m)'", from node k (or 1) to node r in AP (or
AQ), then {r,1,w,z.m] (or [k,r,w.m,z] respectively) is in

S[il)jl’xsy]'

c. If [k,1,w,z] is in S{il,jl,x,y], and there 1is an edge,

labelled "receive(m)", from node k (or 1) to node r in AP
(or AQ), and if wsm.s {(or z=m.s), then [r,1,s,z] (or
[k,r,w,s] respectively) is in S[ij,ij,x,y].

Notice that since AP and AQ are acyclic, set S{il,jl,x,y] is

finite and can be constructed in a finite time.

V. EXAMPLES

Example 1: Figures la and 1b show two communicating finite state
12 W 5 it __ 0

machines P; and Q whose initial nodes are "a" and "e" respectively.

Consider the following set Cy of global states of Py and le
¢, = {la,e,E,E], [c,g,E,E]}

where E is the empty string. First, the initial global state [a,e,E,F]

1 9t ik

is in C;. Second, the directed cycle of P; has two nodes "a" and "c"
covered by C;; and the directed cycle of Q; has two nodes "e" and "g"
covered by Cl. Now, 1t remains to show that every global state in Ci
is closed. Figures l¢ and 1d show the acyclic versions AP1 and AQl of
P, and Q; with respect to C;. To show that [a,e,E,E] is closed,

Figure le shows all the global states of AP, and AQ, reachable from



Initial node

O -

send(rqst) send(rqst)

© f

receive(rgst) receive(rqgst)

&
AN

aG

send (rply) send{rply)

© G

receive (rply) . receive{rply)

NG

(a) P, () Q,

& ©
send(rgst) send (rply) send(rqst) send (rplv)
| a4
© © ©
receive (rgst) receive(rply) receive(rgst) receive(rply)
S @ ®
{c) APl {d) AQI

Figure 1 Example 1



AP . send{rgst) send(rqst)

AP. send{rgst)

AQ, send{rqgst) 1

receive(rgst) receive(rqst)

receive(rgst)

. receive(rgst)

(e} Proving that [a,e,E,E] is closed.

Figure 1 Example 1
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[al,el,E,E]. Since [cp,g9,E,E] is the only state with no other
reachable state, and since [c,g,E,E] is in Cy, then [a,e,E,E] is
closed. Similarly it can be shown that [c,g,E,E] is closed. Thus, o
is a closed cover for P; and Q;; and the communication between P, and

Q; is guaranteed to progress indefinitely by Theorem 1.

Notes: (i) Other closed covers can be found for this example. For
instance, the two sets {[a,e,E,E]}, and {[a,e,E,E]l, [b,f,rgst,rqst],

[c,g,E,E], [h,d,rply,rply]} are closed covers for P, and Ql‘

(1i) Communication progress 1in this example can be verified using
usual exploration techniques [9] assuming that each of the two
channels between P1 and Ql has a capacity of two. On the other hand,
using closed cover techniques can reduce the number of global states
generatea during the verification. For instance, in the above example
all the global states at which a channel has two messages, which would
have been generated using state exploration techniques, are not

generated using the closed cover Cy. [1]

Example 2: Figures 2a and 2b show twe communicating finite state
machines P, and Q) whose initial nodes are "a" and "b" respectively.
Consider the following set Cz={[a,b,E,E}} of global states of P, and
Q) where E is the empty string. First, C, contains the initial global
state. Second, each directed cycle in P2 and Qy has one node covered
by C,p; thus C, 1is a cover for Py and Q,. It remains to show that
[a,b,E,E] is closed. Figures 2c and 3d show the acyclic versions AP,
and AQZ of P, and Q, with respect to C2. Figure 2e shows all the
global states of AP2 and AQZ reachable from [al,bl,E,E]; notice that

the only state with no other reachable state is [az,bz,E,E]. Thus,



send(m) receive (n)

send (m) receive(n)

(c) AP

APZ send (m)

7 AQ2 receive (m)

receive(n) receive (m)
(b) Q,
receive(n) receive (m)
(d) AQ,

{(e) Proving that [a,b,E,E] is closed.

Figure 7

Example 2
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[a,b,E,E] is closed; and CZ is a closed cover for Pz and Qz; and the
communication between P, and Q, is guaranteed to progress

indefinitely.

