NECESSARY AND SUFFICIENT CONDITIONS
TO DETECT MESSAGE DUPLICATION
IN PROTOCOL HIERARCHIES

M. G. Gouda and B. N. Jain"
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

TR-192 February 1982

*On leave from Dept. of Electrical Eng., Indian Institute of Technology, Delhi 11016, India



P(/Ué N (;M%fﬁg}/

ABSTRACT

We discuss the phenomena of message duplication in a protocol layer that is
caused by the lower layer in a protocol hierarchy. For example, packet duplication in
the packet layer of an X.25 protocol can be caused by the reset feature in the lower
frame layer of the same protocol. We propose two techniques to detect duplicate mes-
sages. One technique requires that serial numbers be attached to all sent messages.
The other technique requires that each process in the protocol layer distinguishes be-
tween the different types of received messages. Necessary and sufficient conditions for
the correctness of each technique are developed and verified.

Keywords: Communication protocols, duplication detection, message duplication,
protocol hierarchy, X.25 protocol.



I. INTRODUCTION

Message duplication between communicating processes in a protocol layer can be
caused either by the processes themselves or by the lower protocol layer. An example of
message duplication caused by the processes is when one process re-sends a previously
sent message because it has not received a reply for the first message in a reasonable
amount of time [3]. An example of duplication caused by the lower layer is when the
lower layer transmits a message from one process to another, then "forgets" that it has
delivered the message (because of an internal "reset") and redelivers the same message
again [5]. Message duplication caused by the processes themselves is a well understood
phenomena; see [3] and [7]. Duplication caused by the lower layer is the subject of this
paper.

In Section II, we discuss a simple model for message duplication in a protocol
hierarchy. A technique to detect duplicate messages by attaching serial numbers to all
sent messages is discussed in Section III. In Section IV, another technique to detect

duplication by distinguishing the different types of received messages is discussed. Con-
cluding remarks are in Section V.

II. THE MODEL

- Consider two adjacent layers in a protocol hierarchy. The upper layer consists of
two processes P, and P, which communicate by exchanging messages via the lower

layer; i.e., every sent message by P, (or Pl) is first received by the lower layer then it is
delivered to P (or P1 respectively).

As shown in Figure 1, the two layers are connected by four FIFO queues Sgr Sys
Ry R,. Queue S, (or S,) holds the messages sent by P (or P, respectively) and not yet
delivered by the lower layer. Queue R, (or R,) holds the messages delivered by the
lower layer and not yet received by P, (or P, respectively).

The following notation is adopted:

P, denotes a process, either P, or P,.

S; and R, denote the two buffers between process P, and the lower layer.

Pi@l denotes the other process; thus P, denotes PO iff Pi@l denotes P and
vice versa.

Si@l and Ri@l denote the two buffers between process Pi@l and the lower layer.



m; . denotes the jth message sent by process P, where j=0,1,2,...; index j
is called the order of message m .

The lower layer can be viewed as executing an infinite sequence of operations;

each operation is either a delivery operation or a duplicate-delivery operation defined as
follows.

A Delivery Operation:

if S, has at least one message

then the lower layer removes the head message from S,
and adds 1t to the tall of R,g,.

A Duplicate-Delivery Operation:

If k 1s the order of the highest order message which has
already been delivered by the lower layer from P, to

P
ie1
then the lower layer adds a previously delilvered message
mi'j where j<k to the tail of R,,,, provided
J>k-Dy
L
where D, 1s some non-negative 1nteger called the duplication
bound for the lower layer from P; to P,.,.

Notice that D;>0. If D;>0 then duplicate copies of previously delivered messages

can be redelivered by the lower layer to Pi@l‘ If Di=O then no duplication from Pl to
Pi@l is possible.

If Dy >Ohen the duplication from P, to Pi@l caused by the lower layer is said to
be wunbounded; otherwise it is bounded. Many existing protocol layers cause only
bounded duplication. For instance, the duplication caused by the reset feature in the
frame layer of X.25 [2] is bounded by the window size of that layer [5]. Similarly, the
duplication caused by the packet layer of that same protocol is also bounded [5].

Next, we discuss two techniques for the upper layer to detect message duplication
caused by the lower layer. One technique requires the processes in the upper layer to at-
tach serial numbers to all sent messages. The second technique requires the processes to
exchange distinguishable types of messages.

ENL

III. DUPLICATION DETECTION BY ATTACHING SERIAL NUMBERS
TO MESSAGES




Assume that for j==0,1,2,..., a number n, ; is attached to the message m, . sent by
Pi; and assume that the attached numbers are defined as follows:

0= 0 (2)

=10, +1mod N, (3)
where N, is called the numbering bound for the messages sent by P..

Lemma 1: [For all j=0,1,2,...] [nij = j mod N]

Proof: (by induction on j)

Initial step (j=0): From (2), n, , =0
Induction hypothesis (j=k): n, ., = k mod N
Induction step (j=k+1): From (3), n

n

i,k+1
then from the i1nduction hypothesis 1, k+1

= Dy ey mod N, ;
= k+1 mod Ni [

Process Pi@l can detect duplicate messages by using the following program to
receive messages.

var x : [0,...,N;-1];
{x contains the number attached to the next nonduplicate message}
begin x = 0;

whlle true do
recelve a message m and the number
n attached to 1t;
if x =n
then {m 1s a nonduplicate message}
X := x+1 mod Ni;
store m;
else {m 1s a duplicate message}
discard m

endlf;
endwhile;
end

In this program, a message m is a nonduplicate iff its number equals the current
value of variable x. Thus, the program can be verified by proving the following two
assertions:

A. For j=0,1,2,..., the jth value X of variable x equals the number attached to the
jth message m, ; sent by P;.

B. For j=0,1,2,..., the jth value x. of variable x does not equal the number at-
tached to any duplicate message received by Pi@l before m; i

2



Assertion A holds; see Theorem 1 below. For assertion B to hold, a necessary and
sufficient condition, namely that N;>D,, must hold; see Theorem 2 below.

Theorem 1: Let X be the jth value (j=0,1,2,...) assigned to variable x in the
above program.

[for all j==0,1,2,...] [XJ- = ni,j]

Proof: (by induction on j)

Initial step (J=0): From the above program,
X,=0=n
Induction hypothesils (J=k): Xe =0y y
Inductlon step (J=k+1): From the above program,
Xer =X+l mod Ny
= ni,k+1 mod Ni
= Dy 4y (from (3)). (]

i,0

k+1

Theorem 2: Let x; be the kth value (k==0,1,2,...) assigned to variable x in the
above program.
[Ni > D] iff
[for all k=0,1,2,...] [x ?é:ni,j where j<Xk]

Proof:

If Part: Assume that N, > D, and that there exists a k such that X =0, 5 where
j<k. Then, from Theorem 1, we have 0, =0, where j<k. From Lemma 1, we have
k=] mod N, where j<k. Therefore, k=s.N.+j for some s in {1,2,3,...}. Since j<k-1,
then from (1) i>k-1-D;. Thus, we get D;+1>s.N; for some s in {1,2,...}. This con-
tradicts Ni>Di'

Only If Part: Assume that N, < D.; we show that there exists a k such that

X=0; ., where j<k. Let the value of k be k=j+N,. This does not violate (1) since
j=k-N;>k-D.-1.

From Lemma 1, Ny o = k mod Ni
= ) mod Ny
poed ni,j
From Theorem 1, X = ni’j
=, | [

Corollary 1: Assume that the duplication from P, to Pi@l is unbounded, i.e.,

Di—->O Then, the above can correctly detect duplicate messages iff Ni~—>0(i.e., the
numbers n . must range over all positive integers).



o

Proof: From Theorems 1 and 2, the above program can correctly detect duplicate
messages iff N.>D.. If D,-- @then Ni--@ I

IV. DUPLICATION DETECTION BY DISTINGUISHING DIFFERENT
MESSAGE TYPES

Assume that processes P; and P@1 are defined as two communicating finite state
machines [1], [4], [6], [8] M; and Mg, respectively. The following definition of a com-
municating finite state machine M applies to both M; and Mi@l'

A communicating finite state machine M is a directed labelled graph where each
edge is labelled with a message type such that no two outputs of the same node have
identical labels. M has two types of nodes sending nodes and receiving nodes. Any out-
put edge of a sending (or receiving) node is called a sending (or recetving respectively)
edge. The labels of the output edges of a receiving node n in M are called the expected
message types at n. One of the nodes in M is called its initeal node; and all the nodes
are reachable by directed paths from the initial node.

Associated with M are one queue S to hold the sent messages, by M and one queue
R to hold the messages to be received by M. Also associated with M is a control token
which at any instant resides at exactly one node in M. Initially, the control token of M

is at its initial node.
When the control token of M is at a sending node n, then

(i) one of the output edges of n, say edge e, is selected (at random) to be
traversed by the control token in zero time to the next node in M, and

(ii) 2 message m of type t, where t is the label of e, is added to the tail of queue
S. m is said to be sent at node n.