Notice that the channel from P, to Q) must have an infinite
capacity; hence usual state exploration techniques cannot be used to

verify communication progress in this example. []

VI. INFINITE CLOSED COVERS

Theorem 1 is still applicable even if a closed cover has an
infinite number of global states. One way to specify infinite closed

covers is by introducing global state schemas. A global state schema

of two communicating finite state machines P and Q with a set M of
messages is an ordered tuple with four components: {i,3,%,Y] where i
and j are two nodes in P and Q respectively, and X and Y are two
regular expressions [5] over M. A global state [i,3,%x,y] of P and Q is
'ig a global state schema [1,j,X,Y] of P and Q iff x and y are two
strings in the regular languages accepted by the regular expressions X

and Y respectively.

Let H be a finite set of global state schemas of two
communicating finite state machines. A global state s is in H iff s is
in a global state schema in H. Because of this definition of global
states being in a set H of global state schemas, H is a cover or a

closed cover iff the global states in H satisfies the definitions in

Section III. Also, Theorem 1 is still applicable to such a closed

cover H.
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To verify that a set H of global state schemas is a closed cover,
it is not convenient to verify that each global state in H is closed
since H can have an infinite number of global states. Rather, it is
sufficient to verify that any global state schema [i,3i,X,Y] in H is

closed as follows:

a. Construct the acyclic versions AP and AQ of P and Q with
respect to H; and let i; and j; be the input versions of

nodes 1 and j respectively.

b. Construct the set S[il,jl,X,Y] of all global state schemas
reachable from [iy,j;,X,Y] in AP and AQ. This step is

discussed in more detail later.

c. If [ky,1,,W,2] is in S[iy,3,X,Y] and if no other global
state schema in S[i;,j;,X,Y] is reachable from [k,,1,,W,Z],
then ko and 1, must be the output versions of nodes k and 1

in P and Q respectively, and there must be a schema
[k,1,W ,2°] in H such that the language accepted by W (or
Z) 1s a subset of the language accepted by W’ (or 2’
respectively).

Notice that proving a global state schema h 1is closed implies
that each global state in h is closed. It remains to show how to

construct the set S{il,jl,X,Y]:

a. [il’jl’X’Y] is in S[il,jl,X,Y]

b. If [k,1,W,Z} is in S[il,jl,X,Y] and if there is an edge,

labelled "send(m)", from node k (or 1) to node r in AP (or
AQ), then the global state schema [r,1,W,Z.m] (or
[k,r,W.m,Z] respectively) is in S[i;,J;,X,Y].

c. If [k,1,W,Z] is in S[i},3;,X,Y] and if there is an edge,

labelled “receive(m)", from node k (or 1) to node r.in AP
(or AQ), and if the regular languages accepted by W (or Z)
has at least one string of the form m.s, then the global
state schema [r,1,W/m,Z] (or [k,r,W,Z/m] respectively) is
in S$[iy,3;,X,Y] where W/m = {sim.s is in W} and

Z/m = {sim.s is in Z}.
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Example 3: Figures 3a and 3b show two communicating finite state
machines Pj and Q4 whose initial nodes are "a" and "c" respectively.
Consider the following set H of global state schemas of P, and Q5.
H={[a,c, (m.n)* + n.(m.n)*,E], [b,e, (@) + n.(m.n)*,E]}

First, the initial global state [a,e,E,E] is in the schema [a,c,(m.n)k
+ n.(m.n)*,ﬁ} and thus in H. Second, each directed cycle in Pq and 04
has at least one node covered by the global states in H; hence H is a
cover for Pg and Q. It remains to show that each global state schema
in H is closed. Figures 3c and 3d show the acyclic versions APq and
AQq of P3iand Q4 with respect to H. Figure Ze shows the two schemas of
AP, and AQ, reachable from [bl,el,(m.n)++ﬂ.(m.n)*,E}; notice that the
only schema with no other reachable schema is {az,cz,(m.n)+ +
n.(m.n)*,E}. Since {a,c,(m.n)* + n.(m.n)*,E] is in H and since the
language accepted by (m.n)+ + n.(m.n)* is a subset of the language
accepted by (m.n)* + n.(m.n)*, then [b,e,(m.n)+' + n.(m.n}k,ﬁi is
cleosed. Similarly, it can be shown that [a,c,(m.n)* + n.(m.n)%,E] is
closed. Therefore, H 1is a closed cover for P3 and QB; and the
communication between Pq and Q3 will progress indefinitely by

Theorem 1. (]



receive (m) receive (n) send{m)

send (p) send(n)

receive(p)

(a) P (b) Q,

receive (m) receive{(n) send (p)

D ©
send (m) receive(p)
‘:’

i%ssend(n)

() AP (d)  AQ,

+
b],el,(m.n) +n. (m.n)*,E

AP3 send(p)
N :

+
az,el,(m.n} +n. (m.n)*,p

AQ3 receive(p)

+
%
az,cz,(m.n) +n.{m.n)*,E

+
(d) Proving that [b ,el,(m.n) 4+n. (m.n)*,E] is closed.