When the control token of M is at a receiving node n and the head message in
queue R is of a type t expected at node n, then

(i) the output edge e of n, whose label is t, is selected to be traversed by the
control token in zero time to the next node in M, and

(ii) the head message m is removed from R for processing. m is said to be
recetved al node n.

The two queues associated with M. are S, and R;; and the two queues associated
with Mi@l are Si@l and Ri+1‘ As discussed in Section II, the function of the lower layer



is to transmit, with possible duplication, the messages from S; to Ri@l and from Si@l to
R..

1

We assume that M; and Mi@l satisfy the following two conditions provided that
no duplication occurs during their communication.

A. No Unspecified Receptions: If the control token of M, (or M,p;) reaches a
receiving node n and if at this state, the head message in R, (or Ri@l respectively) is of
type t, then t is an expected type at n.

B. No Nonexecutable Paths: Given a directed path p in M, (or M, ;) it is possible
to start from the initial nodes of Mi and M; 1 and select control token movements in M,
and Mi@l such that the control token of M, (or Mi@l respectively) traverses p.

Condition A is essential and needs to be satisfied [4] and [8] regardless of our in-
terest in duplication detection. Later, we argue that condition B is not needed in almost
all practical applications.

Mi@l can detect duplicate messages by applying the following rule.

Duplication-Detection Rule for M., :

Let the control token of Mio¢ be at a receiving node n while m is the head message in

Iﬁ@r
If the type of m 1s expected at n
then {m 1s a nonduplicate message}
m 1s removed from R,,, and stored {receive m}; and

the control token of Mi@1 moves to the next node in Mim

else {m 1s a duplicate message}

m ls removed from Rim and dlscarded; and

the control token of Mm1 remains at n

For Mi@l to correctly detect duplicate messages using this rule, a necessary and

sufficient condition must be satisfied; to state this condition some definitions are in or-
der. A directed path p in a communicating finite state machine M is called nonduplicate
if it starts from a receiving node and ends at a receiving node and the label of its first
edge is the same as that for an output edge of its last node. Define R(M) as follows:

RM = min [Number of receiving edges in pl
p 1s a nondupllcate



Notice that in general, M can have an infinite number of nonduplicate paths; however
to compute R(M) we need only to consider a finite number of these paths, called basic

paths. In the appendix we define basic paths and show how to compute R(M) from
them.

As shown in the next theorem, a necessary and sufficient condition for M.

to
i®1
correctly detect duplicate messages using the above rule is that R(Mi®1)>Di‘

Theorem 3: Let n_ denote the rth receiving node (r==0,1,...) reached by the con-
trol token of Mi@l

[R(Mifﬁl) > Di] 1ff
[for 211 r = 0,1,...1L[

If a message m of an expected type at n_ 1s recelved at n.
then m = m, _

else m = m oy where j < r]

If Part: Assume that R(Mi®>> we use induction on r to prove the above
property.

Initial step (r==0): The first message received at n, must be m, ;. Also since Mg, has no
unspecified receptions, the type of m, , must be expected at n.

Induction hypothesis (r==k): Assume that if a message m of an expected type at n, is
received at 0, then M=, else m=m, ; where j<k.

y

Induction step (r==k+1): From the induction hypothesis and since Mi@l applies the
above duplication-detection rule, the control token of M. 01 reaches L only after m, ik
is received. Thus any message received at ny 41 is either m, i k41 OF any message m, .
where j<k and j>k-D; (from (1)). Since Mg, has no unspemfied receptions, the type of
m; g must be expected at g It remains to prove that the type of any m, where
i<k and j>k-D, is not expected at n, 1 the proof is by contradiction. Assume that the
type t of a message m, i where j<k and J>k—Di is expected at 0y s i.e., node L
must have an output labelled t. By the induction hypothesis and since M. 01 applies the
duplication-detection rule, m, . must have already been received as a nonduplicate mes-
sage at n;. Thus n must have an output edge labelled t. Therefore, the directed path
traversed by the control token of Mi@l from n, to n is a nonduplicate path with k-j



. ©
receiving edges. Thus k-j>R(M,q,). Since j>k-D;, we get D;>k-j>R(M,q,) contradict-
ing R(M,g,)>D;.

Only If Part: Assume that D,>R(M,q,); we show that the control token of M;q,
can reach a receiving node n at which a duplicate message, whose type is expected at n,
can be received. Since Di—>—R(Mi®1)’ Mi@l must have a nonduplicate path p with h
receiving edges where D.>h. Let n; and n, be the first and last (receiving) nodes in p.
Also let t be the label of the first edge in p; hence, both n, and n, must have outputs
labelled t. Because, every path in Mi@l is executable, the control token movements in
M, and Mi@l can be selected such that the control token traverses path p and reaches
node n,. Assume that at this state the head message in Ri@l is a duplicate copy of the
nonduplicate message received at n,. This is possible since D.>h. The type of this
duplicate message is t which is an expected type at n,. |

Notice that in this proof the requirement that ’every path in Mi@l be executable’

is only needed to establish the necessity (rather than the sufficiency) of the condition
"R(Mi®1)>Di“. Therefore, even if some paths in Mg are nonexecutable, Mg, can

still use the above rule to correctly detect duplicate messages provided that

Corollary 2: If Di"> , then Mi@l cannot detect duplicate messages using the
above duplication-detection rule. :

Proof: From Theorem 3, Mi@l can correctly detect duplicate messages using the

above rule iff R(M,;q,)>D;. If Di-—>Ohen R(Mi@l)“@ This means that M5, must
have an infinite basic path (see the appendix) of distinct nodes contradicting that Mi@l
is a finite state machine. (]

V. CONCLUDING REMARKS

The two proposed techniques to detect message duplication can be compared as
follows. The first technique is less efficient since it requires to attach an extra number to
each sent message. The number of bits required to encode each of these numbers is log,
N, where N, is bounded by N,>D.. On the other hand, the second technique is less

general since it can be applied only if the upper layer satisfies some condition, namely

This suggests that in most cases, the second technique should be considered first.
Only when it is clear that the second technique cannot be used (i.e., R(M;q,)<D;), the

designer resorts to the first, more general technique.



|
ACKNOWLEDGI*.}MENT:Jhe authors are thankful to K. F. Carbone
\ for her careful typing.
|

i

REFERENCES

[1] G. V. Bochmann, "Finite state description of communication protocols," Computer
Networks, Vol. 2, 1978, pp. 361-371.

[2] G. V. Bochmann and T. Joachim, "Development and structure of an X.24
implementation," IEEE Trans. on Software Engineering, Vol. SE-5,
No. 5, Sept. 1979, pp. 429-439.

[3] D. W. Davies, et al, Computer networks and their protocols, New York, John Wiley,
1979.

[4] M. G. Gouda and Y. Yu, "Designing deadlock-free and bounded communication
protocols," Tech. Rep. 179, Dept. of Computer Sciences, Univ. of
Texas at Austin, June 1981.

[5] B. N. Jain, "Duplication of packets and their detection in X.25 communication
protocols,” 9th International Symp. on Computer Architecture, Aus-
tin, TX, May 1982.

[6] C. A. Sunshine, "Formal modeling of communication protocols," USC/Inform. Sc.
Institute, Research Report 81-89, March 1981.

[7] A. S. Tanenbaum, Computer networks, Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

[8] P. Zafiropulo, et. al., "Towards analyzing and synthesizing protocols," IEEE Trans.
Comm., Vol. COM-28, No. 4, April 1980, pp. 651-661.



. 10
APPENDIX: COMPUTATION OF R(M)

A nonduplicate path p is called basic if it satisfies the following condition. All
nodes in p are distinct except possibly its first and last nodes.

Lemma:

RM) = min [Number of recelving edges in pl]
p 1s a basilc
path in M

Proof: We show that for every nonduplicate path p which is not basic there exists
a basic path q such that the number of receiving edges in p > the number of receiving

edges in q. Let p be a nonduplicate path which is not basic; i.e., p can be in any one of
the following three forms:

a, X
a, X

1’ bl xz’
1’ a’, xz’
a, X;, €, Xp,

» X C

b 3
c
c

where a 1s the first node 1n p,

b 1s an internal node in p,

c 1s the last node in p (not necessarily distinct from a),
and X,, X,, and X, represent the other node occurrences 1in p.

For each of these forms of p, we can find a path q in M such that q is nondupli-
cate and the number of receiving edges in p > the number of receiving edges in q:

For p = a, x;, b, X,, b, X5, ¢, then q = a, x;, b, X3, C
For p = a, X 2, X, c then q = a, X5, C
For p = a, Xy, € X5, C then q = a, X, C

If the found q is not basic, ¢ must be in any of the above three forms, and the ar-
gument repeats to find a smaller nonduplicate path in M. Since each time the found
path is smaller than the previous path, we must find at the end a basic path in M
where the number of its receiving edges is less than or equal that for the original path

p. [

The number of basic paths in a communicating finite state machine M is finite.
Therefore, R(M) can be computed in a finite time from the above lemma.