1

Figure 3 Example 3
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VII. CONCLUDING REMARKS

The closed cover technique can be extended in a straightforward
manner to verify progress for more than two communicating finite state
machines. A comparison between this technique and wusual state

exploration is as follows.

The c¢losed cover technique has two advantages over state
exploration. First, the total number of global states generated when
using a closed cover is usually less than those generated during state
exploration (Example 1). The amount of saving depends on the
communicating machine pair and on the selected closed cover. Second,
the closed cover technique can be used to verify progress for machines
with wunbounded communications (Examples 2 and 3) whereas state

exploration cannot be used in these cases.

On the other hand, state exploration has two advantages over the
closed cover technique. First, to use state exploration one should
determine or ‘"guess' the capacities of the channels between the
communicating machines. This seems much simpler than guessing a whole
closed cover as required by the closed cover technique. Second, state
exploration can be used to verify nonprogress, e.g., by showing
deadlock states, while the c¢losed cover technique cannot verify

NONprogress.

There is an analogy between the closed cover technique and the
assertion techniques to verify safety properties of sequential
programs. A global state [i,j,x,y] in a closed cover can be viewed as

an assertion stating that '"if the execution of P reaches node i and
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the execution of Q reaches node j, then the input channels of P and 0
have x and y respectively". Also the condition that each directed
cycle in P or Q must have at least one node covered by the closed
cover is analogous to the condition that each cycle in a sequential
program must have at least one assertion. Finally, the requirement
that each global state in a closed cover must be closed is analogous
to the requirement that each assertion before a block of statements
must be sufficient to ensure the assertion after the block. This
analogy between the two techniques should encourage further research
to "blend" both techniques together to prove safety and progress

properties for communicating sequential processes.

ACKNOWLEDGEMENT: The author is thankful to XK. F. Carbone for her
careful typing.
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APPENDIX: PROOFS
Proof of Lemma l: We prove that the two reachability conditions R, and
R2 are satisfied.
Proof of Rl: From (i), we have
(v) xy.8"= r.xy, and

(vi) yi.8 =71".y9
where s and s’ are the two sequences of sent messages along p and ¢
respectively, and r and r’ are the two sequences of received messages
along p and q respectively. From (iii), we have

(vii) xy.u’= v.x
(viii) yj.u = v’'.y
where u and u’ are the two sequences of sent messages along p[i;,i]
and q[jz,j] respectively, and v and v’ are the two sequences of

received messages along p[il,i] and q{jl,j] respectively. From (ii),

we have

(ix) s = u.t,

(x) " =u’.t’
3

(xi) r = v.w, and
(xii) v = v .w’

where t and t’ are the two sequences of sent messages along pli,i,]
and Q[j,jz] respectively, and w and w’ are the two sequences of

received messages along p{i,izl and q[j,jz} respectively.

vex.t'= xj.ult’ from (vii)
= xy.8" from (%)
= reXg from (v)
= V.W.Xp from (xi)

-

X t7= wexy
Similarly, we can show that y.t = w'.y, from (viii), (ix),(vi), and
(xii). This proves Rl.

Proof of R2: (by contradiction) Assume that there are two nodes 1’ and
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j° with receiving outputs on the two paths p[i1,1,] and qlj,J,] such

that

(xiii) x.f°= g, and
(xiv) y.f =g’

where f and f’ are the two sequences of sent messages along pli,i’]
and qlj,j"] respectively, and g and g’ are the two sequences of

received messages along pli,i’] and qlj,j"] respectively.

xl.u:f'= v.x. £~ from (vii)
= v.g from (xiii)
and yj.u .f = vi.g’ from (viii) and (xiv)

This contradicts (i). Thus R2 is valid. i1

Proof of Lemma 2: (by induction on K)

Initial step (K=1): The lemma is correct since [ig,Jp,E,E] is in C.

Induction hypothesis (K=k-1): Let m and n be the (k-1)th covered nodes

on paths p and q respectively. Then, there exist w’ and z’ such that

(v) Im,n,w’,2z"} is in C, and
(Vl) HQ,jO:EaE]‘"““P»q*‘>[m»nsW’ :zl}

From (i), (vi), and Lemma 1 we have

(vii) [m,n,w’.2z” ]=-=p,a-——>[1i,3,x,v]

Induction step (K=k): Let my; and nj; be the input versions of m and nj
and let r, and s, be the output versions of r and s respectively. Let
pl{m},rzl denote the path in AP which corresponds to plm,r] in P, and
ql[nl,szl denote the path in AQ which corresponds to qln,s] in Q. Now
(vii) can be rewritten for AP and AQ as follows.

(Viii) [ml ,nl,w' yzl }"“—'pl :q1_~>[k313w“)z“} ] and

(ix) no other global state of AP and AQ is reachable from
[k,1,w",2"].

1f  [k,1,w",z"] # [rg,sy,w,z] then [fm,n,w ,z"] 1is not closed
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contradicting that C is closed. Therefore [k,1,w",2z"] = [rz,sz,w,z}

and (viii) must be rewritten as:
(x) [ml,nl,w',z’]-—~pl,q1-—>[r2,s2,w,z]
From (x) since [m,n,w’,z’] is closed, then [r,s,q,z] must be in C
which proves (iii). Also, (x) can be rewritten for P and Q as follows.
(xi) [m,n,w’,z" ]---p,q-->[r,s,w,z]
Thus (iv) is immediate from (vi) and (xi). 1

Proof of Lemma 3: (by induction on K)

Initial step (K=1): The lemma is true since any path ¢ starting from

the initial node jo has at least one node covered by C, namely node
ig-

Induction step (K=k): (Proof is by contradiction) Assume that path q

cannot be extended to node s which satisfies (iii) and (iv). In other

words, there is a node r on the extended path q’ such that

(V) [io,jO’EaE]‘"‘“P,Q’*‘>[iyraW,Z]; and

(vi) no other global state of P and Q is reachable from
[i,r,w,z], and
(vii) the path q’[j,r] has exactly k-1 nodes covered by C.
(This is because path p contains exactly K=k nodes
and the lemma is assumed true when K=k-1 by the
induction hypothesis.)
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Let u and v be the (k—l)gﬁ_and the kth covered nodes in p; and let uy
and v, be the input and output versions of u and v respectively. Let
Dl[“l’VZ] denote the path in AP which corresponds to the path plu,v]
in P. Similarly, let t be the (k-1)th covered node in q’, and t; be
the input version of t. Also, let qi[tl,r] denote the path in AQ which
corresponds to path q’[t,r] in Q. Notice that since C is closed, the
global state [u,t,x”,y’] is in C by Lemma 2. From (v), (vi), and
(vii), we have:

(viii) [ul,tl,X',y'}*‘”Pl,ql“‘>[V2’f>Wf)Z’}» and

(ix) no other global state of AP and AQ is reachable from
[vp,r,w",2z"], and

(x) node r is not covered by C.
These three conditions contradict the fact that [u,t,x’,y’] and hence
C are closed. [1
Proof of Theorem 1l: (by contradiction) Let ig and jg be the initial
nodes of P and Q respectively; and assume that the following two

conditions are satisfied.
(i) [iO’jO:EaE}—“~paq“">[iajyX:y}

(ii) All reachable states from [i,]j,x,y] are of the form

[i,k,w,z]. In other words [i,],x,y] is a blocking state for P.

Path p must have more covered nodes than path q, otherwise according
to Lemma 3 (in its reversed form) path p can be extended in violation
of condition (ii). Assume that path p has K covered nodes and that its
Kth covered node is m. If path q does not have K covered nodes then
according to Lemma 3, it can be extended to node n such that the

extended path q’ satisfies the following two conditions.

(iii) [10)jO,E’E}"—~p9q,'_>[i)naX’,y’]3 and
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(iv) node n is the Kth covered node in path q’.
From (i), (iii), and Lemma 1 we have,

(v) [i,3,%x,y]-==p,q"-=>[1i,n,x",y"]
And from (ii) and (v) we have

(vi) All reachable states from [i,n,x",y"] are of the form
[i,t,w,z].

Since m and n are the Kth covered nodes in paths p and q’, then

from Lemma 2 we have

(vii) [io,jO,E,E]~—~p,q’-~>[m,n,w',z'I

From (vii), and Lemma 1 we have
(viii) [m,n,w’,z" ]=-—-p,q ' ==>[1i,n,x",y"]
Let m; and nj be the input versions of m and n respectively. Let
Dl[ml’i] denote the path in AP which corresponds ;;.;ath VVVVVV plm,il in
P. Similarly, let qi[nl,nl] denote the path in AQ which corresponds to
path q’[n,n] in Q. The two conditions (vi) and (viii) can now be
rewritten for AP and AQ as follows:
(viii) {ml,nl,w',z']”‘”Pl,qi"“>[i,n1,x',Y']

(ix) All reachable states from [i,nl,x',y’} are of the form

i,t,w,z].

Since i is not covered by C (otherwise path p has K+l covered nodes),
then [m,n,w’,z"] 1is not closed implying that C 1is not closed.

Contradiction. {1



